
Effect of "non-local" dissipation on the quantum properties of systems 
in a potential with degenerate minima 

S. A. Bulgadaev 

Institute of Theoretical Physics, Academy of Sciences ofthe USSR 
(Submitted 4 July 1985) 
Zh. Eksp. Teor. Fiz. 90,634-651 (February 1986) 

We consider the effect of dissipation on the low-temperature behavior of two-dimensional and 
three-dimensional systems in a periodic potential. We show that as T-0 in all those systems, 
both in strong and in weak potentials, dissipation may lead to localization of the system while 
the mobility in the transition point vanishes discontinuously. We construct phase diagrams and 
find the low-temperature and low-frequency asymptotic behavior of the correlation functions. 
We also show that an external uniform field destroys the localization. 

I. INTRODUCTION 

Recently great attention has been paid to the problem of 
the effect of dissipation on quantum tunneling and such re- 
lated quantum effects as: 1) the decay of a metastable 

and 2) quantum diffusion in potentials with degen- 
erate Of most interest in this has been the often 
encountered case when the dissipation in the classical region 
can be described in the framework of a Langevin equation 
with a phenomenological friction coefficient 7 which is inde- 
pendent of the frequency and depends weakly on the tem- 
perature. Such a description is widely used to take into ac- 
count the effect of the interaction with the medium or with 
the other degrees of freedom on the motion of various coher- 
ent particle-like excitations.' For instance, these may be 
charge density waves in an external potential, fluxons in Jo- 
sephson junctions, and many others. It was shown in Ref. 1 
by using a simple model which describes the decay of a me- 
tastable state, when there is interaction with a thermostat 
consisting of a large set of oscillators with different frequen- 
cies, that when the system moves in the subbarrier region in 
imaginary time T = it the dissipation is effectively described 
by an integral operator which is non-local in rand which has 
a kernel whose decrease is determined by the low-frequency 
part of the spectral density p ( o )  of the oscillators of the 
thermostat. The operator has a slowly decreasing kernel if 
the case when a Langevin equation with a frequency-inde- 
pendent 77 is applicable. A similar non-local dissipative term 
in the effective interaction was later derived from a micro- 
scopic theory of a Josephson j ~ n c t i o n . ~ . ~  It was shown in 
Refs. 1 to 3 that the dissipation decreases the probability of 
the decay of a metastable state at T = 0 and in Ref. 3 the 
dependence of the decay probability on T was studied. The 
effect of dissipation on class 2)  of quantum properties turns 
out to be stronger. In Refs. 4 and 5 it is shown that a suffi- 
ciently strong dissipationmay disrupt at low T the symmetry 
of the probability of finding the system in different degener- 
ate minima. Finally, in the case of a system in a periodic 
potential, dissipation as T-0 may lead to a localization of 
the system while the statistical mobility vanishes jump- 

The phase transitions which occur in the last two 
cases turn out to be analogous to the phase transitions in one- 
dimensional In g a s e ~ . ~ . ' ~  

All results mentioned here were obtained for quantum 
systems with a single distinguished degree of freedom. In the 
present paper we consider the behavior of systems with sev- 
eral distinguished degrees of freedom in periodic potentials 
at low T. First of all we study the symmetric case which 
reduces to the problem of the motion of a d-dimensional 
particle in a crystallographic medium, and then we study the 
effect of an external uniform field F on the results. Such 
systems can describe the motion of particle-like formations 
in the modulated field of a crystalline medium or substrate, 
the motion of a particle injected into a crystal, and, when 
there is some well defined form of anisotropy present, of a 
sequence of Josephson junctions. 

The whole study is performed using the path integral 
method with imaginary time T. We shall consider the case of 
strong and weak potentials and find the low-temperature 
behavior of the main parameters of the system, the low-fre- 
quency asymptotic behavior of some correlation functions, 
and phase diagrams of the systems. 

II. EFFECTIVE ACTION FOR SYSTEMS WITH SEVERAL 
DEGREES OF FREEDOM 

We consider a generalization of the phenomenological 
Caldeira-Leggett model to the case of several degrees of free- 
dom. Let there be a quantum-mechanical system with d de- 
grees of freedom qi , i = 1, 2, ..., d, which is in a bare potential 
V,(q,, ...,qd ) and which interacts linearly with a set of oscil- 
lators x,  of a thermostat: 

where k runs through the number of the oscillators. In the 
symmetric case all parameters are independent of the index i: 
Mi = M, Cki = C, and H describes a particle with coordi- 
nates q = (q,, ...,qd ) in a d-dimensional space moving in a 
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potential Vo(q) and interacting with a thermostat. The par- 
tition function of the system ( 1 ) 

can be written as a path integral over all closed trajectories 
q, ( r ) ,  xk (r) with an imaginary time r :  

By virtue of the linearity of the interaction one can explicitly 
integrate over x, . As a result we obtain for Z a path integral 
with an effective action S,, depending only on the qi (Ref. 
11 ) (in what follows we drop the factor Z ,  which is equal to 
the partition function of the thermostat): 

Changing to a continuous set of oscillators and following 
Ref. 1 we select the low-frequency behavior of its spectral 
density from the condition that in the classical region for 
T)Q (S1 is a characteristic frequency in the oscillator spec- 
trum) the Fokker-Planck' or Langevin12 equations be re- 
produced 

where vij is the phenomenological friction tensor which we 
assume to depend weakly on T, while f (a) is a function 
which regularizes the behavior ofp(w) at high frequencies: 
f (0)  = 1, f (co ) = 0. Substituting (6) into (5)  we get for 
Di, (r) at r>fl-' the following expression: 

which as T-0 becomes 

The S b  obtained here is not translationally invariant since 
the initial H is not. However, Caideira and Leggett' have 
shown that a correct dissipative term can be obtained if one 
takes into account the renormalization of the potential 
Vo(qi ). Splitting for this purpose S b  into a translationally 
invariant part SD and a local counterterm: 

A S -  J' drqt(~)qj(r)D,-  J' drAV(qt), Du= J drDu(z), 

and requiring that the renormalized potential equal the 
physical one: 

we get for the partition function of the system, in terms of the 
effective section, the Caldeira-Leggett expression: 

It follows from ( lo),  (9),  and (7)  that the dissipation in S,, 
is described by the term SD with a non-local slowly decreas- 
ing kernel Bij ( r ) .  We note that now SD remains well de- 
fined even if we assume (7) to be valid for all r .  We shall in 
what follows work with a kernel D,, ( r )  in the form (7).  If 
the tensor vik = qiSik we have Dij (7) = S,, Dj (7) and ( 10) 
describes a system for which each degree of freedom has its 
own friction coefficient 77,. One obtains a similar expression 
for S, if one assumes that each distinguished degree of free- 
dom interacts only with its own thermostat. In the isotropic 
case vik = vSik, D,, (r) = S,, D(T) and ( 10) reduces to the 
partition function of a d-dimensional particle in a potential 
V(q) and in a medium with a non-local interaction 

It is convenient to consider jointly the quadratic part of 
So + SD right a way: 

Its Fourier transform has the form 

and, hence, its dissipative part OD plays the main role as 
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w-0 in determining the asymptotic properties of the system 
( 11 ). We note that the appearance of Iw, I in ( 13) corre- 
spond to the general rule for the analytical continuation of 
Fourier transforms of retarded correlators when one 
changes from the real time t to an imaginary one:13 

To within a constant, the reciprocal kernel U - ~ ( T )  is not 
uniquely determined in view of the zero eigenvalue (n  = 0).  
It can be fixed by the periodicity condition O-'(T) 
= U-'(T + T - I ) .  As a result we get for 0- ' (T) the expres- 

sion 

0-1 (T)  =T e-"nTO-' (a,,) 

which has the following asymptotic behavior (~ /BT 
$7, = M/q) :  

Ill. A PARTICLE IN A CRYSTALLINE FIELD 

1. Shape of the potential 

We consider the motion, described by the action ( 1 1 ), 
of a particle in a crystal with friction. For the sake of clarity 
we restrict ourselves to simple lattices. We denote the set of 
basis vectors by {ai ), i = 1, ..., d and the set of vectors con- 
necting lattice points with nearest neighbors by {Q,), 
s = 1, ..., r, where 

IQsI=Q=rninlail, Q . = z n i a n i ,  nn=(n,a ,..., nd8), 

the ns are integers. We can expand the lattice potential in the 
general case in a series 

where the n, are integers and the bi are the reciprocal lattice 
basis vectors such that (ai.bk ) = 21~6,. We shall in what 
follows assume (we call that the isotropic case) that 

We also introduce a set of reciprocal lattice vectors with 
- 

minimum length {k, ), s = 1, . r, (k, ( = Ibi ( = b, 
k, = Zn:b,. It is then convenient, if we restrict ourselves in 
( 17) to only harmonics with minimal I k, I to write ( 17) for 
the case of a weak potential in the form 

and in the case of a strong potential in the form 

The minima of V(q) are situated in the points 

It follows from (19), (20) that if {k,) can be decomposed 
into mutually orthogonal subsets {k,, ) all equations can be 
split by suitable choice of coordinates into independent 
equations in each of the subspaces of the corresponding sets 
{k,, ). In what follows we shall therefore consider only irre- 
ducible sets {k,). The two- and three-dimensional spaces 
contain from the reducible square, cubic, and hexagonal lat- 
tices the following simple Bravais lattices (i-, j-, k- unit vec- 
tors) : d = 2; a triangular lattice reciprocal to it and also tria- 
gonal, 

d = 3; and the mutually reciprocal body- and face-centered 
cubic (BCC and FCC) lattices for which the sets {Q, ) and 
{k,) can be taken in the form 

Here and henceforth to simplify the formulae we put 
Ibi I = 1 so that q becomes dimensionless, and a, = 2 1 ~ ~ 0 s  y 
where y is the angle between a, and bi.  

The partition function of the problem of a particle with 
the action (11) and V(q) from (19), (20) is exactly the 
same as the partition function of a one-dimensional In gas 
with generalized (isovector) charges {k,)." The sets {k,) 
from (22), (23) are particular cases of the charge spaces 
M = {k, ) considered in Ref. 10: 

where Mp4 is a set of vectors directed towards the vertices of 
a tetrahedron, while the reciprocal temperature /3 of the In 
gas is connected wii .he friction coefficient q through the 
relation 

2. Weak potential 

The renormalization group (RG)  method was used in 
Ref. 10 to study the properties of In gases in the case of a 
weak potential and as T-0. The condition for the potential 
to be weak has the form gM /77< 1, where M /q = T, is that 
length over which the logarithmic asymptotic behavior of 
0 - I  (T)  is cut off. The RG equations have in the general case 
for dimensionless charges u = g ~ , ,  ~ = M / T , ,  
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x = 1 - (2~ r ] ) - '  the form (up to the first non-vanishing 
non-linearities, dl  = dr0/ro) 

where n = 2 or 3 and the coefficients C{,>, B, depend on the 
geometry of the set {k ,  ). If amongst the angles between the 
vectors k , ~ C k , )  there are some equal to  IT/^ and 2 ~ / 3 ,  then 
B, > 0; if there are no such angles, then B, = 0 and the be- 
havior of the charges is determined by the sign of B,. The 
triangular and the BCC lattices belong to the first kind and 
all hypercubic and FCC lattices belong to the second kind. 
The values of the coefficients C{,>, B,, B, for the lattices 
(22), (23) are the following (close to the critical point 
x = 0): B, = 0( 1 - x) ,  where O is the multiplicity of the 
representation of each vector k , ~ { k , )  in the form 
k, = ksl + k, , ,  kSl,,, ~ { k ,  ); CCk) = N<,) 1 3 ~ 7 ,  where N{,> 
depends on the geometry of {k ,  ) and is determined by the 
condition 

and their values are the following: triangular lattice: O = 2, 
N,, = 3; BCC: O = 4, NBcc = 4; FCC: O = 0, NFcc = 4, 
B3 = 16. It follows from (24) that in our approximation 
the friction coefficient r ]  (or x )  is not renormalized and the 
behavior if the charge u for u, v( 1 is determined by the be- 
havior of the charge u which depends on the quantity x. It 
was shown in Ref. 10 that as T 4  the system can be in two 
phases and the line separating the phases in the phase dia- 
gram depends on the geometry of {k ,  ). For {k ,  ) belonging 
to the first kind or the second kind with B, > 0 the phase 
diagram is as shown in Fig. 1, and for those belonging to the 
second kind with B, < 0 as shown in Fig. 2 (to the latter class 
belongs also the one-dimensionalcase'). The phases A ,, , B ,, 
in these diagrams correspond to localized states and the 
phases A , ,  B ,  to delocalized ones, as will be shown below. 
The shape of the line separating the phases B ,  and B ,, close 

FIG. 1. Upper curve: phase-separation line in a FCC lattice, middle curve: 
in a self-dual triangular lattice, lower curve: in the BCC lattice dual to the 
FCC lattice. 

FIG. 2. Phase diagram for systems with coefficients B, = 0, and B, <0. 

to r ] ,  = 1~ is given by the expression 

We note that the behavior of the phase boundary in the inter- 
mediate region s- 1 for the BCC and FCC lattices is not at, 
all determined: as there is no self-duality, the phase boundar- 
ies continued from different regions could intersect at an 
angle and not go over smoothly into one another. We have 
drawn in Fig. 1 a smoothed variant which is the most prob- 
able one. 

For finite but rather low T>O, Tdeg we can use Eq. 
(24), but now the renormalization must be discontinued at a 
scale I, determined by the smallest of the two characteristic 
"lengths" of.the problem: the correlation length I * and the 
temperature length I,; 

Using the results of Ref. 10 we get for the low-temperature 
dependence of the renormalized amplitude of the potential 
g ,  ( T) the following expressions: 

For potentials with {k ,  ) of the first type or of the sec- 
ond type with B, > 0: a )  in the region B ,  

g"*gon ,., A,., U ( n - 1 )  
.*gn--, E x - ( - )  

g" M Bn  
7 

where go is the initial value of g or, in the limiting cases 

lT> l / -"  and lT<ld-*-') , 

where 

I '" - ') = L (n-1) 1 ~q 1 I - l  ln ( ~ - g ' ~ - l ) ) ,  (26a 
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b) in the region B ,, 

where C >  1 is a constant of order 1 determining the value of 
I * from which we find c; in the case I * is independent of C 
only near the critical separatrices 1,2 and 

For potentials with {k, } of the second kind with B, < 0: 
a )  in the region B , 

whence in the limiting cases lT&12l_ and l T ( l  iZ, 

b) in the region B,, 

gR (TI =Cgoe-Im, (30) 

To determine the low-temperature dependence of the 
correlation functions we need also the temperature depen- 
dence of the renormalized mass MR ( T) . From (27) we get 

M. (T )  =Mo+C,,,s d l f  u2 ( 1 ' )  el', 

where M,, is the initial value of M, whence we have in the 
region B , in the limit (26a) 

The asymptotic forms (at low frequencies Iw, I ) of the 
Matsubara correlator 

( q i ( r ) q j ( ~ ' )  )=6i,T zeiun('-")(qq) ( a n )  
"n 

and mobility 

have the form 

Formulae (33) are valid for frequencies w > T. When w < T 

we assume in accordance with the RG reasoning that the 
correlator is given by (33) with o replaced by T. According 
to the rule ( 14) [ T in (33) to (36) must be taken to mean 
~ T T ]  we get 

It follows from (26) to (32) that when T <  T *  = f -' the 
temperature dependence ofg, and of MR become different 
in different regions of the phase diagram. The static mobility 

p,, = lim Rep(@) therefore begins to differ in the regions 
4 

B , and B ,, and when T.( T * we get 

In the limit as T-0 we get from (35) change in p,, in the 
form of a jump equal to 

where ~ ( s )  is the function at the phase boundary. This effect 
is similar to the jump in the densityp, of the superfluid liquid 
in thin films of 4He or of the XY model.'4 We have thus 
shown that as T-0 dissipation may lead to particle localiza- 
tion in multi-dimensional spaces with a discontinuous 
change of the static mobility p,, . 
3. Strong potential (quasi-classical region) 

One can also study the properties of the system ( 11 ) in 
the region where the quasi-classical approximation is appli- 
cable. To do this we must find all classical trajectories with 
period 1/Tn (n> 1 ) of the appropriate Euler equations: 

SS,, - = M: - 5 G (r - r ' )  4 ( r ' )  dr' - g x  k, sin k,q=O, 
6q(.t) {t,) 

137) 

Such solutions exist only in the finite-motion regions in the 
inverse potential - V(q). The quasi-classical method is 
convenient when the main contribution to the path integral 
comes from only a few solutions. There are two such regions. 
In the first, for large T, the stable periodic solutions are situ- 
ated near the minima of - V(q) and there are few of those in 
each minimum. When T  decreases the number of periodic 
solutions increases and it becomes difficult to take them into 
account. However, for sufficiently low T the situation sim- 
plifies again and one can use only those solutions which give 
a contribution a T o  to S,,. In such an approach the main 
role is played by instantons,15 various superpositions of 
which can approximate exact solutions. We shall use this 
method to study the system ( 1 1 ) . 
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We consider first of all our system for 7 = 0. In that 
case for T = 0 Eq. (37)  has for the potentials (22), (23) 
instanton solutions in the form of kinks (see Appendix) 

where qmf and q,,, are the final and initial nearest minima, Q 
is the topological charge of the kink, r0 is an arbitrary pa- 
rameter which turns out to be the position of the kink, and 

i.e., it is formally the same as a sine-Gordon kink but with 
changed parameters g and M: g+Kg, M-+KIM where Kl  
depends on the geometry of {k, ): 

The action of a kink with charge Q E {Qs ) equals 

~ O = ~ K ( N ( ; ; ~ M )  '"=8 cos y (N{,,gM) '". (41 

We approximate the set of periodic trajectories for l/-r. 
by all possible closed trajectories consisting of kinks (39) : 

Such an approximation is similar to the low-temperature ex- 
pansion for the partition function of lattice spin models.16 It 
is the more exact the lower Tand the largers,. Then, neglect- 
ing the interaction between the kinks which decreases ex- 
ponentially with distance we can write ( 11 ) in the form of 
the grand partition function of a perfect classical gas of parti- 
cles with charges Q, E {Q, ) which is neutral as a whole be- 
cause of the periodicity condition: 

where N = [ l/r. TI is the integral part of l/Tr., the sum 
with the prime indicates summation over all neutral configu- 
rations of charges Q ,  E {Q,), G, is the number of such con- 
figurations, and the chemical activity is 

where J = ( s , / 2~ )  ' 1 2 ~ .  is the Jacobian for the change from 
the zero mode to dr,  [Det1/Det0] is the ratio of the determi- 
nants of the quadratic forms of quantum fluctuations against 
the background of the kink (excluding the zero mode) and 
the vacuum (see Appendix). If there is no interaction 
between the kinks and at sufficiently low T the activity yo 
determines the amplitude of the tunneling transition 
between nearest minima of V ( q ) .  The partition function Z 
from ( 1 1 ) describes at 7 = 0 the motion of a quantum parti- 
cle in a crystal. It is well known that in that case the particle 
may move freely in the allowed energy bands. We show that 
the approximation of a perfect gas of kinks is sufficient to 

describe the band structure. We introduce the Bloch wave 
function 

where (qlm) is the wave function of the ground state of a 
particle near the minimum q, with energy E, neglecting the 
overlap of (qJm) with different q, , p = 2, l,b,/L is the qua- 
si-momentum, La, the size of the crystal, - L /2<1, <L /2. 
In the case of tunneling to only the nearest minima we get for 
the first band as T-0 

Eg+E0- yo): (Q.) cor PQ*)} , 
(45) 

It is clear from (45) that the band width AE is determined by 
the chemical activity of the instanton gas AE = 2y07. 

When there is friction present, 7 # 0, there appears also 
a long-range interaction between the kinks which arises from 
the dissipative term S, and the partition function (44) 
changes to the grand partition function of a one-dimensional 
In gas with charges e, E {Q,/ao) and an effective reciprocal 
temperature f i  = a: T/T: 

''Y dny; erp ($2 (esiesi). a ( T ~  - .)), 
0 i # j  

T 
A ( T )  = A  ( T )  -A ( 0 )  = (a,,) 1 9,(mn) I2[efmn'--1 I.,.. 

It follows from (46) that kinks with orthogonal charges 
again do not interact. 

In the limit as T-0, neglecting the excluded volume of 
the kinks since the kernel A ( r )  is "soft" as r 4  (this is 
equivalent to taking into account kinks with large topologi- 
cal charges, but this is unimportant for the renormaliza- 
tion), we can write (46) in a form similar to ( 1 1 ) : 

z = J ~ ~ e - ' m ,  s.,,=s.+s,+s,. 
1/T 1/T  

1 
So+S,= _ dr dr' (q ( r )  G(r1) ) A-' (r-r ')  , Si = v (G) dr,  
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It follows from ( 4 7 )  that in the low-frequency limit Eqs. 
(47)  and ( 1 1 ) change into one another through the substitu- 
tions 

This duality property of the model ( 11 ) under the transfor- 
mations ( 4 8 )  generalizes the self-duality of the one-compo- 
nent case6 as now the sets {k, ) and {e, ) can not be the same. 
For the triangular and hypercubic lattices the geometries of 
{k, ) and {ex ) are the same and, hence, they are self-dual. In 
that case the transformation ( 4 8 )  has a fixed point (v*, s*), 
where v* = l /ao whiles* is determined from the equation 

It is also convenient to study the low-frequency properties of 
Z from (47)  using the RG method which is applicable when 
yore 1, T< yo. The RG equations have the form ( 2 4 )  where 
now the coefficients Cckl ,  B, are determined by the geome- 
try of {e, 1. As T-0 the system may again be in two different 
phases." The shape of the phase separation line near 
7, = 2?r/aG for potentials with {e,) of the first kind or the 
second kind with B, > 0  is given by the equation 

f / ( n - 1 )  1 Arl SS----- In- -kO(InInAq). 
n-I B, 

The low-temperature behavior of the renormalized chemical 
activity y, ( T )  and mass E ,  ( T )  is given by Eqs. ( 2 6 )  to 
(32)  with the substitutions g-ty, M-E, T,-+T.. 

The expression for the Matsubara correlator (qq)  (a,  ) 
in the quasi-classical region for the mobility p ( a ,  ) is ob- 
tained from the generating functional 

(F(r )  is the field conjugate to the coordinate q ( r )  ), which 
in the considered approximation of a rarefied gas of instan- 
tons has the form 

where 

From ( 5  1 ) we get 

H e r e y ~  = ~ ~ T Y R ,  8 = a:.l;lE, , ER = E (I,,, ) is the renor- 

malization-induced "mass." For physical frequencies, Eq. 
( 5 2 )  goes over into 

P ( O )  =-ia(qq) ( a ) .  

Repeating the reasoning of Sec. 2  we get for T g T *  for the 
static mobility in the different regions of the phase diagram 

which as T-0 leads in the transition point to a discontinuity 

We now consider the structure of the energy band for 
7720. As the total action S,, from ( 1  1 )  is translationally 
invariant under translators by lattice vectors and y, ( T )  > 0  
we can again introduce a Bloch function Ip) which now will 
correspond to the renormalized spectrum 

where E  = - Tln Z. For the band width AE(T)  and the 
effective mass M  * ( T )  we have 

It follows from ( 5 6 )  that in the localization region as T 4  
we have AE( T)-0 and M  * ( T ) - +  cc . Such a behavior differs 
greatly from the low-temperature behavior of AE and M  * in 
polaron theory1' where the polaron term in the effective in- 
teraction adds an exponentially small but nevertheless finite 
factor-the Debye-Waller factor-to the width AE as 
T-0. l 8  

IV. EFFECT OF AN EXTERNAL UNIFORM FIELD 

In this section we consider the effect of an external uni- 
form field F  on the localization caused by the dissipation. 
When F is present we add to S,, a term 

In the RG framework this term is taken into account differ- 
ently in the cases of a weak and a strong potential. In our 
considerations we restrict ourselves to the one-component 
case. 

1. Weak potential 

When we renormalize the partition function with the 
complete action ( 5 0 ) ,  an odd component of the potential of 
the form V ,  (q)  = g, sin q  is generated in the potential al- 
ready in first order in gr,. We must introduce this compo- 
nent also into the potential. In that case, by separating the 
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renormalization of the free energy due to F, we get to first 
order in u = grO and u, = glrO the following RG equations 

where 2, = (2 /~?7 )F7~ .  They have the solution 

A ( I )  =doe1, u=uoe" cos [do (el-1) 1, 

from which it follows that there appears in the theory a new 
scale IF : 

over which an essential restructuring of the potential V ( q )  
occurs. Therefore, when F # O  the renormalization must be 
cut off at a scale I, = min [I,, 1 *, I, 1. As a result g, and 
M, remain finite as T-0 in both the B , and B ,, regions. The 
static mobility is then obtained from (35) by changing T to 
T; I .  An external uniform field thus destroys the localization 
in the case of a weak potential. 

2. Strong potential 

The approximation of the partition function (50) in the 
quasi-classical region by a gas of instanton solutions leads, in 
the presence of an external uniform field, to the grand parti- 
tion function of the In gas in an external field F: 

z= F, yon l'f d d r n i n r *  . . . "s" dTl 
7t=0 {e,.) 0 0 0 

The renormalization of (59) by Anderson's methodg leads 
to the same equations as without the field F and in that case 
the field itself is not renormalized and does not contribute to 
the renormalization of the other quantities. However, the 
representation ( 59 ) is applicable only when T,, -y; ' (r,, 
where r,, is the average distance between the kinks, 
rF = T. q (F /g )  is the distance between a kink and an anti- 
kink in the exact solution of Eq. (37) with ?? = 0 and F#O 
and q, (x ),, - - J In x. The renormalization of all quanti- 
ties must now therefore stop at a scale I, = min[l,, IF,1 * ]  
where IF = ln(r,/r. ). The static mobility is in that case 
obtained from (54) by the substitution T-T; ' which again 
leads to a destruction of the localization. 

V. DISCUSSION 

We discuss a few results obtained in the quasi-classical 
region. We were not able to solve the equation of motion 
with 7 # 0 and therefore we substituted into SD the kinks of 
the equation with 7 = 0. This approximation cannot change 
the result qualitatively, since it is easily seen that the exact 
solutions for 7 # 0 with non-trivial topological charges must 
have an action aln(Tr.  ) - '  and lead to the same conse- 
quences. In that respect the problem considered is similar to 

the theorem that the determinant of the massless Dirac oper- 
ator vanishes in an external topologically non-trivial field. In 
this case SD plays the role of the determinant. 

The expression for the renormalized tunneling ampli- 
tude can be written in the form 

where the factor e - AS'T' reflects the effect of the dissipation 
and of the temperature on the tunneling amplitude. This 
expression is convenient for a comparison with polaron the- 
ory as the Debye-Waller factor plays the role of &(T). It is 
clear from (26) to (3  1 ) that only in the A ,, region As( T) 
retains the simple meaning of a dissipative correction to so 
obtained through substituting the kink into S, as this 
expression for As( T )  corresponds to a linear approximation 
in the RG equation which is applicable for sufficiently small 
yo only in the A ,, region. In the other region, allowance of the 
non-linearity changes As ( T) appreciably. 

A final remark. The jump in the mobility when localiza- 
tion occurs in disordered systems is actively advocated in the 
papers by Mott and his coworkers. 

VI. CONCLUSION 

For the convenience of the readers we enumerate in 
conclusion the main results of the present paper (again here 
T-2n-T) . 

1. Using the example of8 particle moving in the field of 
a crystal we showed that a sufficiently strong dissipation 
may as T-tO lead to the localization of the particle in brystal 
fields of arbitrary dimensionality both in the case of a weak 
and in the case of a strong potential. We constructed the 
corresponding phase diagrams (Figs. 1,2). 

2. We found the low-temperature behavior of the mobil- 
ity ,u (a) of the particle: a )  weak potential (34) 

b)  strong potential (53 ) 

where g, , y, are the renormalized amplitudes of the poten- 
tial and of the tunneling transition, respectively, while M, , 
m, are the renormalized masses in the effective Lagran- 
gians. They are given by Eqs. (26) to (32) and (48). 

3. We showed that the low-temperature behavior of the 
static mobility for T(T * = 6 -' ({is the correlation length) 
has a discontinuity: a )  weak potential (35) 

z q  ( T / ~ R  ( T * )  ) Z m T Z ;  
b) strong potential ( 54) 

1 
k - (gR ( T )  I T )  2mTZAq. PAII 
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In the limit as T 4  this leads to ,us, vanishing discontinu- 
ously on the transition line, with a jump of magnitude 
@ = l / ~ ( s )  where the function q ( s )  that defines the tran- 
sition line depends on the geometry of the crystal. It is given 
by Eqs. ( 2 5 ) ,  ( 4 9 ) :  

1 Aq s m - -  In - 4-0 (ln In Aq)  . 
n-I B, 

4. We found the low-temperature behavior of the band- 
width AE( T) and of the effective mass of the particle M  * ( T) 
in the case of a strong potential: 

AE(T)  = 2 f y R ( T ) ,  M ' ( T )  =[NiQ,a , lyR(T)  I-'. 

5. We showed that the switching on of a uniform exter- 
nal field F destroys the localization and we found the F- 
dependences of ,u (a) and ,us, as T-0 which are obtained 
from ( 3 4 ) ,  ( 3 5 ) ,  ( 5 3 ) ,  ( 5 4 )  by replacing Tby T F ' .  

The author expresses his gratitude to E. I. Rashba, A. 
Gogolin, B. Ivlev, A. Ioselevich, I. B. Levinson, V. Mel'ni- 
kov, A. Finkel'shtein, and D. Khmel'nitskiifor their interest 
in this work and useful discussions. 

APPENDIX 

The renormalized amplitude of the tunneling transition 
from 10) to the closest minimum IQ) for q  = 0 and T-0 is 
equal to 

< Q I . - ~ ~ I O ) =  j ~ q ( ~ ) e ~ = n ,  ( ~ 1 )  

where the integration occurs over all trajectories with 
q( - co ) = 0 ,  q (  co ) = Q .  In the quasi-classical approxima- 
tion the main contribution to the integral comes from the 
solutions of the Euler equations 

~ t - g  &, sin qk.=O. 

We look for the kinks of ( A 2 )  in the form 

s ( z ) = Q f ( ~ ) ,  Q € { Q . ) .  (-43) 

The most important properties of the sets { Q , )  and { k , )  
from ( 2 2 ) ,  (23 ) which enable us to find kinks are the follow- 
ing ones: 

k.Q,- =2nnSn8'=2n(l.  (A41 

Substituting ( A 3 )  into ( A 2 )  and using ( A 4 )  we get for 
f ( T )  a sine-Gordon equation with changes parameters: 

M ( Q )  'f'-gK sin ( 2 n f )  =0, ( A S )  

where K is the number of vectors from {k,) for which 
(k,*QI = l ,andK, = Q2/(277I2 = K / N { k ) .  From ( A S )  we 
have for f ( T )  

The action of the kink is so = 8K(gM IN{,> ) ' I 2 .  As a result 

we get for yo 

where Si (qks  ) and Si ( 0 )  are quadratic forms of quantum 
fluctuations on the background of the kink and of the vacu- 
um, respectively, 

The eigenfunctions and spectrum of the form ( A 8 )  can be 
found from the equation 

d2 1 
[ 6 i j Z - - -  z k i s k t  cos (k.qcL) ] Sqj=-VSqi,  ( A 9 )  

N { k )  ( k . ,  

in which we changed to the dimensionless z = T / T . .  EX- 
panding Sq in the orthonormalized base { n , )  one of whose 
unit vectors is directed along Q, while the others are deter- 
mined from the diagonalization condition of the equations 

we get for the eigenfunctions the equations 

" 
2 ( N - M i )  ] v i l  ( z )  =zE,,v,, ( z ) ,  [ d Z -  Nch2z 

where the Mi are the diagonal values of the matrix 

For the lattices ( 2 2 ) ,  ( 2 3 )  they are equal to 

The first of Eqs. ( A 1 0 )  is exactly the same as the equation 
for the sine-Gordon kink fluctuations. The spectrum of the 
bound states of ( A 1 0 )  is given by the formulaI9 

1 
-2E,, = -[- (1+21) + (1+8Uoi)"']" O d <  [Zoi], 

4 
( A 1  1 )  

1 
Uoi= (Ni;)Mi) lNi , , ,  loi = ( - I +  (1+8UOi)"*) 

2 

Here Uol -= 1 ,  and Uoi < 1 for i# 1 so that for each i we have 
only a single discrete eigenvalue which for Uol gives R :, 
= 0, corresponding to the zero mode 

and for i # 1 it gives R = 1 + 2E, > 0  which correspond to 
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the transverse excited states of the kink. The remaining 
A f, > 1 and belong to the continuous spectrum. We have thus 
found the eigenvalues of (A10) and shown that the kinks 
(A3) are stable. Using Langer's methodz0 for evaluating 
(A7) and separating the zero mode we get for the transition 
amplitude the expression 

i / T  d 

where J is the Jacobian for the transition from integrating 
over dC,, to integrating over dr,  

d2 
. Detoi = det [- + i] , dz 

d2 
Det+' = det - - + I-loi (loi+I) c h - ~ z ]  [ dz2 

with the zero mode eliminated for i = 1 
d d 

where 
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