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A theoretical and experimental study is made of the behavior of the static susceptibility of thin 
films of quasi-uniaxial magnets near lines of spontaneous (near the Curie point) and 
orientational phase transitions. Allowance is made for the contributions to the susceptibility 
from the homogeneous component of the magnetization, the domain structure, and 
fluctuations. It is shown that the domain structure plays an important role in shaping the 
response of magnets of finite size to an external magnetic field. It is established that the 
behavior of the susceptibility in the homogeneous state is not described by simple power laws 
with definite critical exponents. 

The study of anomalies of the magnetic susceptibility at 
spontaneous (near the Curie or NCel point) and orienta- 
tional phase transitions yields valuable information on the 
critical behavior of magnets. Different aspects of this prob- 
lem have attracted continuing interest among theorists and 
experimenters; a detailed bibliography can be found in the 
many reviews and monographs (see, e.g., Refs. 1-9). In 
magnets of finite size, phase transitions involving a lowering 
of the symmetry are often accompanied by the formation of 
inhomogeneous magnetic states, i.e., domain  structure^,'^.'^ 
which must be taken into account both in the construction of 
a realistic theory and in the interpretation of experimental 
results. The various types of domain structures arising at 
spontaneous and orientational phase transitions in thin films 
of quasi-uniaxial magnets and the transformations between 
different domain structures were analyzed in Refs. 12-15. It 
can be stated a priori that the existence of domain structure 
will affect the critical behavior of the various thermodynam- 
ic quantities, but such questions have even to this day re- 
mained essentially outside the purview of investigators. 

In this present paper we make a theoretical and experi- 
mental study of the static susceptibility of thin films of quasi- 
uniaxial magnets at spontaneous (near the Curie point) and 
orientational phase transitions. It is shown that the domain 
structure plays an important role in shaping the response of 
these objects to changes in a homogeneous external magnetic 
field. The questions discussed in this paper have a direct 
bearing on the correct calculation and experimental deter- 
mination of the critical exponents of the thermodynamic 
quantities. 

1. EXPERIMENT 

The experiments were done on quasi-uniaxial films of 
mixed iron garnets of various compositions which were 
grown by liquid-phase epitaxy on gadolinium-gallium gar- 
net substrates having various crystallographic orientations 
(the essential parameters of the investigated films are given 
later on in the text). The term "quasi-uniaxial" means that 
the uniaxial component (described by the uniaxial anisotro- 
py constant K, ) is dominant in the magnetic anisotropy en- 

ergy, but that there are also weak cubic and rhombic compo- 
nents (described by the constants Kc (K, and K, (K,, 
respectively). The axis of easy magnetization in real films 
generally deviates from the normal to the surface rille, by a 
small angle p, 4 1. The saturation magnetization M, of the 
films is much less than the uniaxial anisotropy field 
H, = 2K, M, ', so that in the absence of an external mag- 
netic field H the vector M in the central part of the domains 
is approximately perpendicular to the surface. An explicit 
expression for the anisotropy energy is given in Ref. 15; we 
will adhere to the notation adopted in that paper. In the 
theoretical part of the present paper we will often use the 
normalized anisotropy constants Pi = K, ( 2 r M  ) - ', 
i = u , p ,  c .  

For isothermal ( T = 290 K )  orientational phase transi- 
tions induced by a static magnetic field HI = Hy = Hy ey , 
we investigated the dependence of the two components X, 
andxy, of th static magnetic susceptibility tensor on the field 
H, (for HI = Hz = Hz e, = const) or on the field H ,, (for 
H, = const), and for the spontaneous phase transitions near 
the Curie point we studied X, ( T) for H = const. 

1.1. Experimental techniques 

The measurements were made by a magnetooptical 
method for both the orientational and spontaneous phase 
transitions. In the first case the film under study was mount- 
ed on a turntable between the pole pieces of an electromagnet 
producing a uniform static magnetic field HI /ley of up to 5 
kOe parallel to the surface of the film. The turntable permit- 
ted rotation of the film about the normal n to its surface by an 
arbitrary angle pH.  A field H I /  Iln of up to 500 Oe was pro- 
duced by a pair of coreless coils placed on the two sides of the 
films. Plane-polarized light with kiln from a helium-neon 
laser with a working wavelength of 0.6328 p m  was focused 
onto the surface of the film by a long-focus lens. The diame- 
ter of the illuminated region of the film (=: 1 mm2) was 
much larger than the period of the domain structure. The 
light transmitted through the film was collected by a wide- 
aperture lens and directed onto a Wollaston prism, which 
split the light beam into two beams of mutually orthogonal 
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polarization, which proceeded to fall on the sensitive areas of 
two identical photodiodes. The signal from the photodiodes 
was sent to a dc differential amplifier. The principal axes of 
the Wollaston prism were oriented at a 45" angle to the plane 
of polarization of the laser light incident on the film; this 
arrangement provided an effective suppression of the laser 
noise, and the signal at the output of the differential amplifi- 
er was to good accuracy proportional to the z component of 
the magnetization averaged over the area of the illuminated 
region of the film. With this layout we could take the curves 
of M, ( H  l l  ) for H, = const and M, (H, ) for H = const. 

For studying the field dependence of the susceptibilities 
xZZ = dM, /dH and x,, = dM, /dH, , provisions were 
made for the use of modulating coils capable of producing 
alternating magnetic fields and A, with strengths of the 
order of a few oerstads at a frequency - 1 kHz. The field A 
was produced by a single-layer flat coil, with from 5 to 10 
turns and an inside diameter of =. 1 mm, placed directly on 
the surface of the film. The field A, was produced by a pair of 
miniature coils wound directly on the film; the coil for pro- 
ducing was placed in the gap between these coils. For 
measuring the susceptibility, the signal from the photo- 
diodes was sent to a balanced amplifier, then to a narrow- 
band amplifier tuned to the modulation frequency, and final- 
ly to a lock-in detection circuit. The field dependence ofx, 
andx,, could also be determined by direct differentiation of 
the M, ( H I /  ) and M, (H, ) curves. Although this procedure 
is more difficult and gives a low absolute accuracy, in a num- 
ber of cases it yields more-useful information than does the 
modulation technique (see below). 

An analogous procedure was used for the spontaneous 
phase transitions in the neighborhood of the Curie point Tc . 
In this case the film under study was placed on a heated 
stand having a cylindrical flange on top of which a cover 
glass was placed. Static magnetic fields H and H, of up to 
300 Oe were produced by Helmholtz coils; the arrangement 
for producing the modulating field h was analogous to that 
used for the orientational phase transitions. The tempera- 
ture was measured by a copper-constantan thermocouple 
with one junction in a dewar of liquid nitrogen and the other 
cemented to the film right next to the probed region. 

The temperature and field curves of M, and were 
recorded on an XY recorder. 

1.2. Orientational phase transitions 

Figure la  shows the M, (H ) curves at T = 293 K for 
various values of H in film No. 1 [composition 
(YGdYbBi),(FeAl),O,,; substrate orientation ( 100); 
thickness L = 8.0 pm; saturation magnetization 
M, = 10.93 G; angle of deviation of the easy axis from the 
normal p,  = 10"; uniaxial, cubic, and rhombic anisotropy 
constants K ,  = 2905, Kc = 1080, and K, = 128 erg/cm3]. 
Because of the complexity of the anisotropy of the film, a 
field H, iqduces an appreciable component M, even in the 
absence of a field H . The slight hysteresis on separate re- 
gions of the curve is due to the fact that the nucleation and 
annihilation of domains occurs as a first order phase transi- 
tion. In a small neighborhood of the apex (H,, = 710 Oe, 
H = 50 Oe) of the curve on which the homogeneous state 
loses stability, i.e., the "critical parabola" H(U+S'' (HI/ ) 
(see Ref. 15), this phase transition becomes second order, 
and the hysteresis vanishes. Hysteresis effects are also ab- 
sent, of course, when H, > H,,. Inside the critical parabola 
the change in M, occurs mainly through the motion of do- 
main walls, outside this parabola it oc( urs mainly by a 
change in the orientation of the vector M. The position of the 
inflection point on the M, (H ) curve is determined by the 
value ofH, ; for H, = 0 the inflection is observed at H = 0, 
while for H, = H,, it occurs at Hll = H (the values of 
Hlc and H in turn, depend on the azimuthal orientation 
of the film with respect to the field H,, i.e., on the angle 
4 ) ~  )'I5 

If we ignore fluctuation effects, then on the stability- 
loss line of the homogeneous state (the SLHS line) for ideal 
films there would be either a divergence of the susceptibility 
and a jump in M, (a  first order phase transition) or else a 
jump in the susceptibility and a kink on the M, (HI/ ) or 
M, (H, ) curves (a  second order phase transition). In real 
films (even films of very good quality), which unavoidably 
contain microscopic defects and have slightly inhomogen- 
eous properties, these features get smoothed out, since the 
nucleation or annihilation of domains occurs over the course 
of some finite change in the magnetic field. This circum- 
stance has a particularly strong effect on a first order phase 
transition. For this reason the procedure for determining the 
position of the SLHS line becomes somewhat tentative, but 
the uncertainty can be avoided by making a reasonable ap- 

FIG. 1.  Curves of M, (a) andx, (b)  versus the field H i  for film 
No. 1 at T = 293 K. On curves 1-5: H, = 50,400,500,700, and 
900 Oe. 
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proximation to the curves. We checked that the position of 
the critical parabola had been determined correctly by mak- 
ing visual observations of the nucleation of the domain struc- 
ture (see Ref. 15 ) . 

The xZZ (HII ) curves obtained by differentiating the 
M, ( H  I I  ) curves for film No. 1 in the case of a decreasing 
field Hll are represented by the solid curves in Fig. lb. The 
overshoots on curves 2 and 3 correspond to the nucleation of 
a domain structure by way of a first order transition. When 
xZZ is measured by the modulation technique, the overshoots 
are less pronounced. At a sufficiently large amplitude of the 
modulating field I I  the overshoots vanish altogether and the 
xZz (H I 1  ) curves exhibit only the jumps characteristic of a 
second order phase transition (the dashed curve, for 
H, = 500 Oe). The reason for this is that for a strong but 
slow modulation (with an amplitude of the modulating field 
comparable to the width of the hysteresis loop and a period 
considerably longer than the characteristic relaxation 
times) the film is found in a single-domain state over a cer- 
tain part of the modulation period and in a state with a do- 
main structure over the remainder of the period. As a result, 
the jumpy parts of the M, (Hll ) curves become smoother, 
causing the overshoots to vanish from the magnetic-field 
curve of the susceptibility. 

Figure 2 shows curves of X, (H, ) at T = 293 K for 
various values of H (the curves were taken on decreasing 
H, ) for film No. 2 [composition (YEu),(FeGa),O,,, sub- 
strate orientation ( 11 1 ), L = 6.1 pm, p, = 1.53", 
K ,  = 4346.2 erg/cm3, K, = 292.5 erg/cm3, Kc = 689.1 
erg/cm3]. The apex of the critical parabola for the chosen 
azimuthal position of film No. 2 has the coordinates 
Hilt = - 10.92 Oe, HlC = 968 Oe. For a second order 
phase transition ( IH - H I ,  1 5 10Oe) thesusceptibility in- 
creases smoothly as the domain structure is being nucleated 
(curve 1 ); on the lines of the first order phase transitions the 
change in X, is discontinuous1' (curves 2-4). Beginning 

FIG. 2. Curves ofx, ( H ,  ) for film No. 2 at T = 293 K. On curves 1-6: 
H I !  = - 11, 11, 33, 44, 55, and 77 Oe. 

with values 1 H l l  - H li, / 2 20 Oe a "high-field" peak appears 
on the susceptibility X, in the uniformly magnetized state, 
and with increasing /HI, - Hilt 1 it shifts toward higher val- 
ues of H, and decreases rapidly in amplitude (curves 2-6). 
At large values of IHII-Hllc 1, when the straight line 
H I  = const on the HII H, plane no longer intersects the 
SLHS line, thex, (H, ) curves exhibits only the high-field 
peak (curve 6).  Figure 2 shows only the curves for positive 
values ofH I I  - HI,-; the situation is similar for negative val- 
ue so fHl  -Hllc.  

The curves of M, (H, ) for H l l  = const for film No. 1 
are shown in Fig. 3a. The curves exhibit a kink where the 
domain structure is nucleated (curves 2-4 and 6-10). The 
kink vanishes at H I  = HI, = 50 Oe (curve 5) and also for 
large values of IH - HIlc I, when the straight lines 
HII = const do not intersect the SLHS line (curves 1 and 
11 ). In the latter case the x,,, (H, ) curves shown in Fig. 3b 

Mz ,G n,, . 702 

FIG. 3. Curves ofM, ( a )  andx,, (b )  versus the field H, 
film No. 1 at T =  293 K.  On curves 1-1 1: H i ,  = 138,92, 
58, 50, 46, 34.5, 28, 0, - 46, and - 69 Oe. 
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FIG. 4. Line on which the homogeneous state loses stability (the SLHS 
line; curve 1 )  and the position of the peaks of X, ( H )  ( X )  and 
xvZ ( H i  )(A) on on the H I  H,  plane for film No. 1 at T = 293 K .  The 
position of the SLHS line was determined from the curves of M, ( H ,  ) 
(a), M, ( H l l  ) (a), andx, ( H I  )(O). 

have a broad peak which decreases in amplitude and shifts to 
higher fields H, as IH I I  - H ilc I increases (curves 1 and 1 1 ) . 
In the region of small lH - HIIc I the peak on thexyx (H, ) 
curves shifts to lower values of H, with increasing 
lHll - Hllc 1; this peak is due to the nucleation of a domain 
structure (curves 2-4,6-10). Curve 5, for HII = H l l c ,  does 
not exhibit any features. 

A graphic representation of the position of the lines of 
maximum X, and xYz on the H H, plane for film No. 1 is 
given in Fig. 4, which also shows the SLHS line as deter- 
mined from the curves M, (H, ), M, (H ), and xY, ( H ,  ) .  
Because of the smearing of the first order phase transition in 
real films, the curves for thex,, peaks in the existence region 
of the domain structure in Fig. 4 do not coincide with the 

x,. 
H,, ,Oe 

FIG. 5. Curves ofx,  ( H L  ) for film No. 3  at T = 293 K .  The inset shows 
the SLHS line ( 7 )  and the position of the peaks atx,, ( H i  ) on the H I ,  H, 
plane. On curves 1-6: H l l  = 58, 0, - 46, - 92, - 138, and - 207 Oe. 

SLHS line.2' In the region of small lHll - Hilc I the differ- 
ence in the positions of the lines becomes negligibly small, 
since the nucleation of the domain structure occurs by way 
of a second order phase transition. 

For several films with the (1  10) orientation, e.g., for 
film No. 3, which had a strong anisotropy in the basal plane 
(Kp /K, ~ 0 . 3 ) ,  an additional (third) high-field peak on the 
xZZ (H, ) curves was observed in a certain angular region 
pH z 10" (see Fig. 5 ) .  The curves giving the position of all 
the observed X, ( T) peaks on the H l l  H, plane are given in 
the inset in Fig. 5; also shown is the SLHS line. The origin of 
the additional high-field peak ofx,, remains unclear at pres- 
ent, because the theory (which, to be sure, was developed 
under the assumption Kp ( K ,  ) predicts the presence of only 
two extrema (see below). However, in the presence of strong 
anisotropy in the basal plane a change in H, can lead to an 
appreciable azimuthal rotation of the vector M, and this can 

: affect the behavior of the susceptibility. It is also conceivable 
that the film might be layered.I6 

In films with a slight anisotropy in the basal plane 
[usually with the ( 11 1 ) and ( 100) orientations), the lines of 
thexZZ andx,, peaks on the H I I  H, plane (the "whiskers") 
are symmetrically arranged with respect to the critical pa- 
rabola; for films with the ( 110) orientation there is a pro- 
nounced asymmetry, especially for those values of p, at 
which H reaches a maximum. 

1.3 Spontaneous phase transitions 

The phenomena observed at spontaneous phase transi- 
tions near the Curie point have many traits in common with 
those which occur at orientational transitions. The curves of 
xZZ ( T) for H I l  = const at temperatures T 5  Tc exhibit a dis- 
continuity due to the transition of the film to an inhomogen- 
eous state; this anomaly shifts to lower temperatures with 
increasing HI[ .  For H, = 0 ,  when the SLHS line 
~ (U-s t )  ( H  ) in the H Tplane is symmetric with respect to 
the Taxis, thex, ( T) curves in the paraphase generally ex- 
hibit a faint "high-temperature" (HT)  peak in a narrow 
temperature region about 10 K above Tc in addition to the 
two symmetric "low-temperature" (LT)  peaks predicted by 
the theory. All these peaks shift to higher temperatures with 
increasing 1 H l l  1 .  

Thexzz ( T) curves at various values o f H  for film No. 4 
[composition (YGdYbBi),(FeAl),O,,, orientation ( 11 1 )  ] 
are given in Fig. 6; the inset shows the curves describing the 
position of the LT and H T  peaks on the H I  T plane and also 
the position of the SLHS line. 

The cause of the HT peak of X, in the paraphase is 
unknown. It has been conjectured17 that the H T  peak is due 
to inhomogeneity of the film over its thickness. Offered as 
evidence for this viewI7 was the fact that the H T  peak disap- 
peared after the film was annealed in air at a temperature of 
1200 "C. In our films a high-temperature annealing also eli- 
minated the H T  peak. However, a magnetooptical study of 
the change in the structure of the films during the annealing 
showed (see Ref. 18) that annealing at temperatures of 
1200 "C and higher does not increase the homogeneity of the 
samples. On the contrary, because of the expansion of the 
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FIG. 6. Curves ofx, ( T )  for film No. 4 in the neighborhood of the Curie 
point for HI = 0. The inset shows the SLHS line ( 7 )  and the position of 
the peaks of X, (T) on the H I  T plane. On curves 1-6: H I I  = 0, 25, 33, 
58.3, 83.3, and 125 Oe. Each curve has been shifted vertically from the 
next for legibility. 

film at the free surface and the intense interdiffusion of ions 
between the film and substrate, the changes in the param- 
eters of the film over its thickness were much greater than 
they had been before the annealing.'' It seems likely that the 
HT peak vanishes after annealing precisely because the film 
becomes highly inhomogeneous. To check this hypothesis 
we studied a large number of films with different degrees of 
inhomogeneity of the parameters over thickness. It turned 
out that the HT peak was present only in rather homogen- 
eous samples, in which (for example) the compensation 
temperature did not vary more than 10 K over the thickness. 
Moreover, if in those films which did have an HT peak the 
probe light beam was shifted from the center to the periphery 
of the film, where the inhomogeneity of the properties over 
the thickness is largest, the value ofx,, at the point of the HT 
peak decreased rapidly and the width of the HT peak in- 
creased, until the peak had disappeared completely. 

When the thickness of the films was gradually reduced 
by mechanical polishing, the HT peak remained, and the 
ratio of the values ofx, at the points of the HT and LT peaks 
(for the same value of H II ) stayed practically constant. This 
shows that the HT peak is not due to a thin surface inversion 
layer at the film-substrate interface, as such a layer gener- 
ally has a higher Curie temperature.I9 

It  has been established that the HT peak exists only in 
films having a strong uniaxial anisotropy (0, > 1) and a 
small anisotropy in the basal plane (P, )P, ,PC ). For these 
films the domain structure typically becomes highly amor- 
phous at a spontaneous second order phase transition. 
Strong anisotropy in the basal plane is evidently unfavorable 

for the existence of the HT peak. This surmise is confirmed 
by the influence of H, on the HT peak: with increasing H,  
the HT gets smeared out and gradually vanishes. 

One possible cause of the HT peak might be the exis- 
tence of bound states of magnons (solitons) in the para- 
phase. 

2. CALCULATION OF THE SUSCEPTIBILITY OF QUASI- 
UNIAXIAL FERROMAGNETIC FILMS AT ORIENTATIONAL 
PHASE TRANSITIONS 

For studying the field dependence of the static magnetic 
susceptibility tensor 

1 d2F 
X i k =  --- V dHi dHk (1) 

in a quasi-uniaxial iron garnet film of thickness L in the 
neighborhood of an orientational phase transition, let us 
(following Ref. 15) write the free energy of the magnet as a 
sum of three terms: 

where 

FtO)  (m,) =2nMO2V[fA (m,) -2 (m,h) -mOz2] ( 3  

is the free energy due to the presence of the homogeneous 
magnetization component m, induced in the film by an ex- 
ternal magnetic field H = 47TMO(hL ey + h e, ); P d )  and 
p) are the domain part and fluctuation part of the free 
energy; f, is the normalized magnetic anisotropy energy 
(see Ref. 15); m = M/M, (M, is the saturation magnetiza- 
tion), and Vis the volume of the sample. In a homogeneous 
phase P d )  = 0; in an inhomogeneous phase F can validly be 
represented as a sum of three terms only in the domain of 
application of the theory developed in Ref. 15. By defining 
the tensor 2 in the form ( I ) ,  we are seeking the spatially 
averaged response of the entire film to a uniform magnetic 
field H.3' It follows from ( 1) that the tensor 2 also can be 
written in the form 

2.1. Contribution of the homogeneous component of the 
magnetization 

Let us determine the contribution to the susceptibility 
due to the homogeneous magnetization component mo . For 
ideal uniaxial films, the equation of state in neglect of do- 
main structure and magnetization fluctuations is of the form 

where P : =flu  - 1. Using the relation m:, = 1 and intro- 
ducing the notation S = h/P :, we find 

i.e., the function m,, (h )  is described by a fourth-order equa- 
tion, which complicates the analysis. Nevertheless, certain 
information about the behavior of the susceptibility can be 
obtained without solving Eq. ( 6 ) .  
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On general grounds the function 4rxj,0) = amO,/ah i.e., the critical exponent is equal to 4/3. Under these ap- 
must have a maximum as a function of h, for h = const. Let proximations we have on the lines of the extrema 
us find the locus of the extrema on the h h, plane. Differen- 
tiating (5)  with respect to h we find that '" = l / ,  (2/f jUe) '~ahll-'ls=l/s ( p u s )  - " ' [ l / s  (hL-PU0) ]-'I4. -4nxuZ 

4nXl(:) = (hLmou-3-pu*) -'. 
Since dx:'/ah, = 0 at the maximum, we have 

( 0 )  
mo,=12nhLxUu , (7 )  

where 4rxiB' = dmOy /ahl .  Determiningx;) with the aid of 
(5 ) and substituting the resulting expression into (7  1, we get 
the extremum condition 

whereall = ( h  /2h, ) * I 3 .  Combining (8) with the equation 
of state ( 5 ) ,  we find the equation of the line describing the 
position of the extrema on the h I ,  h, plane: 

which has the solution 

For h, -+/3 : + 0 the field h goes to zero, and expression (9)  
reduces to 

i.e., the extremum of x:' is described approximately by a 
critical exponent of 2/3. In the neighborhood of the point 
h = 0, h, = p:  we can obtain an explicit expression for 
x:' at the extremum, viz., 

For h, )p : the curves for the extrema (9)  approach the 
asymptotes 

i.e., the critical exponent approaches unity. 
The initial (small h ) parts of curves (9) are inaccessi- 

ble to observation because of the "screening" by the SLHS 
line, whose equation for.an ideally uniaxial film isI5 

Curves (9)  in the case under discussion are symmetric 
"whiskers" which intersect the SLHS line and come togeth- 
er on the abscissa at the point h, = p : = P, - 1. 

The equation of the lines describing the position of the 
extrema ofX::' on the h h, plane is 

where a, = (2h i l  /h ,  )'I3; hence 

The asymptotes of curves ( 1 1 ) for h, + w are the straight 
lines 

1 hill =l'~hL-l/"~u*. 

The susceptibility component xi:' does not have a max- 
imum as a function of h, . If h = 0, then 

where O ( x )  is the Heaviside step function; for h # O  the 
jump in the susceptibility xi:' at h, = ,B is smoothed out, 
and xi;' becomes a smooth, decreasing function of h, . 

The following relations are often useful for calculating 
the components of the susceptibility tensor: 

where 

and, hence, 

In the neighborhood of the point h, = ,B : + 0, h = 0 the 
condition m,, )m, is satisfied; this implies that 
xj;') I x ~ ; '  I )xi:). We note that the component xi:' is nega- 
tive, since m, decreases with increasing h, . 

For real films4' (having cubic and rhombic anisotropy 
components and a deviation of the easy axis from the nor- 
mal) the analysis of the behavior of the susceptibility can be 
carried out only for m,, < 1. Straightforward but laborious 
calculations show that all the formulas given above remain 
valid for real films in which the uniaxial anisotropy constant 
obeys flu >max@, $, ,@ p, ), provided the following sub- 
stitutions are made: ,B :+pu,*, , h , [  +h Ileff, where 

(see Ref. 15 for notation). The equation of the SLHS line 
(the critical parabola) for real films is of the form 

h,=h~c [1-3/2 (hrr-~IIC)  '1, (15) 

and the coordinates of the critical parabola peak are deter- 
mined by the expressions 

I hill =1/2h,{l-2 cos [n/3+'lsarccos (2/3u'2hL-2-1)] 1". ( 11 ) 
where D is the inhomogeneous-exchange interaction con- In the neighborhood of the point h, = P : + 0, h = 0 
stant andp ~ 1 1  + '. The curves representing the locus of 

expression ( 11 ) reduces to 
the maxima of and xi:' on the h h, plane are deter- 

h,=bUo [If3/g(2h~lPu*)"" , ( 12) mined by Eqs. (9)  and ( 11 ) after substitution ( 14) is made 
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forP and h and are asymmetric with respect to the critical 
parabola ( 15 ). The coordinates of the point (h ,*, h i;) at 
which the "whiskers" come together are given by 
h ,* = Duea - 1 and hlleff = 0, i.e., 

h~*=~u-1+i/2~p+'/2~pC-~2e=h,,-1+2nD'"L-1p-'~, 

~ I I * = - P ~ ~ - ~ ~ ~ ' - ~ ~ ~ = ~ I I ~ + ~ ~ ~ P ~ - ~ + ~ P ~ ~ P ~ - ' .  (17) 

If the condition m, < 1 does not hold, the solution cannot be 
found in analytical form. Nevertheless, it is obvious that in 
the region of large h, the critical exponents for the maxima 
ofXIZo) andx::' will differ from 2/3 and 4/3, respectively. 

2.2. Domain-structure contribution 

Let us begin our study of the domain  contribution^'^' 
to the susceptibility by considering films which have anisot- 
ropy in the basal plane and a moderately high uniaxial an- 
isotropy (flu 2 1); an orientational phase transition in such 
a film is accompanied by the formation of a stripe domain 
structure, while the formation of two-dimensional domain 
lattices is energetically unfavorable. l5  In this case there are 
two critical points on the SLHS line: K, and K,, with coordi- 
nates H and H,, = H $u-St' (H ) which are symmetric 
with respect to the apex of the critical parabola. On the inter- 
val KlK2 the nucleation of the domain structure occurs as a 
second order phase transition, while outside this interval it is 
a first order t r a n s i t i ~ n . ' ~ . ' ~ ~ ~ ~  Following Refs. 13, 15, and 20, 
we write the domain part of the free energy in the form 

in regions which are far from the critical points, i.e., for 
E('-~~)<P, and as 

points as IH - H I - I .  In the neighborhood of the critical 
points we have f 'd '  cc ( E ( ~ - ~ ~ ) ) ' I ~ .  Since the function 
R = R (H ) changes sign at 

the component Xj,d' increase with distance from the line of 
phase transitions in the field interval H $ < H < H "' while 

'"('d' and outside this interval it decreases. The components x,, 
always decrease with distance from the line of phase 

transitions. Near the critical points the region of Hl values 
in which f'd' increases sharply becomes very narrow. We 
note that in order to calculate correctly the behavior off'd' 
with increasing distance from the line H:U-St'(H ), we 
must take the nonlinear field dependence of the magnetiza- 
tion rigorously into account, which is difficult to do using 
perturbation theory. 

In the case of a large uniaxial anisotropy (0, -+w ) and 
a negligible anisotropy in the basal plane (P, -0, PC -0, 
p, a), the phase diagram has a critical point C of the first 
order phase transition (H, = Hlc , H = 0)  from the homo- 
geneous state to a hexagonal domain lattice; a first order 
phase transition from the hexagonal lattice to a stripe do- 
main structure is also possible (see Refs. 14, 15, and 21 ). 
Following Refs. 15 and 2 1, we write the free energy of the 
hexagonal lattice in the form 

where 

H :L'U' ( H I ! )  = Hlc [ I f  8HIl2  (45?t4M02) -'I 
is the equation of the line on which the hexagonal lattice 
loses stability against a transition to the homogeneous state, 
and 

in the neighborhood of the critical points, i.e., for e,=45n4Mo2 (8HlcHl12)  "(H :L'u'-H_I). 
l ) ~ ' ~ - ~ " ~ p .  Here A = 8rZp-'L -'D ' l 2 ~ ,  is the shift of 
the field of the orientational phase transition due to the Using ( 1 ) and (22), we obtain the components of the 

finite size of the film; p = l - 2 ,  E ( ~ + ~ ~ )  tens0rfCd' as .. . 

= ( ~ j u - s t )  -H,)A-', R = #  - ? T , I ~ ' ~ ] ~  -2 f +vc4 
X v k  -4; for the remaining notation see Ref. 15. Substituting 
( 18) and (19) into ( 1 ),-we find that far from the critical xv. cd) ==-aIX~~'  -64Hl1 (33 .52n2Mo)  ( I + E , ' / ~ ) ,  (23) 
points 

Xu:d' (pHLc)- '  ( I+ ' /1  

( 4  ( d )  xvr =axuv -2 /oq ,A  E ( ~ - ~ ~ )  (nq,2HLc)-' ,  (20) where 

where a = 3yc h,, (47TMO) -I, and in the neighborhood of 
the critical points 

(d)  - (d) (d l  2 (d )  
XU. -axvu , x z z  =a x u u  . 
On the line of second order phase transitions the com- 

ponents~$' andx::' have discontinuities which are propor- 
tionalto(y,( = (HI/ - H I l C / a n d y C 2 =  (HI, -H l l c )2 , r e -  
spectively, and which increase on approaching the critical 

It follows from (23) that i 'd '  for the hexagonal lattice 
has a reciprocal square-root singularity in the neighborhood 
of the critical point C. The field dependence off'd) for the 
stripe domain structure is again described by Eqs. (20);f'd' 
is discontinuous on the line of first order phase transitions 
from the stripe domain structure to the hexagonal lattice. 

In the intermediate case of finite uniaxial anisotropy 
and nonzero anisotropy in the basal plane, the critical point 
Cis split into two triple points R ,  and R,, at which there is a 
coexistence of the homogeneous state, the stripe domain 
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structure, and one of the hexagonal lattices.15 The tensor 
f ' d '  does not exhibit singularities at these points. 

2.3. Allowance for fluctuations 

Let us determine the susceptibility correctionsf@' due 
to static fluctuations of the magnetization. In the homogen- 
eous phase the Hamiltonian of a ferromagnet is written in 
the harmonic approximation as .. 

where XkL," are the normal coordinates expressed in terms of 
a linear combination of the amplitudes of the static fluctu- 
ations of the magnetization, and 

Here w ,  are the spin-wave resonance frequencies [see Eq. 
( 9 )  in Ref. 201; w L  =: 1 6 d p ~ , g Z M ~ ,  where g  is the gyro- 
magnetic ratio; kc = ( r / p L  2D ') ' I 4  is the critical value of 
k,  ; n  is the number of the mode; and i j ,  is the wave vector 
describing the distribution of m(r)  over thickness of the 
film. Equation ( 2 5 )  is obtained from the Landau-Lifshitz 
equation in the approximation of a thick slab5' ( L ) D  ' I 2 )  

and a large uniaxial anisotropy ( P ,  k 1)Dk f = xf; see 
Refs. 12 and 15).  The resonance frequency w ,  as a function 
ofk, has a minimum at k ,  = kc, =:gr.  In the neighborhood 
of the points kc, we find" from the boundary conditions that 
i j ,  = r n L  - I .  Far from the points kc, this relation does not 
hold; however, since the main contribution to the thermody- 
namic quantities comes from fluctuations in the region of 
phase space in which k, -kc , ,  we can ignore this circum- 
stance. The fluctuation part of the free energy is given by the 
expression5 

from which we get 

n-l k, 

w 

In the neighborhood of the SLHS line ( ~ ' ~ + ~ " < 1 )  the 
tensor jCR' is of the form 

where 

r = 1 - p P 1 = : ( 1  + f l u ) - ' ,  bisacoefficientoforderunity, 
and K ( x )  and E ( x )  are elliptic integrals of the first and sec- 
ond kind, respectively. In deriving Eq. ( 2 8 )  we have used the 
relations 

i, I ( i 2 , + . L ) ,  z ~ ~ : , n m -  ~ R F : , ~ ~  
2%: 

n-I 
2a-f n-l 

For films in which P,  is not too large, we can write 
expression ( 2 8 )  in the region ~ ' ~ + ~ " ( r  as 

(11) - ( I f  b )  T 2 r f I  gr 
X v v  - 1 + E( U-St )- 512n4r'"D%Mo2E( U-St) 

In this case the components are proportional to 
( E ( ~ - ~ ~ ) ) - ' ,  i.e., there are singularities governed by an ex- 
ponent ? = 1 .  Critical behavior of this kind is characteristic 
for two-dimensional systems in the harmonic approxima- 
t i ~ n . ~ '  

For films in which P, + (r-+O), the field dependence 
of the tensorfcP' is described by Eqs. ( 2 9 )  in a small neigh- 
borhood of the SLHS line ( ~ ' ~ - ~ " % l ) ,  while for 

it is determined by the expressions 

in' the limiting case when T-0 the fluctuational corrections 
to 2 have a still stronger singularity, governed by an expo- 
nent ? = 3/2.  This is due to the growth of the phase volume 
of the fluctuations on decreasing anisotropy of the film in the 
basal plane." These results are in agreement with Ref. 22, 
where it was shown that the correlations of the fluctuation in 
isotropic systems increase strongly at the phase transition to 
the inhomogeneous state. Far from the SLHS line 
( E ' ~ - ~ " )  1 ) the fluctuational corrections to 2 are of the 
form 
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In this case the tensoriu' has the logarithmic singularities 
characteristic of three-dimensional uniaxial systems, in 
which the fluctuations are suppressed by long-range dipolar 
forces.23 In particular, an analogous singularity occurs in the 
fluctuational correction to the specific heat in the neighbor- 
hood of T, in an infinite uniaxial f e r r~e l ec t r i c .~~~ '~  For 
E ( ~ + ~ "  5 1 there is a transition from the critical behavior 
characteristic of infinite three-dimensional uniaxial struc- 
tures having a dipole iriteraction ( E ( ~ + ~ " >  1 ) to the behav- 
ior characteristic of two-dimensional systems with no dipole 
interaction ( E ( ~ + ~ ' ) (  1 ) . Since the parameter E ( ~ - ' ~ ' )  is pro- 
portional to the thickness of the film, the region of two-di- 
mensional behavior shrinks as L increases. We note that for 
~ ( ~ + ~ ' ) ( 1  the singular behavior offu '  is governed by the 
contribution of the critical mode with n = 1, while for 
E ( ~ + ~ ' ) >  1 it is determined by the contributions from all the 
modes. 

In the domain phase the regular domain structure 
creates a periodic potential in the xy plane, and consequently 
the fluctuation spectrum acquires a band nature.21s26 It can 
be shown that in the domain of application of our theory 
( I E ' ~ + ~ "  I (  1 ), the singular behavior of fu '  is governed by 
fluctuations associated with critical modes whose correla- 
tion lengths go to infinity as one approaches the stability-loss 
lines of the phases [h ,  = hLi = A  (h ) ] and with acoustic 
modes which destroy the translational order in the domain 
structure. 

Let us first consider the singular contribution to fu '  
from fluctuations associated with the critical modes. The 
fluctuation part of the free energy in this case is of the form 

L (  Q 

where i is the number (index) of the critical mode, and the 
form of the functions R , Q  is given in Ref. 15; the wave 
vector Q is reckoned from the points {k, ) in phase space at 
which S ~ , Q  has a minimum. 

For example, for flu 2 1, we have in the neighborhood 
of the line of second order phase transitions from the stripe 
domain structure to the homogeneous state 

i.e., here again the singular behavior offCP' in the neighbor- 
hood of the stability-loss lines of the phases is described by 
an exponent 7 = 1, which is characteristic of two-dimen- 
sional systems in the harmonic approximation. This circum- 
stance allows us to treat a magnetic film (where the theory is 
applicable) as a model of a two-dimensional system (see 
Refs. 15 and 27). If flu - CQ , then 

Let us turn to an analysis of a c o ~ ~ i i c a l  fluctuations. 

Since a magnetic film in the neighborhood of the phase tran- 
sition can be treated as a two-dimensional system, acoustical 
fluctuations destroy the long-range translational order in 
the regular domain structure with the formation of Bere- 
zinskii phases, which are characterized by different degrees 
of ~rdering.~'-~I Such transitions were considered in Refs. 
15 and 27. Using the relations of scaling theory, we can esti- 
mate the singular contribution to xCP' in the neighborhood 
of the transition from the Berezinskii phase to the ferrimag- 
netic liquid-crystal phase's3': 

(11) 
X i k  W T  (0) -'f?+-', 

where E(0) = h, - h :X' is the shift of the field h relative to 
the phase transition field h g , R + c exp(e - " (0) )  is a pa- 
rameter which determines the average distance between free 
magnetic dislocations in the domain structure: v = 0.5 and 
0.369 for the stripe domain structure and hexagonal domain 
lattice, respectively. In the neighborhood of the phase transi- 
tion point, h, = h :",' + 0, the components of iCP) fall off 
exponentially, i.e., this singularity is extremely weak. 

Magnetic defects of the regular domain structure such 
as free dislocations and disclinations, which exist in the ferri- 
magnetic liquid crystal and ferrimagnetic liquid, respective- 
ly, can cause the aforementioned anomalies of the tensor 
f u )  to become smeared out. 

2.4. Spontaneous phase transitions 

Let us describe the procedure for generalizing the the- 
ory developed in Secs. 2.1-2.3 to the case of spontaneous 
phase transitions near the Curie point T, in the presence of a 
weak magnetic field h (1 (the field h, is assumed to be 
zero). The discussion will be limited to quasi-uniaxial films 
having no cubic anisotropy and no deviation of the easy axis 
from the normal (fl, = 0, fl, #O, p, = 0).  In this case the 
magnetization component m,, (1 induced by the field h ll 
satisfies the e q u a t i ~ n ' ~ - ' ~ * ~ ~  

where 6 = p(T)  and S =:const are the coefficients of m2 and 
m4 in the expansion of the free energy. It follows from (34) 
that the components ofX::' have a maximum as functions of 
T (the maximum of the paraprocess3') at 

1-E (T) =3/46'" (2hll) "', (35) 

and on the line of extrema we have 

4nx.(.0) ='/&-'" (2hll) -2i3='/2[1-g (T) ] -'. (36) 

To obtain the explicit temperature dependence we set 
f ( T) = 6 ;, (To - T), where To is the Curie temperature in 
an unbounded medium and 6; = (ag/aT) .=, As a re- 
sult, we find that the position of the lines of extrema on the 
H T plane is given by the equation 

The equation of the SLHS line (the critical parabola) 
is13,15.21 
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where 

and Tc is the Curie temperature of the film (the temperature 
at which the domain structure is nucleated for H l l  = 0) .  The 
point of intersection of the curves given by (37) satisfies the 
relation 

i.e., again in the case of spontaneous phase transitions the 
initial parts of the curves (37) are "screened" by the SLHS 
line T'U+St'(H ). 

The domain and fluctuation contributions to the sus- 
ceptibility X, can be calculated using the theory developed 
in Secs. 2.2 and 2.3 by setting H = 0 in the corresponding 
formulas and making the following substitutions: 
Hlc +8r6MO, ( &+st) +(~(u-St )  - T) AT- ' ,  
A4.ir{h A,Mo, T-&fl,-2(1, where A, = To - T,. 

2.5. Discussion of the results 

The main results of our studies can be summarized as 
follows: 

1. The experimental behavior of the peaks of the compo- 
nentsx, andx,, of the susceptibility tensor in the homogen- 
eous state is in good agreement with the conclusions of the 
theory. For example, the solid lines in Fig. 7 show (for film 
No. 2) the calculated position on the HII H, plane of the 
SLHS line H :U-St' (H l l  ) [see Eq. ( 15) 1 and of the curves 
for the extrema of xj;' and xi:' [see Eqs. (9 ) , ( 1 1 ), and 
( 14); the coordinates of the calculated point of intersection 
of the curves are H T = 831 Oe, H i  = - 6.92 Oe]. The 
dashed lines show the curves for the extrema ofxj;' and xi:' 
as calculated by the approximate formulas ( 10) and ( 12). 
We see that the experimental points conform well to the solid 
lines and deviate significantly from the dashed line, i.e., the 
observable parts of the curves [the parts outside the line 
H :u+S" (H ) ] are not described by simple power laws with 
critical exponents 2/3 and 4/3. 

2. The experimental dependence of X, and xYz on the 
field H, (or on the temperature) at the orientational (or 
spontaneous) phase transition is also described satisfactori- 
ly by the theory. On the line H:u-St '(HII) [or 
T 'u-St' (H ) ] we observe the susceptibility discontinuity 
due (see Secs. 2.2 and 2.3) to the domain-structure (f'd' ) 
and fluctuation (iw' ) contributions. The calculated curves 
of xzz (H, ) and xyZ (H, ) for films No. 2 at different values 
ofH are shown by the solid lines in Fig. 8 (inside the critical 
parabola, where the domain structure exists, the curves are 
shown by dashed lines, since our theory does not apply in 
this region). The fluctuation part f C A )  of the susceptibility 
(see Sec. 2.3) always diverges on the line H :u-St'(H I I  ) 
(only the component xy, for H I  = H I I c  is not affected by 
fluctuations) and then falls off rapidly, becoming compara- 
ble to 2"' at JH, - H I - 10-2-10-3 Oe (for typical 
film parameters). The domain part fed' (see Sec. 2.2) di- 
verges for 7, > v k ,  where the nucleation of the domain 
structure occurs by way of a first order phase transition, and 
then decays rapidly, becoming comparable to i"' at 

FIG. 7. Calculated positions of the SLHS line ( 1 ) and of the peaks of 
xj;' (H, ) and x;' (H, ) on the H H, plane for film No. 2. The solid lines 
are the exact solution, the dashed llnes are the approximate solution; the 
legend for the experimental points is the same as in Fig. 4. 

IH, - H :u-St'/ - 10-2-10-1 Oe. For this reason, on the 
scale chosen in Fig. 8, the corresponding parts of the curves 
are represented by vertical lines. Although the theory devel- 
oped in Secs. 2.2 and 2.3 cannot be used to describe the be- 
havior ofx, andx,, away from the line of phase transitions 
in the interior of the existence region of the domain struc- 
ture, we can nevertheless state that in thick films at small 
values of H and for H, -+O the component xYz goes to zero 
andxZz goes to Cw (4a)  - I ,  where Cw > 1 is aconstant which 
depends on the ratio W = L /I, (C, = 1 for W-+ w , and 
C,+W for W-0), where I, is the characteristic length of 

FIG. 8. Theoretical dependence of x,, and x,, on H, for film No. 2 
(Hllc = - 10.55Oe,Hi; = - 6.92Oe).Oncurves 1-7:Hil = - 10.55, 
- 6.92, - 0.32, 6.27, 19.47, 32.66, and 59 Oe. 
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the material.33 For film No. 2 this ratio isL / I ,  = 7.2, and so, 
according to Ref. 33, C ,  = 2.5 (see Fig. 8 ) .  Behavior simi- 
lar to that described has been observed for f in films with a 
small anisotropy in the basal plane (see Fig. 2); for a large 
anisotropy in the basal plane the behavior off becomes more 
complex (Figs. lb, 3b, and 5).  

3. In real films the narrow spike that, according to the 
theoretical predictions, should appear on X, at the line of 
phase transitions as a result of fluctuations and the onset of 
domain structure is smoothed out because of microscopic 
defects and inhomogeneities in the samples. This spike 
would be much more apparent at spontaneous transitions 
than at orientational transitions (cf. Figs. 2 and 6).  How- 
ever, the field dependence ofx,, at orientational phase tran- 
sitions exhibits a very pronounced "domain-fluctuation" 
peak even at second order phase transitions; the kinks on the 
M, (H, ) curves are also clearly visible (Fig. 3) .  This is be- 
cause, first, xi:' and xi,d8' have opposite signs and, second, 
x ~ ~ ' < x ~ ~ ~ '  z (477) - l ,  whileX;,d8) is considerably larger than 
x;t8' at small values of lH ,, - H I (see Secs. 2.1-2.3). 

The results obtained in this study are convincing evi- 
dence that the domain structure and the actual anisotropy of 
the objects of study must be taken into account in designing 
and interpreting experiments on phase transitions in sam- 
ples of finite size. For example, even an approximate deter- 
mination of the critical exponents from the experimental 
curves of the susceptibility peaks becomes impossible in 
principle if the position ofthe point (H t H T) for an orienta- 
tional phase transition or the value of T * for a spontaneous 
phase transition is unknown. The fluctuational contribution 
to the susceptibility in samples of finite size always adds to 
the domain-structure contribution, and this circumstance is 
usually not taken into account in the analysis of experimen- 
tal results. 

In conclusion, we note that although the theory devel- 
oped in this paper gives a rather good description of the ex- 
periments, it must be kept in mind that it is essentially only a 
first correction to the Landau thoery, which is known to be 
inapplicable in a narrow region near lines of phase transi- 
tions, where one must take some other a p p r ~ a c h . ~  

We wish to express our gratitude to V. V. Tarasenko for 
discussion of this study and for helpful advice and to I. G.  
Avaeva and L. M. Filimonova for growing the samples. 

"There is no jump on curve 5 because the line.HII = 55 Oe intersects the 
stability-loss curve at a small angle. 

"One more reason for the discrepancy is that the x,, (H, ) curves were 
measured by the modulation technique. This also affects the initial parts 
of the curves for the high-field peaks ofx, . 

"This orientational phase transition is isomorphic to the spontaneous 
phase transition near the Curie point T, (see below), and so the field 
dependence of the tensor is analogous to the temperature dependence of 
the specific heat near T,. 

4'Generally speaking, in such films the component m,, is nonzero, i.e., the 
susceptibility tensor has nonzero components ,yED,', x:), and xi:', but 
they are very small since m,, (m, (m,, =: 1. 

5'This approximation permits neglect of the contribution of the surface 
modes to the thermodynamic quantities. 

6'The singular behavior of the tensorjM' (H)  is analogous to the behavior 
of the specific heat C(T)  near the Curie point, i.e., the exponent j is the 

same as the exponent a, which for two-dimensional systems with no 
dipole interaction is equal to unity in the harmonic appro~imation.~ 

7'In the absence of anisotropy in the basal plane (D,+m ) the function 
w ,  (k, ) is minimum on a circle of radius lkl = k,. 
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