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The stability of the steady state of parametrically excited spin waves is investigated with 
allowance for their nonlinear relaxation and for magnon-magnon interactions of higher orders. 
It is shown that the parametric system can develop aperiodic and oscillatory instabilities. 
Existence criteria are found for these instabilities, and several examples are considered. The 
phenomenon of multistability in the parametric system, i.e., the observation of different (not 
necessarily steady) microwave absorption levels at the same level of pumping, is discussed. 

The study of parametric excitation of magnons by a mi- 
crowave field yields important information on the properties 
of spins systems in ferromagnets and a.ntiferromagnets.Is2 In 
addition, a system of parametrically excited spin waves 
(PSW) is in itself very convenient object for studying and 
modeling the processes which occur in a many-particle me- 
dium. Substantial progress in understanding the physics of 
PSW has been made since Zakharov, L'vov, and Starobinets 
developed their theoretical model of spin-wave turbulence 
(the so-calledS theory) .) According to this t h e ~ r y , ~  a pump 
field hcosw, t above the threshold (h > h, ) for the parame- 
tric resonance (w, = w, + w - , , where o, is the PSW fre- 
quency) gives rise to a phase correlation for pairs of waves 
having wave vectors of equal magnitude and opposite direc- 
tion and thus establishes a strict connection between the 
number n (k)  of excited magnons and the phase $(k)  of the 
pair. A number of the conclusions of the S theory are in 
agreement with the experimental data and permit a satisfac- 
tory interpretation of many observed effects. For ferromag- 
nets, in which the anisotropy of spin-wave processes is sub- 
stantial because of the dipole-dipole interaction, the 
"parametric system" is made up of separate groups of PSW 
having different wave vectors. For this reason, it is possible 
to have different steady or oscillatory regimes in the sys- 
tem.'~)-~ For antiferromagnets, in which one can in practice 
neglect6 the anisotropy of the amplitudes of the magnon in- 
teractions, the theory3 implies only a spherically isotropic 
(in k )  stable steady state of the PSW. The properties of this 
state were studied experimentally in Refs. 7-9, and the re- 
sults were in satisfactory agreement with the S theory at 
power levels PC slightly above the threshold (P /PC - 1 - 1 ) . 
However, in the experiments of Refs. 9-15 it was found that, 
beginning at a certain pump power, the steady state loses 
stability, and regular or irregular oscillations arise in the 
microwave power absorbed by the sample. Importantly, the 
instabilities in the parametric system were observed for dif- 
ferent types of PSW (electronic spin waves in Refs. 10-14 
and nuclear spin waves in Refs. 9 and 15) and in different 
antiferromagnetic crystals: MnCO, (Refs. 9, 13), CsMnF, 
(Refs. 10, 15), CsMnC1, (Ref. l l ) ,  FeBO, (Ref. 12), and 
CuC1, , 2H20 (Ref. 14). One naturally wonders whether 
the instabilities of the steady state of the PSW system in 

antiferromagnets can be described in terms of the basic phys- 
ical principles of the theory of spin-wave turbulence.) This 
question is the subject of the present paper. 

Instabilities in a PSW system can result from the follow- 
ing obvious causes (either individually or in concert): 1 ) As 
the pump power increases, the magnon dissipation param- 
eters change and the higher-order nonlinear magnon inter- 
actions become important; 2)  the formation of the parame- 
tric instability can involve other degrees of freedom of the 
crystal (other magnons, phonons, etc); 3) there is a whole 
class of possible instabilities which lead to spatial inhomo- 
geneties in a parametric system. Several aspects of the theory 
of PSW instabilities (mainly the spatially inhomogeneous 
instabilities) have been discussed in the literature. For ex- 
ample, Borovik16 considered the possibility that soliton solu- 
tions leading to oscillations of the absorbed power can form 
in a PSW system." Fal'kovichl' proposed a mechanism 
whereby a kinetic instability of the parametric system leads 
to the excitation of natural elastic oscillations of the sample, 
like those observed experimentally. l 2 9 I 3  

In this paper we consider only spatially homogeneous 
instabilities of the parametric system. The description of 
PSW follows the basic physical principles2' of the S theory3: 
a )  the phase correlation of the parametric pairs is deter- 
mined by an interaction Hamiltonian that is diagonal in the 
wave pairs; b)  the interaction with the heat bath is taken into 
account by the introduction of a dissipative term in the equa- 
tion of motion. Before turning to the main exposition, let us 
briefly review the known results. The initial equations of the 
theory3 can be written in the form (see also Ref. 8 )  

1 d -- U P  8+hV0 sin 8 = - - a,--2ToN-SON, 
2 at 2 

( l a )  

where O(k)=n/2 - $(k); ~ ( k ) = n ( k ) / ~ V  is the number 
of PSW per magnetic cell (N is the number of magnetic 
cells in the sample); V,(k) is the coupling coefficient of the 
PSWs with the pump (with allowance for the "indirectness" 
of the pumping2'); yo(k) is the magnon relaxation rate, and 
So(k) and T,(k) are the four-magnon interaction ampli- 
tudes responsible for the phase shift and the renormalization 
of the PSW frequency, respectively. For convenience we as- 
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sume here and below that the dimensional quantities are giv- 
en in frequency units. According to Ref. 3, the magnons ex- 
cited in the steady state are those whose wave vectors lie on 
the resonant surface 

where the steady-state values No and 8, are determined from 
( la)  and ( lb)  with the derivatives set to zero. The stability 
analysis of system ( 1 ) is done by the standard methods (see, 
e.g., Ref. 21): 

0=0,+68, N=N,,+6.J1; 60 ,  6Nmexp  ( k t ) .  

The following characteristic numbers result: 

Usually I d  is called the frequency of collective oscillations 
of the PSW, and ReA characterizes the damping of these 
oscillations. The development of instability requires that at 
least one of the characteristic numbers have a positive real 
part.2' It follows from (3)  that this condition is realizable 
only for 

Inequality (4)  is known as the criterion for the onset of 
aperiodic ( I d  = 0) instability of the steady state of the 
PSW.3 This inequality can be satisfied for certain modes in 
ferromagnet~,~ in which case a numerical modeling (includ- 
ing a second group of excited magnons) shows that the para- 
metric system develops self-oscillations analogous to the 
self-oscillations of the magnetization that are observed ex- 
perimentally.1.4 For antiferromagnets, however, inequality 
(4) is not satisfied (So = To), i.e., as we have said, in this 
case Eqs. ( l a )  and ( lb)  imply only a stable steady state of 
the PSW above the excitation threshold. In what follows we 
consider physical mechanisms which lead to modifications 
of ( l a )  and consider several physical mechanisms which 
lead to modifications of ( la)  and ( lb)  and the consequences 
of these modifications. 

GENERALIZED CRITERION OF INSTABILITY OF THE 
STEADY STATE OF PSW 

As we know, the relaxation of waves in solids is the 
process whereby energy stored in one mode "spreads out" 
over an infinite number of degrees of freedom of the crystal. 
At small deviations from equilibrium the relaxation toward 
the ground state occurs exponentially with a rate determined 
by the thermodynamic equilibrium properties of the object. 
Parametric instability increases the population of the excited 
mode above its thermal level by several orders of magnitude. 
Significant changes can thus occur in the PSW dissipation 
processes, since the properties of one or more of the subsys- 
tems taking part in the relaxation of these waves can change 
appreciably. There are two distinct cases of nonlinear relaxa- 
tion of PSW. In the first case the dissipation increases. This 
is called positive differential nonlinear damping (the medi- 
um inhibits wave excitation). Alongside the phase mecha- 
nism, positive nonlinear damping is an independent mecha- 

nism limiting the amplitude of the excited modes. The 
second case, in which the PSW dissipation falls off, is called 
negative differential nonlinear damping (the medium pro- 
motes wave excitation). Negative nonlinear relaxation of 
PSW is intimately related to one model for "hard" PSW 
excitation, which is characterized by the presence of differ- 
ent amplitudes for the onset (h,, ) and extinction (h,, ) of 
the parametric instability (h,, > h,, ). 

Nonlinear damping of PSW is easily included in the 
calculational scheme of the S t h e ~ r y . ~  In the case when the 
medium has time to readjust to the instantaneous values of 
N, it is sufficient to replace yo in ( lb )  by the nonlinear func- 
tion ; ( N ) :  

yo-7 ( N )  =yo+y,N+y2NZ+ . . . . ( 5 )  

Estimates of y ,  for f e r r ~ m a g n e t s ~ . ~ ~  and antiferromagnets 
(after a processing of the experimental data8,' 1,23*-25 ) show 
that it lies in the range 1 yl/S, I - 0.1- 1. 

Another way of going beyond system of equations ( 1 ) 
(i.e., beyond the standard S theory) is to take into account 
the next higher orders in the interactions of the parametric 
pairs. It is easily shown that for magnets with isotropic mag- 
non-magnon interactions such a procedure leads to equa- 
tions for 8 and N that are analogous to ( la)  and ( lb) but 
with the following substitutions: 

Here the coefficients S, and T, are determined by six-mag- 
non scattering processes; S, and T2 by eight-magnon pro- 
cesses, etc. It should be noted that besides the change in the 
coefficients So and To responsible for the phase shift and the 
renormalization of the PSW frequency, there is also a change 
in the coupling coefficient Vo of the parametric system with 
the alternating field,26 i.e., there is a nonlinear response to 
the pump. The factors V,, V,, etc., are determined by the 
effective interactions of the pump field with four magnons, 
six magnons, etc. A rough algebraic estimate of the expan- 
sion coefficients in (6a)-(6c) for gives R, a Ro( To/ 
w ,  )"  , where R = S, T, V. 

The steady states ofa parametric system with allowance 
for generalizations (5 )  and (6)  are determined by the fol- 
lowing equations: 

ha  ( N o )  cos 8,=y ( N o ) ,  (7a) 

No2 [S (No)  I=+ [T (No)  I '= [hv  (No)  12, (7b) 

while the condition for the resonant surface is analogous to 
(2 ) .  It should be noted that now Eq. (7b) can have a number 
of solutions with No(h) > 0, leading to multistability in the 
parametric system, a frequent occurrence in highly nonequi- 
librium  system^.^' 

The stability of the steady states of the PSW is studied 
(as above) by linearizing the modified equations ( l a )  and 
( lb) .  The following characteristic numbers result: 
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It is easy to see that the inequality ReA > 0 has two solutions 
in this case (depending on the sign of the expression in curly 
brackets). The first corresponding to a modification of the 
aperiodic instability criterion (4) and can be written 

The second solution is fundamentally new criterion for the 
onset of PSW instability: 

This solution corresponds to the development of an oscilla- 
tory instability of a parametric system with frequency R. 

EXAMPLES 

Let us consider several examples illustrating the use of 
criteria (9)  and ( 10). Our discussion will be limited to the 
influence of nonlinear PSW dissipation, which is especially 
interesting because in this particular case all the results of 
the analysis will be valid for both antiferromagnets and fer- 
romagnets. We write the nonlinear PSW damping in the sim- 
plest from 

For this case the steady-state values No are given by the 
expression2' 

N o ' * ' ( h ) = ( y o l l S o I )  { -r .*[E2(1+x2)  -11%) ( l + x 2 ) - * ,  (12) 

where 

x = y l / l S o I ,  E--hlh,,. 

Criteria (9)  and ( 10) assume the forms 

yoyl/No+yl2+So (2To+So) (0, (13) 

yo+2yiNo<O. (14) 

For positive nonlinear PSW damping there is only one 
branch: No = N A +  ' (h)  > 0. It is easy to see that in antiferro- 
magnets the steady state of the PSW on this branch is stable. 
For ferromagnets withSo(2To + So) < 0 there is an aperiod- 
ic instability [see ( 13) ] if the nonlinear damping coefficient 
isnot too large: yl/lSoI < 12To/So + 1 I ' I 2 .  It should benoted 
that this PSW instability does not arise immediately at the 
excitation threshold [as would be implied by the standard 
criterion (4)  1 but only after a certain supercriticality la is 
reached and the first term in ( 13) has become sufficiently 
small. Allowance for the positive nonlinear PSW damping 

FIG. 1. Steady states of a parametric system for a "hard" type of magnon 
excitation. With increasing supercriticality, progressively higher-order 
nonlinearities become important, leading to multistabilities in the para- 
metric system. 

thus permits explanation of the experimental data's4 reveal- 
ing a degeneracy of the self-oscillations of the magnetization 
in the ferromagnet YIG at supercriticalities of 0.1-1 dB (i.e., 
la N 1.01-1.10) .3) The nonlinear damping coefficient here 
amounts to yl/lSoI -0.1-1, in good agreement with esti- 
mates based on the susceptibility (see Ref. 22). 

For a negative nonlinear PSW damping, y, = - 1 y, 1, 
there are two branches of steady-state values No(h) > 0: one 
branch with a positive (GN,,/Sh > 0)  slope, No = N A + ', 
h>hc, and one branch with a negative (SNo/Sh < 0)  slope, 
No = NA- ', h,, <h<hcl (see Fig. 1 ), where 

hci=yolV0,  hc2=hCl ( l + x 2 )  -I". (15) 

It follows from inequality ( 13) that the steady states of the 
PSWs are aperiodically unstable if 

For So = To these states lie on the negative-slope branch 
(marked with hatches in Fig. 1 ) , since 

N o ( h c z ) / N 0 ( h ' )  = ( 3 + x ~ ) l l + ~ x Z )  > I .  (17) 

Let us now consider the criterion of oscillatory instabil- 
ity ( 14), which implies that for 

the parametric system executes self-oscillations whose fun- 
damental frequency can be estimated from the frequency of 
the small-amplitude collective oscillations of the PSWs [see 
Eq. (811: 

The amplitude of the self-oscillations of the PSWs is really 
not small, and because of the nonlinearity of the equations of 
motion their shape can be arbitrarily complex. We have done 
a computer modeling of the shape and Fourier spectrum of 
the self-oscillations of the absorbed power (P oc GN) for the 
case h /hc, = 5 (see Fig. 2) .  It is noteworthy that the spec- 
trum contains oscillations at the subharmonic R/2. As the 
pump power is increased further, the R/4, R/8, etc. subhar- 
monics appear. This circumstance indicates that dynamical 
chaos develops easily when one more degree of freedom is 
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p, arb. units ~ ( w ) ,  dB 
I 

FIG. 2. The form of the self-oscillations of the absorbed power (left) and 
their Fourier spectrum (right), calculated for h/h, ,  = 5.3 and Jy,/ 
So/ = 0.1. The PSW are excited on the resonant surface given by Eq. ( 2 ) .  
The "hardness" of the excitation is (h , ,  /h,  ) 2  = 1.01 (i.e., 0.43 dB). 

present in the parametric system (e.g., when thedynamics of 
the subsystem that causes the nonlinear PSW relaxation is 
taken into account). Transition to chaos through a sequence 
of period doublings of the self-oscillations was observed ex- 
perimentally in Refs. 14, 15, and 17. 

Let us now make some estimates of the threshold for the 
oscillatory instability. After several transformations, Eqs. 
(12),(15), and (18) yield 

For 0 < Ix 1 < 1 this formula is valid for the N A + ' branch of 
the steady-state PSW values. We see that when the PSW 
excitation has a "hardness" (h,, /h,, )'>2 (i.e., >3  dB), this 
entire branch is subject to oscillatory instability. For 1x1 > 1 
relation (20) is satisfied for the NA- ' branch, and for 1 %  I > 1 
we have h z h,, /2. Experimentally, only the N A +  ' branch 
has been studied; this branch was encountered in a field 
h>h,, , and in a field h,, a breakaway occurred from this 
branch to a state with No = 0. The threshold for excitation of 
oscillations of the absorbed microwave power for electronic 
magnons was observed at (h  /h,, ), = 10 in CsMnF, (Ref. 
10) and at ( h  /hc2 ) = 70 in C S M ~ C ~ ,  ( ~ e f .  1 1 ) . From (20) 
we get the following estimates for the nonlinear damping 
coefficients; 1 y,/So( ~ 0 . 1 6  and ( y ,/Sol ~ 0 . 0 6 ,  in order-of- 
magnitude agreement with the experimental situation. In an 
experiment on the excitation of nuclear magnons,I5 oscilla- 
tions of the absorbed power were observed at all values of h 
up to the extinction field h,, for the parametric process. 
Since the "hardness" of the excitation here was (h,, / 
h,, -2.3, this situation is in good agreement with the crite- 
rion given above for the oscillatory PSW instability. 

Let us now consider the NAP ' branch of steady states 
(the stability of PSWs on this branch has not been discussed 
previously in the literature). As we showed above, for 
h *<h < h,, the states with NA- ' are aperiodically unstable. 
For 1x1 < 1 there is a region of stable steady states at fields 
h,, < h < h *, while for 1x1 > 1 states which are subject to os- 
cillatory instability arise in this region for h,, < h < h. For 
sufficiently large 1x1 the regions of oscillatory and aperiodic 
instabilities overlap (h >h * ) . 

Thus in the field region h,, < h < h * there exist three 

aperiodically stable steady states of the PSW, two of which 
have N,zO.~' To study the PSW states on the negative-slope 
branch, one must start with initial conditions in the attrac- 
tion domain of this branch. Such conditions can be arranged 
experimentally by a rapid switching of the pump power. 

As we have said, allowance for the nonlinear terms 
S(NJ, T(N), and V(N) [in addition to ;(N)] leads to a 
multiplicity of steady states ofthe parametric system [a  typi- 
cal No(h) curve is shown in Fig. 1 1 .  In addition, criteria (9)  
and ( 10) imply that, depending on the relationships among 
the PSW parameters, there are various ways of realizing the 
oscillatory and aperiodic instabilities. To check the conclu- 
sions of the theory will require special experimental study. 

DISCUSSION 

An important question is the stable state reached by the 
parametric system when one of the instabilities discussed 
above is realized. 

For an oscillatory loss of stability it is valid to model the 
self-oscillations in the framework of system of equations ( 1 ) 
[with nonlinear coefficients ( 5 )  and (6 ) ]  if the collective 
oscillation frequency S1 = I d  [see Eq. (8)  ] is appreciably 
higher than the relaxation rate t ,  of the PSW packet. In 
this case the excited magnons remain on the same resonant 
surface. In the opposite limiting case S1(t; ' the singular 
(in k )  distribution of the PSW is able to follow the changes 
in N, with the result that the parametric packet drifts over 
different w ,  . 

For an aperiodic instability there are several paths of 
transition to stability. On one of these paths the PSW system 
jumps from the unstable state to the stable state on one of the 
branches No(h ) (see Fig. 1 ). Another version involves going 
beyond the framework of Eqs. ( la)  and ( lb)  . In this case, 
which is analogous to the case of the aperiodic instability in 
ferromagnets, it is necessary to consider other degrees of 
freedom of the crystal in order to limit the growth of the 
absorbed power. For a ferromagnet these other degrees of 
freedom comprised a second group of magnons, allowance 
for which gave rise to self-o~cillations.~ For an antiferromag- 
net the "second group" can be parametric pairs (magnon- 
phonon or phonon-phonon). Their excitation has a thresh- 
old and can be brought about in an antiferromagnet by a 
strong magnetoelastic coupling. A computer modeling of 
this process shows that the absorbed power can have a peri- 
odic or stochastic oscillatory steady state. It would be rea- 
sonable to do a detailed study of these self-oscillations for a 
specific magnetic crystal, in close connection with experi- 
ment. 

We have considered the possiblities for the onset of only 
spatially homogeneous PSW instabilities. It would be of in- 
terest to do a similar study with allowance for spatial inho- 
mogeneities. In Ref. 28 the spatially inhomogeneous collec- 
tive oscillations of PSWs were treated as a perturbation of 
the homogeneous distribution of wave pairs from the S the- 
~ r y . ~  In particular, it was shown there for an isotropic model 
of the magnon interaction that the most stable modes were 
the homogeneous collective modes. We believe that substan- 
tial inhomogeneities can arise in a parametric system as a 
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result of differences in the character of the PSW relaxation in 
different parts of the crystal (for example, near the bound- 
ary and in the interior of the sample). 

We wish to thank A. V. Andrienko, B. Ya. Kotyuz- 
hanskii, V. I. Ozhogin, L. A. Prozorova, A. I. Smirnov, and 
A. Yu. Takubovskii for discussion of the results of this 
study. 

''Ref. 16 gives a possible interpretation of the results of the experiment of 
Ref. 10. Recently a detailed experimental studyI7 has revealed that the 
regular dips of the absorbed microwave power that was detected in Ref. 
10 are accompanied by changes in the density of parametric magnons in 
the interior of the sample. 

*'According to Ref. 3, theS-theory approximation is valid when processes 
in which the PSW decay into two secondary waves are unimportant. A 
numerical modeling of the instability in a system with a clearly expressed 
decay spectrum was carried out in Ref. 19. 

3'It was pointed out previously in Ref. 3 that a positive nonlinear PSW 
damping is one possiblity for increasing the threshold for self-oscilla- 
tions of the magnetization. 

4'Recall that different values of No correspond to different wave numbers 
of the excited PSW [see Eq. (2)  1. 
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