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We have found a family of multipole moments (axial toroidal moments) that differ in their 
space-iime symmetry from the Maxwell-Lorentz moments known from electrodynamics. We 
consider the realization of this family in a system of magnetic charges, in electric dipole media, 
and also in media with magnetic fluxes. We investigate within the framework of a microscopic 
model a phase transition in a crystal with formation of an axial toroidal moment, and discuss 
certain interesting properties of the axial toroidal state. 

61. INTRODUCTION 

In the study of electromagnetic properties of systems 
with distributed charges and currents it becomes necessary 
to choose macroscopic characteristics that describe ade- 
quately the interaction of these systems with external fields 
and currents. A convenient mathematical procedure for this 
purpose is the formalism of multipole expansions of the mi- 
croscopic charge density p(r,t)  and current density j(r , t) .  
For classical electrodynamics, this formalism is consistently 
developed, e.g., in Ref. 1. It is also shown there that besides 
the known families of charge and magnetic multipole mo- 
ments there is produced a third family of toroidal multipole 
moments. The formal cause of the toroidal moments is the 
representation of vortex field (in this case, of the transverse 
current-density component j, (r,t), i.e., of a function for 
which div j, GO) ,  in the form of the sum 

j (r, t) =rot [r$ (r, t) 1 +rot rotlrx (r, t) 1, 

where $(r,t) and x( r , t )  are respectively pseudoscalar and 
scalar functions. We shall call this formula the Neumann- 
Debye representation2". The expansion of $(r,t) in radial 
spherical harmonics generates a family of magnetic multi- 
pole functions, among which the generating one is the dipole 
magnetic moment M, since it can be used to construct all the 
higher moments of this family: M ,  = r,  M, + r, Mi, etc. A 
similar expansion of x( r , t )  generates a family of toroidal 
multipole  moment^.'.^ The generating moment in the toroi- 
dal family is the toroidal dipole moment T. In addition, ex- 
pansion of the charge density p(r,t)  generates a family of 
charge multipole moments, of which the vector characteris- 
tic is the charge dipole moment P. In accordance with their 
symmetry propeties (the behavior u n d ~ r  the coordinate in- 
version and time reversal operations I and R )  the vector 
quantities P, M, and T are different and are transformed in 
accordance with Table I. 

It can be seen, however, that to construct the complete 
vector basis of multipole representations of the space-time 
inversion groups R e I the set of vectors P, M, and T is insuf- 
ficient, and in principle we need one more axial vector G 
whose symmetry properties are indicated in the lower row of 
Table I. In the Maxwell-Lorentz classical electrodynamics, 
where 
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j (r, t )  = e;r6 (r-r, (t) ) , 

there is no place for realization of a vector with such proper- 
ties. It will be shown nonetheless in the present paper that 
there are many physical applications of the mathematical 
formalism of multipole expansions, where the presence of 
the generating dipole moment G of a family of its multipoles 
is indispensable. 

In the modification of the multiple-expansion scheme 
for problems of electrodynamics with a magnetic charge 
(42) the vector G is the torqidal moment of the magnetic- 
charge current. It is similar in a certain sense to the toroidal 
moment T of the electric charges. Owing to the pseudoscalar 
properties of the magnetic-charge density, however, it turns 
out that G is an axial vector whereas T is a polar vector. 

In the electrodynamics of continuous media, G can be 
introduced to describe systems with charge dipole moments 
($3). In this case G is the analog of the induction toroidal 
moment T,,, in media with distributed magnetic dipole mo- 
ments. 1,6-8 

Starting fro= the symmetry properties and also from 
the analogy with toroidal multipoles in the Maxwell-Lor- 
entz electrodynamics, we shall hereafter call the vector G the 
axial toroidal moment, and the vector T the polar toroidal 
moment. 

Introduction of the spin makes it necessary to classify 
the toroidal moTents T and G with respect to the inversion 
transformation R, in spin space. Where necessary, we shall 
label the even (singlet) vectors by a subscripts, and the odd 
(triplet) by t .  

To describe phase transitions in crystals, the vectors T 
and G (or their higher multipoles) can be naturally be cho- 
sen to be order parameters that transform in accordance 
with certain irreducible representations of the magnetic 
group of a high-symmetry phase. We shall examine the dis- 
tinguishing features of toroidal types of ordering and the 
systems for which introduction of these terms makes sense. 

From the viewpoint of formal symmetry, many of the 
known order parameters are transformed in analogy with T 
and G .  Thus, for example, multipole order parameters (spin 
densities) were introduced to describe spin magnets, and 
some of these parameters have transformation properties 
similar to those of T, . 9 3 1 0  The simplest case is that of a two- 
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TABLE I 

sublattice antiferromagnet. 
The vector o, which is the dual of the antisymmetric 

part of the strain tensor," transforms in analogy with G, , as 
does also the director n that characterizes the orientational 
ordering in liquid crystals.I2 In the theory of "spin nema- 
tics" l3  are introduced order parameters similar in symme- 
try to G , ,  and T , ,  . A description of the properties of these 
systems in the language of toroidal distributions, however, is 
not particularly instructive physically, although it may be 
helpful when it comes to describe an interaction with an elec- 
tromagnetic field. 

The introduction of toroidal moments in a special 
group of order parameters is much more justified in the case 
of system with itinerant electrons. In particular, the polar 
toroidal moment T, describes orbital antiferromagnetic or- 
dering,I4 the vector T, can be used to describe a number of 
spin itinerant antiferromagnets, the axial toroidal moment G 
describes a peculiar charge ordering of the type of itinerant 
antiferroelectricity (vide infra), and the vector G, describes 
the orientational ordering in spin itinerant magnets.I5 

The multipole-expansion scheme permits a very effec- 
tive description of the general macroscopic properties of 
many systems with complex distributions of the charges and 
currents (in particular, the response to an electric field). No 
less important a task, however, is the investigation of actual 
quantum-mechanical models that realize various types of 
multipole structures. A very clear example is the theory de- 
veloped in Refs. 14 for polar toroidal ordering in crystals. 

In this paper, along with a general phenomenological 
analysis of axial toroidal ordering ($4), we propose a micro- 
scopic model of a phase transition with formation of G, 
($5). Another microscopic model with formation of G, was 
considered earlier,I5 and we deemed it unnecessary to pay 
attention to its specific features (the general derivations are 
given in $4). These models illustrate quite clearly the phys- 
ical meaning of G and permit a better understanding of the 
nature of its formation in crystals. 

$2. MULTIPOLE EXPANSION OF A SYSTEM OF MAGNETIC 
CHARGES 

It was noted in Ref. 1 that in the dual-invariant scheme 
of electrodynamics there is complete symmetry between the 
multipole source forms and the types of fields, especially 
radiation fielts." We note that in an electromagnetic theory 
invariant to R and reflections the electric-charge current 
should be a vector, and the magnetic-charge current a pseu- 
dovector, if the customary convention concerning the space- 
charge properties of the field E and H is adhered to (see, e.g., 
Ref. 17). Obviously (see Ref. 16), formulation of an electro- 
magnetic theory with magnetic point charges is difficult 

(see, however, Ref. 18) since, e.g., the relation div H 
= g a ( r )  either the charge is not simply a number, or else the 

charge is a number and there is no parity conservation in the 
theory. This difficulty does not arise in the macroscopic for- 
mulation, since the function p, (r,t) in the equation div H 
=p, (r, t)  can be always assumed to be odd, and jg(r,t) in 

the equation curl E = - H - j, (r,t) can be regarded as an 
axial vector. Taking into acouni this difference between the 
world of magnetic charges and the world of electric charges, 
the problem-of multipole expansion of the densitiesp, (r,t) 
and j, (r,t) can be easily solved by simply making the re- 
placements p, -+p, and j, +j, in the corresponding equa- 
tions of Ref. l. We write out these equations and note the 
identical dual symbolism ofg/e in the "electric" and "mag- 
netic" worlds. Thus, the expansion of the charge is written in 
the form 

c., 

X F,,, ( r )  QPL; (?cz, t )  Ic2 dk ,  

where the charge multipole distributions Q f t ( k  ',t) (Ref. 
1 ) are defined as 

This leads to definitions of the charge multipole moments 

and their radii raised to the power 2n 
- 43% 
rlmZn ( t )  = (-,) 'la 5 rf+znY,,,,* (i) pII. ( I ,  t )  d3r1 

21+1 
which complete the multipole parametrization of the initial 
function p,,, (r,t). 

The multipole expansion of the current density of the 
magnetic (electric) charges with the toroidal part singled 
out takes the form' 

The basis of the expansion (6)  is introduced as follows: 

(+)- i F z m k  - k [ l ( l + l )  1% rot r ~ t ( r F ~ , ~ } .  

The spherical vector are introduced as in Ref. 19: 

m ' 

The magnetic multipole distributions are 
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the magnetic multipole moments are 

M E  (0, t) = [ 4n- 1" 5 ri~ll .jg, .(r,  t)asr; ( 9 )  
(21+1) (1+1) 

the toroidal multipole distributions are given by 

the toroidal multipole moments are 

the longitudinal charge multipole distributions are 

and the longitudinal charge multipole moments are 

When the conditions for spectral expansion ofp,,, (r,t) and 
j,,, (r,t) are satisfied (the simplest case is that of harmonic 
sources) the last definitions reduce to Eqs. (3 )  and (4),  and 
the expressions ( 12), ( 13 ) are functionally dependent on 
Q,, in all cases, in view of the conservation of the 4-current. 
The question of how the "longitudinal" moments Q,, (0,t) 
"turn up" in the expansion of the transverse part of the cur- 
rent (div j = 0)  [see Eq. ( 6 ) ]  is more complicated and is 
answered in Ref. 1 (see also the literature cited there). 

It is easy to ascertain, by starting from the properties of 
the vector spherical functions F,,, relative to I reflections, 
that the distributions Mf, now produce El-type fields (in 
particular, they emit E, multipoles), while the charge Q f ,  
and toroidal T &  distributions produce the M, -type fields 
(in particular, Q  fm (0,t) and Tf,  (0,t) are responsible for 
the emission of MI multipoles). 

$3. MULTIPOLE REPRESENTATIONS OF DIPOLE MEDIA 

Since no free magnetic charges (and their currents) 
have been observed so far (the history of the problem can be 
found, e.g., in Ref. 20). It might seem that the results of the 
multipole expansion in dual electrodynamics, which are re- 
ported in $2, are purely of scholastic character. We shall 
show, however, that the dual symmetry M : , t t Q f m ,  Mf, 
*Q ',, has a rather profound meaning, and the formalism 
expounded in $2 is quite useful for the description of dipole 
structures in the electrodynamics of continuous media. 

We describe a magnetic medium as an aggregate {pi ) of 
elementary dipole moments (i = 1,2, ..., N). The magnetic- 
dipole current density j, is introduced in known fashion2': 

where the arrow denotes a transition to a continuous distri- 
bution of the magnetic-dipole-moment density (magnetiza- 
tion) M, . It is convenient to introduce besides ( 14) the for- 
mal quantity p,, which is the pseudoscalar distribution 
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density of the "magnetic charges": 

p, (r, t)  =-div M,, (r, t )  . (15) 

Note the usual Maxwell-Lorentz equations do not contain 
the quantity Mil (r,t) (the longitudinal component of the 
magnetization). 

Replacing now in Eqs. ( 3)-( 5) the density p, by p, , we 
get an almost complete analogy with the multipole expan- 
sions of these quantities (the only difference is that we must 
Put 

Moo= p (r, t )  d3r = 0. S. 
Clearly, the corresponding equation give the "charge" mul- 
tipole moments of the system of magnetic dipoles. We note 
that no fully symmetric scheme of multipole expansion is 
produced, since div j, # p, and M ,  = 0. 

Thus, the vortical current j, makes no contribution to 
Q,,, but its contribution to T,, does not vanish. Note that 
historically it is just this contribution that initiated in fact 
the introduction of toroidal distributions in electromagne- 
tism (see Ref. 6 and the references therein). The induction 
part of the toroidal moment 

4"1 ]"' IY ,~ ,M~ (r, t) d3 r ( 16) T6 ( 0  = [ (21 + ,) (, + 1) 

was named earlier "induced electric moments" (Ref. 8 ) .  
This equation is given here in the normalization of Ref. 6. It 
can be seen that ( 16) differs from the definition of M ;, for 
free current by the substitution je-+M, . The elementary di- 
pole T, can thus be written, in analogy with M, in the form 

The geometric representation of the induction (toroidal) di- 
pole is a closed circular chain of elementary dipole moments 
{pi) (Fig. l a ) .  

We shall describe electric dipole media by a set of ele- 
mentary dipoles {di). In this description, the characteristic 

FIG. 1. 
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scales over which the multipole expansion is carried out are 
large compared with the characteristic dimensions of the 
dipoles themselves, so that the latter can be regarded as 
pointlike. The electric polarization of the medium is intro- 
duced in the usual manner: 

P (r, r )  = di6 (r-a (t) ) . (18) 

Obviously, the electric polarization P  can imitate, by 
virtue of the dual symmetry, multipole moments of magnetic 
charges. We introduce an axial "current" that is a pseudo- 
vector with respect to time reversal in a medium of distribut- 
ed electric dipoles: 

where P, is the transverse part of the electric-dipole-mo- 
ment density (polarization). The longitudinal part P i l  of the 
polarization is described by the scalar distribution density of 
the electric charges 

pd (r, t )  =div PI, (r, t )  . (20) 

We emphasize that the axial current j?' differs in its nature 
from the polar current j, in the Maxwell-Lorentz equation: 

jd(r, t )= z d i 6 ( r - r i ( t ) )  + ~ ( r ,  t ) .  (21) 
1 

In contrast to the magnetization components M ,  and M I ,  
both polarization components P I ,  and P ,  enter in the Max- 
well-Lorentz equations, and P ,  drops out of them only in the 
static limit. 

Returning to Eq. (19), we see that substitution of the 
effective current J?' in the definition of Mfm transforms, 
after appropriate integration by parts, the definition of M f m  
into the usual definition of the electric part, in which jg is 
replaced by P ,  . In this case, of course, E &=O. On the other 
hand, the situation with T f m  is more curious. Substitution of 
( 19) in the definition ( 1 1 ) and transfer of the derivative lead 
to an equation similar to ( 16) : 

It follows directly that the elementary "induced" axial toroi- 
dal dipole moment is 

and its geometric representation is a closed chain of electric 
charge dipoles (Fig. 1 b) . The last equations demonstrate the 
simplest possibility of imitating, in the dipole representa- 
tion, symmetry elements that are absent from a system of 
electric point charges. !In principle, completeness of the 
properties under R and I reflections can be obtained also in 
media made up of elementary higher multiples of the usual 
type. 

We indicate one more possibility of realizing the T g  
symmetry in media. Recall that in the problem of particle 
motion in a centrosymmetric potential one encounters a cor- 
relation between the angular-momentum and momentum 
vectors and P. This correlation is described by the Runge- 
Lenz operator 

The Runge-Lenz operator appears formally even in the anal- 
ysis of the dynamic symmetry of the nonrelativistic Kepler 
problem, but it plays a more substantial role in the analysis 
of the dynamic symmetry of the relativistic Coulomb prob- 
lem2' or of the motion of a free relativistic particle that satis- 
fies the Dirac equation.23 The presence in a medium of a 
distribution of a vector of type II (of orbital or spin origin) 
also requires introduction of axial toroidal moments. 

Consider now a medium with distributed moment 
fluxes described in the general case by the second-rank ten- 
sor (dyad) 

We represent (25) as a sum of a symmetric IIIJ' and anti- 
symmetric IIjy' parts. The latter is the dual of the polar 
vector II and can be described in analogy with the preceding 
analysis of the vector P  in electrodipole media. We introduce 
a transverse induction (axial) current 

-- 
jg) = rot PI, (r, t )  - rot ([LP]). (26) 

Obviously, substitution of this current in Eqs. (10) and 
( 1 I ) ,  just as substitution of j,, will give rise to a multipole 
family T g  . The elementary is in this case 

The ideal geometric picture of this dipole consists of local 
moments precessing on a circle (Fig. l c ) .  

§4. PHENOMENOLOGICAL THEORY OF AXIAL TOROIDAL 
ORDERING IN CRYSTALS 

Consider a system of itinerant electrons, in which a sec- 
ond-order phase transition produces a unique type of long- 
range order describable by an axial vector that is even with 
respect to time reversal. Before turning to actual microscop- 
ic models that explain the mechanisms of this ordering, let us 
dwell on some of its phenomenological consequences that 
involve only formal symmetry considerations. 

Among all magnetic symmetry classes, the following 43 
allow existencf of an axial vector that is even with respect to 
time reversaiR: 1) thirteen ordinary crystal classes that do 
not contain R at all: 

2)  the same classes supplemented by the operation R: 3) 
seventeen proper magnetic classes: 

ci (C,), Cz (Ci), Czh (C'), C2h (CZ) CZh (Cs) ? Cs (C1) 1 

Ck (C,), S, (Cz), CIh (CL) Clh (CPh) Clh  (S&) r S 6  (C3) r ( 29) 
c3,~ (C,), Cs (C3) C6h ( C 6 )  1 C6h r C6h (C3h) . 

We consider hereafter only systems that do not contain 
nontrivial translations, in which specification of the magnet- 
ic class is the necessary and sufficient condition that deter- 
mines the existence of a vector G .  As in the case of the polar 
vector T, all the foregoing classes can be easily obtained from 
the tables of irreducible representations of point groups. 

The establishment of an axial toroidal order in a crystal 
can be associated with relaxation of some collective electron 
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oscillation mode. We name this an axial toroidal mode, in 
analogy with the previously considered polar toroidal oscil- 
lation  mode^.'^ Assume that for some reason the frequency 
of a toroidal mode became anomalously small and a tenden- 
cy to establish a toroidal long-range order set in. 

It is convenient to analyze the general properties of such 
systems by the effective-Lagrangian method. Assuming that 
the symmetry group of the high-symmetry phase admits as a 
subgroup one of the axial magnetic groups listed above, we 
consider small low-frequency axial toroidal oscillations 
above the phase-transition point. In the absence of external 
field, the Lagrangian of the system takes the form 

U=aG2+pG'+y (rot G )  ', (32) 

where the coefficients M, , D ,  , a,  p, y > 0, and the system 
symmetry above the transition point is assumed for the sake 
of argument to be cubic. We have retained in the kinetic 
energy (3  1 ) a term of type (G)*, allowance for which will be 
justified presently. From symmetry consideration, we ex- 
press the interaction with the external field in the form 

ABA= (-hlc)  G  rot A, (33) 

where A is the vector potential, c the speed of light, and A a 
coefficient. Equation (33) can be represented also in the 
form of two equivalent expressions 

AFE=hG rot E ,  (35) 

where B = curl A, E = - A/c, and we used the Maxwell 
equation for the solenoidal component of the electric field E: 

rot E=-B/C. (36) 

It can be seen from (33) and (34) that the addition to 
the dynamic magnetic susceptibility AX(@) takes at low fre- 
quencies the form 

where R& = 2MG, is the natural frequency of the axial to- 
roidal oscillations. The vanishing of fl, corresponds to a 
second-order phase transition. Note that we are dealing 
throughout only with transverse axial toroidal oscillations, 
while the longitudinal ones do not interact with the electric 
and magnetic fields. In principle, axial toroidal modes could 
react to a current of magnetic charges (were they to exist), 
just as polar toroidal modes react to an ordinary electric 
current. l 4  

What is noteworthy is the nontrivial frequency depen- 
dence of AX(@) [the numerator is proportional to w2, just as 
in the case of polar toroidal oscillations, where the dynamic 
dielectric constant has an anomaly similar to (37), Ref. 241. 
Expression (37) is valid only at low frequencies, when the 
second term of (3 1 ) can be neglected. To obtain the correct 

asymptotic form at w)fl, it is necessary to take this term 
into account, and then the contribution Ax(w) vanishes at 
high frequencies, as it should. In the microscopic model 
($5) the second term becomes appreciable at frequencies 
w - Eg , where Eg is a characteristic one-electron energy of 
the order of the semiconductor band gap. 

Curious effects can take place in systems in which the 
axial toroidal ordering is accompanied by some other type of 
magnetic long-range order. For example, in the case of anti- 
ferromagnets with spin density waves (SDW) the appear- 
ance of axial toroidal order leads to "weak" ferromagne- 
tism. l 5  

In the case of antiferromagnets that contain localized 
moments besides itinerant electrons, the axial toroidal order 
also introduces in the Lagrangian of the system a term re- 
sponsible for the weak ferromagnetism of the local moments: 

where L is the antiferromagnetism vector, M the average 
magnetic moment of the cell, and 5 a coefficient. We note 
that in the model of Ref. 15 the entire effect is of purely 
exchange origin and does not contain a relativistic smallness. 
On the other hand, the usual Dzyaloshinskii-Moriya weak- 
ferromagnetism mechanism is connected with spin-orbit & 
magnetodipole i n t e r a~ t ion .~~  

If the axial toroidal moment G has an incommensurate 
structure below the phase-transition point, inhomogeneous 
spontaneous polarization sets in: 

P=-h rot G ,  (39 

as a direct result of writing the term representing the interac- 
tion with the electric field in the form (35). The transverse 
static dielectric constant diverges at the phase-transition 
point2' 

A E ~  ( q )  = 4 n h 2 q Z M ~ / Q ~ 2  (q) . (40) 

On a certain wave vector q = q,, obtained when the fre- 
quency of the natural transverse oscillations vanishes, we 
have a, (q,)-+O, OE, (q,)-+w (at q,S;O). 

Axial toroidal oscillations can interact with other col- 
lective excitations in crystals. Consider, for example, a ferro- 
magnet with local moments, in which axial toroidal ordering 
is not realized in the ground state. At the same time, the 
collective toroidal oscillations are intermixed with the ordi- 
nary magnons, since the effective Hamiltonian of the system 
contains terms of the type 

A U , ' ~ ) = - M H , , ,  ( G ) ,  (41 

where A ,  is a proportionality coefficient and M is the mag- 
netic moment. We write down the Bloch equation, with (41 ) 
and (42) taken into account, for small deviations m(r,t)  of 
the magnetic moment M from the equilibrium value M,: 
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Here yo = glel/2mc, where g is the gyromagnetic ratio and 
H6:' is the magnetic anisotropy contribution, which we shall 
not write down here explicitly (see Ref. 12). Putting 
6 = a, n, n, , where n is a unit vector in the direction of the 
wave vector q, mlMo, and g = 2, we obtain for the Fourier 
components of m, 

and use for G, an equations that follows from the variation 
of the effective Lagrangian with allowance for (33) and 
(34): 

The equation for the dispersion law of the magnon-toroidal 
oscillations is of the form 

o2 Dm=-- 
2Mc 

a - y  qZ,  

where w, ( 0 )  is the ferromagnetic-resonance frequency. 
The solutions of the cubic equation (48) in general form are 
too unwieldy to write down here. It is clear that the mixing of 
the toroidal oscillations with the magnons is a maximum at 
the quasimomenta qo determined from the approximate rela- 
tion 

TOM,  [Zqo2f UH (0) I ~ Q G  (qo) 
(50) 

5 2 ~ '  ( q O )  = ( a + y q O 2 )  2Mc .  

Entanglement of the magnons with axial toroidal oscil- 
lations is possible also in antiferromagnets at the proper par- 
ity of the antiferromagnetic structure. The generalization of 
Eqs. (46)-(49) to include antiferromagnets is obvious. 

Axial toroidal oscillations interact in a rather distinct 
manner with light; this interaction produces new polariton 
branches. In fact, the Lagrangian of the system in a magnetic 
field A(r, t)  is 

Varying (5 1 ) with respect to G and A we obtain a system of 
equations for the axial toroidal moment and the Maxwell 
equation: 

1 -- a 
G + ~  VZG - -rot A=O, 

2Mc c 

8, .. -- 4nh . 
A - rot rot A + -rot G=0. 

c2 C 

For the natural oscillation frequencies we get from (5  1 ) and 
(52) 

As q-0 Eq. (53) takes the simpler form 

and at q 2 ~ 2 > ~ ,  S1; we have the asymptotic relations 

Note that Eqs. (51)-(55) are valid only at low frequencies 
and small momenta (w, c, <E, in the microscopic model of 
$5). If w, c, -E, we must retain in the Lagrangian ( 3  1 ) the 
terms with higher derivatives of the order parameter G,  in 
analogy with the case of polar toroidal  oscillation^.^^ As a 
result we have at high energies and momenta the correct 
asymptotic forms 

Interesting nonlinear optical effects can take place in 
systems with axial toroidal ordering. Below the transition 
point, in particular, an anomalous contribution proportion- 
al to the electric field E is made to the components of the 
gyration tensor g,, : 

Note that the tensorg,, in systems with polar toroidal order 
can also acquire an anomalous contribution, but one propor- 
tional to the magnetic field H: 

The anomalous behavior of the electrooptic and magne- 
tooptic characteristics of crystals can be of help in the identi- 
fication of toroidal transitions. 

$5. MACROSCOPIC MODEL OF AXIAL TOROlDAL ORDERING 

Consider now a two-band model of a semiconductor or 
a semimetal with straight extrema at the point k, of the Bril- 
louin zone. Assume that the matrix element of the interband 
dipole transition is zero at the point k, (the wave functions 
of bands 1 and 2 have like parity but belong to different 
irreducible representations of the group of the wave vector 
k,) and the matrix element of the interband transition with 
respect to the orbital momentum differs from zero. A model 
with this symmetry was considered in Ref. 26, where it was 
shown that realization of electron-hole pairing with imagi- 
nary singlet order parameter gives rise to orbital ferromag- 
netism of the occupied-band electrons. We write the Hamil- 
tonian of the system in the k-p approximation in an external 
electromagnetic field2' 
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where m, and m, are the effective masses of the electrons and 
holes in bands 1 and 2; Eg is the band gap of the semiconduc- 
tor (E, < 0 for semimetals): A(r,t) and @(r,t) are the vec- 
tpr and scalar potentials of the electromagnetic field, and 
Aij (r,t) is the order parameter that describes the ordered 
state below the phase-transition point in a two-band model 
of the excitonic-dielectric type and has in the general case a 
tensor structure2': 

where ? is a unit matrix and 6 is a vector made up of Pauli 
matrices. It is assumed that the effective interaction constant 
&, is a maximum in the case of a transition into a state with 
A",, so that the corresponding transition temperature (or 
the critical value of the band gap E ,* in the semiconductor 
model at T = 0) is also a maximum, and the state with hS,, is 
energywise most favored. Explicit forms of the effective in- 
teraction c2nstants for all possible structures of the order 
parameter Aij can be found, e.g., in Ref. 28. 

The tensors 77;; in the one-electron part of the Hamilto- 
nian H are given by 

where E, is the s-band energy at the point k,, while P, is the 
momentum matrix element between the and i = 1,2 and the 
remote bands # 1,2 and m is the electron mass. We consider 
next the case when the tensor 77% is pure real (this occurs, 
for example, when the Bloch wave functions 9, k,(r) at the 
point k, can be chosen real). 

The system with Hamiltonian (59) is analyzed by the 
standard Green's function method, and we shall not dwell 
on the calculation technique (a  detailed exposition of the 
general calculation procedure in models of the excitonic-di- 
electric type can be found in Ref. 28). We note only the 
singularities connected with the reaction to an external mag- 
netic field, since it just these singularities which explain the 
type of electronic ordering that is produced in the system 
below the phase-transition point. We write down the effec- 
tive Lagrangian that describes the transition into the state 
with 9, k,(r) at T = 0 for a semiconductor model with a 
small band gap E, zE,*, where E,* is of the order of the 
exciton band energy. Accurate to lower terms relative to the 
parameter A",/Eg (1, when A", = (As, + A", )/2, we ob- 
tain in a weak and slowly varying transverse field, after labo- 
rious calculations, 

Denoting G = lI2ARe, we obtain an expression equivalent to 
the phenomenological Lagrangian (30). 

Thus, axial toroidal ordering of the singlet type is real- 
ized in a microscopic model with Hamiltonian (59) below 
the point of the transition to a state with A", . This allows us 
not only to illustrate the general phenomenological scheme 
considered above, but also to consider some more specific 
properties of the system. One of the most interesting, in our 
opinion, is the influence of collective excitations in a system 
with Ha,miltonian (59) on its optical and magnetooptical 
properties in the restructured phase. In the case of a ground 
state with A", the amplitude excitations are in fact longitu- 
dinal toroidal oscillations, while the phase excitations are 
magnons, inasmuch as at small deviations from equilibrium 
we have in such a system 

At2"t) = l A ( t )  1 exp ( i rp( t )  )=IAI ( l+icp) ,  
(63) 

Aneqt) =Ae+6 1 A ( t )  1, 

A1m4 ( t )  =A09 ( l ) ,  
(64) 

GG ( t )  mllzS 1 A ( t )  1 ,  GMmlizAocp ( t )  , 
where G( t )  is the density of the axial toroidal moment and 
M( t )  is the density of the orbital magnetic moment. Both 
oscillations make resonant contributions to the dielectric 
constant and the magnetic permeability of the system at the 
corresponding frequencies. 

An interesting situation can arise in the case of a non- 
commensurate structure AS,, (soliton lattice). In accor- 
dance with the general conclusions of $4, a spontaneous in- 
homogeneous transverse polarization P, ( r )  cc curl G( r )  is 
produced in the system. In the semimetal model with Hamil- 
tonian (59) (where the Fermi energy is E, = - Eg/2), in 
the region of the incommensurate structure2' at T 5  T,, 
where TG is the transition temperature, we have 

PL ( r )  = g  rot (I izA~e')  , 

ARea ( r )  =Ao  COS qor ,  
and q, is the wave vector of the superstructure (q,+O near 
the Lifshitz point). With decreasing temperature, one more 
transition can occur and produce an order parameter 
A', ( r )  against the background of A", ( r ) ,  with the spatial 
distribution of A;, ( r )  shifted by 77/2 relative to A;, ( r )  (for 
details see, e.g., Ref. 29) : 

Arm8 ( r )  =AIms  sin qor .  (66) 

As already noted in Ref. 26, the appearance of A;,,, ( r )  in an 
orbital-momentum-allowed interband transition (l,, # 0)  
means the onset of orbital magnetic ordering with a magnet- 
ic-moment density 

M (r) ml12Anna ( r )  . (67) 

It follows from (66) and (67) that in a system with a com- 
mensurate structure of the parameters A", and A', there is 
produced a unique ordering ("ferroelectromagnetic," a 
magnetic analog of ferroelectricity ) in the domain-wall re- 

350 Sov. Phys. JETP 63 (2), February 1986 Dubovik etal. 350 



FIG. 2. 

magnetic charges.I6 If the e/g ratio is constant for particles of all type, 
this scheme can be reduced by a dual transformation to the usual single- 
charge electrodynamics. 

''A similar result in the polar toroidal state was obtained in Ref. 14 for the 
magnetic susceptibility. 

gion, with P lM,  Plq,, Mlq,, if q,ll,,. If, however, q,ll,,, 
then P = 0 but M need not be zero, and we arrive at the case 
of orbital long-period ferromagnetism. 

Thus various types of electronic ordering (ferroelectric, 
ferromagnetic, or "ferroelectromagnetic") are produced in 
the region of domain walls of incommensurate structures 
with axial toroidal moments. A detailed analysis of the re- 
gions in which various types of structure are realized call for 
a special treatment outside the scope of the present article. 

$6. CONCLUSION 

The universality of the scheme of multipole expansions 
allows in principle to consider structures that are even more 
complicated than those discussed above. It would be of great 
interest, in particular, to study dipole toroidal media that 
feature sets of elementary toroidal dipoles {ti). While seem- 
ingly exotic, such a model might be useful for the study of 
phase transformations in various molecular crystals. 

Generally speaking, by using the scheme considered 
above, one can "construct" also media consisting of higher 
multipoles (the hierarchy of the multipole distributions is 
considered in Ref. 30). These include, in particular, systems 
with distributed fluxes of magnetic moments, characterized 
by a symmetric tensor n,',.)(r,t) (see $3). We regard, how- 
ever, the microscopic description and the discussion of such 
multipole media as premature. 

In this paper we have only casually touched upon the 
question of the longitudinal components M i l ,  P I , ,  and n i l .  
Without going into details, we indicate only a geometric il- 
lustration of the distributions of these quantities (Figs. 2a 
and 2b): a pair of oppositely directed magnetic or electric 
dipoles (Mil or P l l  ), and a pair of spins that precess about a 
common axis but in opposite directions (nil ). 

The authors thank Yu. V. Kopaev and I. S. Zheludev 
for a discussion of the results and for valuable remarks. One 
of us (V. M. D.) is greatly indebted to E. A. Tokachev and L. 
M. Tomil'chik for helpful consultations on the principles of 
electrodynamics with magnetic charges. 
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