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Many-valley superconductors are endowed with a number of special properties not shared by 
ordinary superconductors. In general, superconductivity is possible for either sign of the initial 
interaction constant; in addition, it is possible to have phase oscillations between various 
components of the order parameter (i.e., corresponding to the different valleys), similar to phase 
oscillation of the order parameters in Josephson junctions. Such systems can have one of several 
types of ground state: 1 ) a singlet BCS state; 2) a singlet state in which Cooper pairs belonging to 
different valleys have different phases, and 3 )  a triplet state. Corresponding to these three states, 
there are three types of phase oscillation, which are present over a wide range of interaction 
constants. Fermi-liquid effects are substantial in these oscillations even in the weak-coupling 
limit, and are found to change the results in both qualitative and quantitative ways. 

1. INTRODUCTION 

It is well known that a transition to the superconduct- 
ing state can be observed in many-valley semiconductor al- 
loys in the presence of a sufficiently high density of free carri- 
ers. The many-valley nature of the semiconductor is 
important, if only because it makes the corresponding den- 
sity of states at the Fermi surface larger than that of a single- 
valley semiconductor with the same density; therefore it is 
natural to expect that the effective interaction will be en- 
hanced, and with it the transition temperature. 

Although the many-valley property plays a decisive 
role in bringing about the superconducting state, it does not 
follow by any means that its role ends there. On the contrary, 
one can expect many-valley semiconductors to have other 
special properties not shared by ordinary semiconductors. 
The elucidation of some of these properties is the goal of the 
present work. 

We will make use of the simplest type of Bardeen-Coo- 
per-Schrieffer (BCS) model,, in which electron-electron in- 
teractions are taken into account only between electrons of 
equal but antiparallel spins and momenta (more precisely, 
quasimomenta), located in a narrow layer near the Fermi 
surface. The model Hamiltonian takes the form 

where {, is the energy of an electron with momentum p, 
measured from the Fermi energy, a,, (a; ) is the annihila- 
tion (creation) operator for an electron with momentum p 
and spin Y = T,J, and V is the volume. 

To proceed further, we must make some concrete as- 
sumptions about the character of the band structure. We will 
postulate conduction-electrons in a conduction band like 
that of SrTiO,. The conduction band of strontium titanate 
resembles that of the well-known semiconductor silicon, i.e., 
it consists of six valleys oriented in pairs along three mutual- 
ly-orthogonal directions. We then make the following as- 

sumptions about the interaction: 

A ,  if p and p' belong to the same valley 

A, if p and p' belong to opposite valleys (2)-  

A, in all other cases 

The symmetry of the problem requires that we introduce a 
minimum of three interaction constants which in general 
can differ both in magnitude and sign. Our simplification 
consists of replacing three functions by three constants. It 
follows from the symmetry of the problem that these con- 
stants are real. 

Let us turn to the formulation of the fundamental phys- 
ical ideas in this work. Many-valley superconductors, in 
contrast to the usual kind, are described by multi-compo- 
nent order parameters. In principle, it should be possible in 
such systems for the various components of the order param- 
eter, to have phase oscillations reminiscent of those seen in 
Josephson junctions. In order to make clear what we are 
saying, we consider the limit /A ,  1, /A, 1 < 1/2,1. Then in zero- 
order approximation (i.e., neglecting A, and A,), the phases 
of the various components of the order parameter (in differ- 
ent valleys) are arbitrary (just as the pair phases in two iden- 
tical superconductors not coupled by a tunneling transi- 
tion). By taking A,, A, into account, we fix these phase 
differences; when they deviate from their equilibrium values, 
currents will flow from valley to valley (similar to Josephson 
currents). Corresponding to these currents, we will observe 
oscillations which change the particle distributions in the 
valleys. Thus, the analogy with Josephson junctions points 
to the possibility of special oscillations in many-valley super- 
conductors. Such (homogeneous) oscillations will be the 
subject of the third section. 

In the second section, we will investigate equilibrium 
properties, or more accurately, the possible types of ordering 
as functions of the relations between the interaction con- 
stants. In section 4 we analyze the role of Fermi-liquid ef- 
fects in the oscillations. Finally, in the fifth section we dis- 
cuss the results. 
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2. THE VARIOUS ORDERED PHASES: SUPERCONDUCTIVITY 
WITH REPULSIVE INTERACTIONS 

We will limit ourselves to an investigation of the proper- 
ties of the order parameter at the transition point. The order 
parameter A (p)  is introduced in the usual way: 

where the angle brackets denote thermodynamic averaging. 
At the transition point T, we obtain from (3 )  

For the model we are using here, this expression is in fact a 
system of six linear algebraic equations for the six compo- 
nents of the order parameter A,, v = 1,2, ... ,6 (i.e., the val- 
ley index). We adopt the following notation: pairs of oppo- 
site valleys will be denoted by the indices 1,2 (first pair), 3,4 
(second pair) and 5 , 6  (third pair). We have then in place of 
(41, 

( I / L + g i )  Ai+gzAz+-gs (331-Ai+A5+A6)  =O, 

plus four more equations which are obtained from these by 
interchanging pairs of indices ( 1,2)*(3,4) and 
( 1,2)*(5,6). Here, we use the notation 

where y is the density of states at the Fermi surface per val- 
ley, and the g, are dimensionless coupling constants. 

The transition temperature Tc is expressed in terms of 
an effective interaction constant g, which must be negative, 
in the usual way: 

It is not hard to see that the symmetry of the system of equa- 
tions (5 )  leads to three types of solution: 

1) All A, equal: 

This is a BCS type of ground state, i.e., the Cooper pairs are 
singlet, and a common phase for all pairs. 

2)  There is also another type of ground state with sing- 
let pairs, in which the A, have equal values for opposite 
valleys; these values are connected by an additional relation: 

That is to say, the phases of Cooper pairs belonging to differ- 
ent pairs of opposing valleys are different. Relation ( 7 )  fixes 
the relative phases of the three different Cooper pairs. Here, 
the role ofg  is played by the quantity g, = g ,  + g2  - 2g,. 

3)  Finally, the last possibility is a triplet state 
(A,  = - A -, ). The quantities A, differ in sign for oppo- 
site valleys, but are otherwise arbitrary: 

The effective interaction constant is 

The solutions listed above exhaust all the possibilities, 
as follows if only from a comparison of the number of "de- 
grees of freedom" of the system (six complex order param- 
eters) and the number of solutions (also six). The latter 
follows from the fact that solution 2 is doubly degenerate 
(two arbitrary parameters) and solution 3 is triply degener- 
ate (three arbitrary parameters). 

Usually it is assumed that all theg, are negative (attrac- 
tive); then, naturally, the state realized is 1, which is the 
analog of the usual superconducting BCS state. For other 
choices of sign ofthe constantsg, , there will be a competition 
between state 1 and the states 2 and 3. Furthermore, even if 
all theg, are positive (i.e., the initial interaction is repulsive) 
so that the BCS state is impossible in principle, it is nonethe- 
less possible for superconductivity to appear, provided only 
that some one of the two effective constants g ,  or g, is nega- 
tive, i.e., that there is an effective attraction in the states with 
symmetries 2 o r  3. This is analogous to pairing with nonzero 
momenta in the isotropic case. Another point of view is set 
forth in the Conclusions. 

3. NATURAL OSCILLATIONS 

Let us turn to an investigation of the natural oscilla- 
tions. We will assume that the Cooper pairs are singlet 
(states 1 or 2), and limit ourselves to homogeneous oscilla- 
tions at zero temperature. In this case it is perhaps simplest 
to make use of the Anderson pseudospin approach, in which 
each pair of electron states ( p t ,  - p l )  there is associated 
with a spin-1/2 operator in the following way: 

With the help of these operators, we rewrite the Hamiltonian 
operator ( 1 ) in the form 

where we discard an inessential constant. The equations of 
motion 

idS/dt= [S, Ji] 

take the form 

Equation ( 3 )  for the order parameter now appears as fol- 
lows 

In Eqs. ( 11 ), the operators can be regarded as simple 
numbers; this is equivalent to the self-consistent-field ap- 
proximation, which, has been used successfully in the theory 
of superconductivity. As for the oscillations, we will consid- 
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er classical oscillations of the spin system, instead of trying 
to find the corresponding magnon spectrum. 

In order to determine the equilibrium parameters, we 
equate the time derivative in ( 11) to zero, from which we 
obtain 

where A,(p) is the equilibrium order parameter, which is 
determined with the help of ( 12) and ( 13). Here it is as- 
sumed that the modulus of the order parameter lAol is the 
same for all the valleys; this is certainly true for state 1, for 
which all components of the order parameter are the same 
(see (6) ). The equation for lAol takes the form 

U o  

I = - g j  d ~ ( g 2 + ~ ~ o 1 2 ) - t 1 2 .  (14) 
0 

There is also a solution for constant values of I A,/ for state 2, 
as is clear from (7).  In this case, A, (p)  can be chosen, e.g., 
in the following form 

where for lA,l we have equations of the type ( 14) with the 
replacement g-+gS. No other possibilities were investigated. 
As for state 3 with triplet pairing, we will not investigate it 
either since it is not amenable to the pseudospin approach. 

Let us investigate small departures from the equilibri- 
um position. The corresponding increments to the equilibri- 
um values we denote as follows: 

8'" (p) - increment to Aa ( p ) ,  S p  -to SP+,  (SP -to S,,. 
(16) 

After linearization, Eqs. ( 11 ) and ( 12) take the form 

. ~ S P  
[ A :  ( p ) S p + A D  ( p ) S P e ]  + &A"' ( p )  , 2 --- = 2gpsp  + - 

d l  E P  EP 

The second of these equations is a consequence of the con- 
stancy of the length of the spin vector. We seek solutions in 
the form 

A(') (p) =elw@ (A, ,e - '* t+A- ,e 'a t ) ,  

From the first equation of ( 17) we obtain 

Substituting ( 18) and ( 19) into the third equation of ( 17), 
we obtain 

E ( 4 E Z - o Z )  
" (20) 

( P ,  P ' )  =e-?"~~h ( p ,  p') ei%, . 

It is not difficult to analyze this equation by following the 
procedures used to analyze (4).  We hardly lose anything of 
importance if we first simplify (20) by discarding from un- 
der the summation sign the terms which contain f to first 
order, and which upon summing give only a small contribu- 
tion (zero for a constant density of states). Having done this, 
we obtain in place of (20) 

Let us investigate the simplest case-state 1, for which 
p, is a constant and 2 = A. In this case, the solutions can be 
of two types: 

In case (a )  we have oscillations of the modulus and in case 
(b) oscillations of the phase of the order parameter; in the 
lowest-order approximation these oscillations turn out thus 
to be independent. Let us first investigate the phase oscilla- 
tions A, = - A?, (we will study the modulus oscillations 
later). The system of equations for these oscillations coin- 
cides precisely with (5)  if in place of L we substitute the 
quantity L, , which is defined in the following way: 

Again there are three sets of solutions: 
A)  A, is independent of the valley number (a  condition 

similar to (6)  ). The equation for the frequency takes the 
form 

A comparison with ( 14) shows that there is a unique solu- 
tion to this equation: w = 0; This solution is connected as 
usual, with the degeneracy of the state with respect to the 
phase of the order parameter, and does not correspond to 
any oscillations. 

B )  The quantities A, are related by conditions of type 
(7).  The equation for the natural frequency 

has a solution for coupling constants in the interval 
g < g, < 0; for g, -0 we obtain w-2 I A I ,  while for g, -g we 

obtain w+O (the stability boundary for the initial state). In 
these limiting cases the frequency of the oscillations is easily 
calculated from (24). Thus, for g, +g (w (2 1 A 1 ) it equals 

For g, 4 (2 1 A 1 - w ( I A I ) we obtain the following expres- 
sion: 

C )  The quantities A, are subject to a condition of type 
(8).  The equation for the frequency takes the form 
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Here, we can repeat everything that was said concerning the 
previous case (substituting g, for g, ) . 

We note that in case (B)  there is a double degeneracy 
and in case (C)  a triple degeneracy. 

The equations for oscillations of the modulus of the or- 
der parameter are obtained by substituting L, for L, , where 

It is not difficult to show that these equations have no solu- 
tions. 

What is happening in the presence of such oscillations? 
It is not hard to show that oscillations oftype (B) are accom- 
panied by oscillations of the number of particles in each val- 
ley (synchronous for opposing valleys); of course, the total 
number of particles remains constant. For type ( C )  oscilla- 
tions, there occurs a redistribution of spins in pairs of oppos- 
ing valleys: the spin of each valley (zero in the ground state) 
varies out of phase with the spin of its opposite valley. 

4. ROLE OF FERMl LIQUID EFFECTS 

Up to now, interactions have been taken into account 
only to the extent that they lead to the creation of Cooper 
pairs. It would seem that strictly Fermi-liquid effects, which 
are also present in the normal state, would in the case of 
weak interactions lead only to small corrections to our re- 
sults. It turns out, however, that for oscillations whose fre- 
quency is close to 2)A,l, these corrections become substan- 
tial; they will be the topic of discussion in this section. 

In order to take into account the Fermi-liquid correc- 
tions, it is necessary to generalize the model as follows: in the 
original equation ( 11) we must assume that the energy of a 
normal electron 6, depends on the distribution function, as 
is usual in the Landau theory of Fermi  liquid^.^ We limit 
ourselves to the case of weak interactions; in lowest-order 
perturbation theory, the lowest perturbation-theory contri- 
butions to the electron self-energy part give the desired cor- 
rection 6 i'' to the single particle energy 6, in the normal 
state: 

Here, as usual,4 the solid line corresponds to the electron 
Green's function and the dashed line to the interaction. For 
our purposes it is sufficient to include in (28) the zero-order 
(non-interacting) Green's function of the electron. Even in 
the simplest graphs (28), there will in general appear a dif- 
ferent set of interaction constants than in the Cooper chan- 
nel. 

Because we want to analyze this question in principle, 
we limit ourselves to the simplest variant. Namely, we will 
assume that we can use the same set of constants given in 
(2),  i.e., A ,  corresponds to interactions between particles 
without changes in the valley number, A, to interactions for 
transitions between opposing valleys, and A, to interactions 
involving transitions to the other valleys. In this case, the 
first graph in (28) makes only a constant (i.e., independent 

of oscillations) contribution, because its magnitude is deter- 
mined by the total density. The contribution of the second 
graph can be written in the form 

where n,., is the distribution function for electrons with giv- 
en spin and quasimomentum. 

We are interested in the change produced in 6, i n  the 
course of the oscillations (we will call this deviation 6, ). It 
turns out that we can connect gp with the variable up intro- 
duced earlier [Eq. (1611; actually, a, is related to the 
change in the sum (n,, + n - ,, , and the problem is symmet- 
ric in the states (p t ) and( - p l ) . We can therefore, write 

Let us linearize equation ( 11 ) including the increment 
6, (30). The first of these equations then takes the form 

The remaining equations coincide with the second and third 
equations in (17); naturally, we must also solve equation 
(30) along with them. We note that the quantity [, which 
appears in these equations includes the equilibrium Fermi- 
liquid correction (28), which in the model under investiga- 
tion here is not significant because it reduces simply to a 
renormalization of the chemical potential. As before, we 
look for a solution in the form ( 18 ), and write for 5, 

(6, = 6 *, because of the reality condition). We then pro- 
ceed as before: from (3 1 ) we obtain 

Taking this relation into account in the other equations, we 
obtain 

As we did earlier in (21), we discard in (34) terms 
linear in 6, ; in addition, we limit ourselves to oscillations in 
state 1; in this case, we can use the equations 
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+20 l  A It, 
E (4E2-02) 1 

" (35) 

The first equation in (35) is the equation for oscillations of 
the order-parameter modulus. It coincides with the analo- 
gous equation derived in the previous section, and has like- 
wise no solution. 

The last two equations are connected with oscillations 
of the phase of the order parameter and of the Fermi liquid 
increment to the single-particle energy <,, . These equations 
are analyzed in analogy with the previous section. Again we 
have the same set of solutions, with the same symmetry of g, 
and A, - A?, . Let us investigate these solutions. 

A) The quantities A, and g(,, do not depend on the 
valley index. In this case we obtain Eq. (23) again, since the 
Fermi-liquid correction does not enter here. 

B) The quantities A, and g, are coupled by conditions 
of the type (7).  The equation for the natural frequency takes 
the form 

The last term in (36) is the sought-after contribution due to 
Fermi-liquid effects. It is not hard to see that the Fermi- 
liquid increment is significant for frequencies close to 2(A( 
(because of the weakness of the interaction). In order to 
convince oneself of this, it is sufficient to write the expres- 
sions for the natural frequency in limiting cases. In the low- 
frequency limit we obtain the expression 

For w-21 Al we have 

C)  The quantity A, (along with g, ) is subject to a 
condition of the type (8) (oscillations of the triplet incre- 
ment to the order parameter). We obtain the equation along 
with all the conclusions of example (B) if we make every- 
where the substitution g, -g, . 

In cases (B) and (C) we have twofold and threefold 
degeneracy, as before. 

Let us compare expressions (381, (39) with (25), (26). 
The limit wg2lAl occurs when (g, - g)  <g2; the limit 
w = 2 /A / is reached when g, - g>g2. Both limiting expres- 
sions for the natural frequencies contain only small contri- 

butions from Fermi-liquid effects so long as g, - g( /g /  . For 
g, - g k Jgl, the correction is appreciable, as is clear from a 
comparison of (26) and (39). 

At first glance, it may seem strange that in the weak- 
interaction situation Fermi-liquid effects turn out to be not 
small. They are important in this case in a narrow frequency 
range (but over a wide range of coupling constantsg, ); it is 
this which manifests the weakness of the interaction. As is 
well-known in the theory of Fermi liquids, even a weak inter- 
action leads to qualitatively new effects (the appearance of 
zero sound for repulsive interactions). In our case, what is 
qualitatively new in the solution (39) compared to (26) is 
that the solution exists for either sign of the coupling con- 
stant g,, in contrast to the solution (26). 

The question of the physical meaning of such oscilla- 
tions is discussed in Refs. 5 and 6; however, apparently there 
is as yet no clear answer to this question. By allowing in the 
calculation for the influence of Fermi-liquid effects, we hope 
to shed some light on this situation. In the caseg, < 0, natu- 
ral oscillations are possible, as we have seen, even when Fer- 
mi-liquid effects are not taken into account; the latter turn 
out to be important only in a narrow frequency interval. 
Apparently, these oscillations can be interpreted as exciton- 
like excitations in a Cooper pair system; such excitations are 
more reminiscent of Wannier-Mott excitons than of Frenkel 
excitons. This interpretation is close to the point of view of 
Bardasis and Schrieffer;' they, however, proposed it for the 
caseg, > 0. I t  seems to use that the case g, > 0 must be infer- 
preted in a different way: the appearance of a solution for 
g, > 0 is essentially bound up with Fermi-liquid effects, in 
the absence of which no such solution exists. For this reason, 
one can suppose that this is an analog of zero sound in a 
Fermi liquid; one might expect that in such a system, the 
zero-sound type of oscillations can exist for w%2/A) (with 
wavelength smaller than the dimensions of a Cooper pair), 
and that this mode goes over into the oscillations obtained 
here in the infinite-wavelength limit. 

To conclude this section, we note the following facts. 
Our equations (35) were written down in a form which no- 
where contains formally the specific many-valley character- 
istics. Therefore they can also be used for the isotropic case, 
thereby taking into account interactions with nonzero angu- 
lar momentum. For this reason, our results for many-valley 
superconductors coincide with those of Refs. 5 and 6 for 
isotropic superconductors; in our case, however, we must 
speak of excitations whose symmetry differs from that of the 
Cooper pairs in the ground state, rather than interactions 
with nonzero angular momentum. 

We emphasize that Eq. (35) was obtained by taking 
explicit account of Fermi-liquid effects; only after doing this 
do we obtain agreement with the results derived, e.g., in Ref. 
6 by a diagrammatic method."t would, however, be diffi- 
cult to reveal the role of these effects by diagrammatic meth- 
ods. 

5. CONCLUSION 

The meaning of the various kinds of orderings obtained 
'in this work can be clarified by viewing them in another way: 
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through the Anderson pseudospin formalism. Let us begin 
with the BCS results. In  this theory, the ground state is made 
up of singlet Cooper pairs with a common phase. This corre- 
sponds to all the pseudospins pointing in the same direction 
(in a plane perpendicular to the z-axis), i.e., independent of 
the valley index. This "ferromagnetic" state is energetically 
advantageous ifA < 0 (electrons attracting one another). If, 
however, A > 0 (repulsive interaction of electrons), the "fer- 
romagnetic" ordering (the BCS state) cannot occur; how- 
ever, it is still possible to have an "antiferromagnetic" type 
of ordering. This actually takes place in states 2 and 3. Actu- 
ally, in state 2 all the spins in a given valley, along with those 
in its opposing valley, are parallel (in the xy-plane), while 
for different pairs of valleys they are directed at an angle of 
120" and sum up to zero; in pseudospin language this is an 
"antiferromagnetic" type of state. In state 3, the projections 
of the pseudospins in opposing valleys are antiparallel. 

Apparently, it was Kondo8 who first called attention to 
the possibility of superconductivity for either sign of the in- 
terband transition constants J; he investigated a two-band 
model, in which T, was determined by an effective coupling 
constant depending in the general case on J *. In our problem 
of equivalent valleys, it is possible to clarify somewhat the 
meaning of this result: superconductivity is possible for both 
signs of the interaction (the constants A,, A,, A,) provided 
only that there is an effective attraction at some "harmonic". 
However, for valleys separated in momentum space, the 
Kondo mechanism8 for enhanced superconductivity is 
"switched off' (in a model where only the interactions 
between electrons with opposite momenta is taken into ac- 
count)-the Cooper pairs cannot move from one valley to 
another (because of conservation of momentum). This is 
how the order parameter was chosen in Refs. 8 and 9. 

Consider now the possibility of exciting and detecting 
these oscillations. I t  appears that one way to excite oscilla- 
tions is to apply a sufficiently rapid uniaxial stress. I t  is well 
known that if such a stress is applied along the (100) axis, 
the corresponding pair of valleys shifts away from the others 
in energy. If the time of application of the stress is long com- 
pared to a period of a natural oscillation, then to first ap- 
proximation the system will be in equilibrium at each instant 
of time (the adiabatic approximation); the next approxima- 
tion, as usual, gives rise to excitation of natural oscillations. 

I t  is interesting to study oscillations of finite wave- 
length. Apparently, such oscillations will be accompanied 
by currents; if this is so, then they can be excited and ob- 
served by electromagnetic methods. 

Finally, we note that in this work we have not included 
impurity scattering. Apparently, our results remain valid as 
long as the condition I A 1 r,, , I  is fulfilled, where T, is the 
electron mean free time between intervalley scatterings. 
When it collides with an impurity, an electron can either 
scatter within its "own" valley or transfer to another valley; 
these processes have different scattering times. The most ef- 
fective scattering is the one with a small momentum transfer 
po (intravalley scattering). This is to be expected (for scat- 
tering by charged impurities) in view of the strong Coulomb 
interaction at small momenta -po (intervalley scattering 
involves a momentum transfer - l/a, where a is the lattice 

period). This assertion is confirmed in experiments, that is 
r, )T, where r is the mean free time between intravalley 
scatterings.'' I t  is interesting that riu depends strongly on 
what sort of impurity is present in the semiconductor, and 
can vary by several orders of magnitude. Thus, when As 
atoms are added to Ge, the time r,, has a value of =: 107, or -- 3 x 10-'"ec for n,, -- 1019 c m 3 .  If we use Sb as a donor 
instead, ri, increases sharply to z 10, r ,  or 6 X lo-" sec ( f i /  
7, ~ 0 . 1  K )  for n,, =. 10" cm-"Ref. 11 ). It is also neces- 
sary to keep in mind that for semiconductors one encounters 
critical temperatures T, - 10 K (Refs. 12, 13). Thus, the 
question of whether or not the condition / A  I T ,  ) 1 is fulfilled 
in some specific semiconductor (and what impurity to use to 
achieve it) is apparently one which needs more experimental 
study. It may turn out to be the case that for well-known 
semiconductors (e.g., Ge)  the time r,, will reach saturation 
as a function of impurity density, while T, and I A I grow as 
the density increases. 

A few comments on the Coulomb interaction: an inves- 
tigation of its effects on these oscillations reveals that it can 
modify only the type ( A )  oscillations, which will then oscil- 
late at the well-known plasma frequency. The frequencies of 
oscillation of types ( B )  and ( C )  are unaffected, since in 
these oscillations the charge density does not change; elec- 
trons are only redistributed among the valleys. 

Before the completion of this work, the authors were 
apprised of the work of LegetL9 Legett investigated two- 
band superconductivity with two order parameters, and 
showed that in a two-band system oscillations in the relative 
phases of the two condensates were possible. He also dis- 
cussed in detail the physical meaning of these oscillations. 
We point out that the primary difference between our work 
and his is that Legett's approach cannot be directly applied 
to the case of valleys separated in momentum space, for the 
same reason that was discussed earlier in connection with 
Kondo's work.' In our work, we have found types of ground 
state which are different from Legett's; this clarifies the role 
of Fermi-liquid interactions, which turn out to be important 
even in the limit of weak coupling. 

The authors are grateful to V. L. Ginzburg, B. I. Ivlev, 
A. I. Larkin, and M. B. Entin for discussing this work, and 
also Yu. V. Kopaev and E. G. Maksimova for informing us 
of Legett's work. One of the authors (V. A. Borisyuk) would 
like to thank V. I. Ponomarev for continuing and thorough 
discussions. 
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