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The method for solution of the equation of elasticity of an anisotropic infinite body developed by 
I. M. Lifshitz and L. N. Rozentsveig [Zh. Eksp. Teor. Fiz. 17,783 ( 1947) ] is used to obtain an 
expression for the energy of the interaction of impurity centers in cubic crystals in the case of 
arbitrary relationships between the elastic moduli. This expression is used to explain qualitatively 
the appearance of long-range correlations of Jahn-Teller centers on increase in the concentration 
of these centers in a regular diamagnetic crystal. It is shown that an analysis made within the 
framework of the theory of elasticity corresponds exactly to the quantum theory of the interaction 
of impurity centers via acoustic phonons with a wave vector q # O  if the retardation effects are 
ignored. Moreover, in the case of isotropic media this approach provides a compact general 
expression for the operator of the interaction when the retardation effects and the exchange 
between real acoustic phonons are taken into account. 

1. INTRODUCTION 

The problem of the interaction of impurity centers via 
the deformation field in a crystal lattice is of very general 
interest. Several solutions of this problem have been pro- 
posed on the assumption that the medium is isotropic. The 
interaction of point defects in the case of some special posi- 
tions in a diamagnetic crystal is considered in Ref. 1 and the 
elastic interaction of spins in a paramagnet is discussed in 
Ref. 2; the diagonal part of the interaction of two-level 
centers in glasses is studied in Ref. 3. A detailed derivation of 
the expression for the interaction energy of point defects in 
an isotropic medium is given by Kosevich4 in the case when 
an allowance for local rotations of defects relative to one 
another is unimportant. 

We shall obtain an expression for the energy of the in- 
teraction of impurity centers of general type in cubic crystals 
in the case of arbitrary relationships between elastic moduli 
and we shall allow for local rotation of impurity centers rela- 
tive to one another. We shall then use the expressions ob- 
tained in this way to analyze the effects of self-localization of 
cooperative distortions of Jahn-Teller (JT) centers and to 
estimate quantitatively the probabilities of transfer of an ex- 
citation energy smaller than the limiting energy of phonons 
between different ions in a crystal lattice. 

We shall also carry out another task. Two different ap- 
proaches have been used in the published literature to study 
the interaction between localized centers via the lattice: 
within the framework of the theory of elasticity and via the 
phonon field. The interaction of spins via the phonon field 
was estimated for the first time in Ref. 5. A solution of this 
problem was given in Ref. 6 on the assumption that the lon- 
gitudinal and transverse velocities of sound are identical. A 
generalization of this result was made in Ref. 7 and the retar- 
dation effects were considered in greater detail than in Ref. 
6. We shall show that the results of a calculation of the inter- 
action energy carried out within the framework of the theory 
of elasticity are exactly the same as those obtained from the 
theory of the indirect interaction of acoustic phonons in 

Refs. 6 and 7 if we ignore the retardation effects." In this 
sense the result obtained from the theory of elasticity is valid 
also at short distances between impurities. 

2. IMPURITY-CENTERS INTERACTION ENERGY OPERATOR 
DERIVED ALLOWING FOR THEIR LOCAL ROTATIONS 

The energy of an impuhity center i in the deforMation 
field of a crystal lattice will be described by 

where u, are components of the displacement vector. The 
actual form of the operators depends on the nature of the 
centers. In the case of ions with partly filled 3d or 4f shells 
this is a combination of irreducible tensors found by expand- 
ing the crystal field operator as a series in relative displace- 
ments. In the case of two-level centers in glasses the quanti- 
ties gap are linear combinations of the Pauli matrices3 In 
the case of JT centers with tunneling or in the case of parae- 
lectric centers these quantities can be expressed in terms of 
the effective operators allowing for the vibronic reduction 
factors. The quantities uaB are related to the force density 
vector by4 

To avoid misunderstanding, we must point out that a 
formula analogous to Eq. (2 )  is obtained in Ref. 4 in the 
quasistatic limit after averaging over all the microscopic 
states of an impurity center (when uap = up, ). In our treat- 
ment the orientation of impurity centers relative to the lat- 
tice appears as an additional dynamic variable, so that we 
have gap #as,. Although the total angular momentum of a 
sample vanishes, the system of impurity centers may exhibit 
local rotation in different directions, so that the state of the 
system becomes more stable. 

The components of the displacement vector u, will be 
written in the form 
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Then, neglecting the local change in the elastic moduli and 
assuming that the medium is unbounded, we find that the 
energy of the interaction of impurity centers with one an- 
other, obtained from Eq. ( 1 ), is given by 

where Gay is the static Green tensor satisfying the familiar 
equation4 

where as/laSrs are the components of the tensor of the elastic 
moduli. 

The antisymmetric components of aaS can generally be 
expressedin terms of the angular momentum operators8 

where ePpa is a totally antisymmetric tensor and [L, , V,, ] is 
a commutator of the component of the total orbital momen- 
tum of an impurity center with the crystal field operator. 
The relationship (6) is satisfied by arbitrary media. Substi- 
tuting this relationship in Eq. (4) ,  we find that some of the 
interaction operators associated with local rotations of im- 
purity centers relative to one another are given by 

It follows from considerations of homogeneity in con- 
nection with the nature of Eq. (5) [see note on p. 44 in Ref. 
91 and directly from Eq. (4)  that HQ a l/r;', and, therefore, 
it resembles the dipole-dipole interaction. However, in con- 
trast to this interaction, the effect in question occurs also 
between centrally symmetric impurity centers when there 
are no dipole moments. It should be pointed out that in the 
case of the interaction via local rotations all the matrix ele- 
ments H $ vanish within the limits of degenerate states of 
centers i orj. This follows directly from Eq. (7) and it is due 
to the fact that the crystal field is the same for degenerate 
states and that local rotation is insensitive to the variations 
of this field. Correlation of local rotations occurs only if the 
states of each of the centers correspond to different eigenval- 
ues of the crystal field operator. 

3. GREEN TENSOR FOR CUBIC CRYSTALS 

A general solution of an equation of the (5)  type is ob- 
tained in Ref. 10 in an integral form for arbitrary anisotropic 
media. Here, in applying the solution of Lifshitz and Ro- 
zentsveig to specific calculations it is convenient to represent 
it in a somewhat different form. After the differentiation 
operations in Eqs. (4)  and (8 ) ,  the integrals are found and 
the expressions for H become simple analytic equations. 

Following Lifshitz and Rozent~veig,'~ we shall use the 
integral transformation 

to reduce the differential equation (5)  to a system of nine 
algebraic equations. The solution of this system for cubic 
media is 

G,(p)  = [ bZp'+b (a+b+d)  (p ,Z+pZ2)p2 

+d(2a+ 2 b f  d )p ,2pZa] lAl ,  (10) 

G,,(P)  =G, (P)  =- (a+b)pxpu[dpz2+bp211A,,  

where 

and the following notation is used: 

A = b Z ( a + 2 b + d ) ,  B=bd(2a+2b+d) ,  C = d 2 ( 3 a f  3 b f  d ) .  

The Fourier transforms of the Green function Gyy (p), 
G,, ( p) , Gyz ( p 1, and Gxz ( p ) are obtained from those given 
above by cyclic transposition of the indices x ,  y, and z. It is 
clear from Eqs. ( 10) and ( 1 1  ) that Gay (p) are homogen- 
eous functions and the degree of homogeneity is 2. Conse- 
quently, when the inverse transformation is carried out in 
spherical coordinates, the S Dirac function is obtained and 
the triple integrals reduce to single integrals. For example, in 
the case of Gzz and Gxy , we obtain 

Zn 

where 

(14) 
and the following notation is used: 

When the angles 8, and p, that define the direction of the 
vector rQ relative to the selected coordinate system vanish, 
i.e., when the points i and j are located on the z axis, Eq. 
(13a) reduces to that obtained by Lifshitz and Rozents- 
veig." In another special case defined by d(a and d46, the 
integrals of Eq. (13) are found in their general form. The 
result obtained 

is again identical with that given by Lifshitz and Rozents- 
veig." if d = 0, then the Green tensor of weakly anisotropic 
cubic media ( 15) reduces to the familiar4 form applicable to 
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isotropic media. Substituting Eq. ( 13) into Eqs. ( 14) and 
(81, we can obtain the explicit form of the interaction opera- 
tor for arbitrary elastic moduli. 

4. INTERACTION OF IMPURITY CENTERS IN AN ISOTROPIC 
MEDIUM 

The case of weak anisotropy is encountered quite fre- 
quently. For example, in perovskite-type or rocksalt crystals 
the values ofd / a  and d / b  are z 0.1. This case is also interest- 
ing because calculations carried out on the basis of theory of 
elasticity for d = 0 yield results which can be compared di- 
rectly with those of quantum-mechanical calculations re- 
ported in Refs. 6 and 7. If d = 0, then without allowance for 
local rotations, we find that 

where for the sake of brevity the indices of the modulus and 
Cartesian coordinates rV are omitted. Equation ( 16) gener- 
alizes a series of special expressions obtained earlier. The 
longitudinal and transverse velocities of sound are 
u, = [ ( a  + 2b)/p] 'I2 and v, = ( b  /p) ' I 2 ,  respectively. As- 
suming, as in Ref. 6, that these velocities are equal, we find 
that after elementary transformations Eq. ( 16) reduces2' to 
that obtained by Aminov and Kochelaev if the retardation 
effects are ignored. Our result differs only in respect of the 
sign of some of the terms from that expression obtained in 
Ref. 7 where an allowance is made for the fact that v ,  #v, 
and a specific orientation of a pair (xu = yU = 0) is consid- 
ered. For the same special case ofxV = yU = 0 our result is in 
full agreement with that of Ref. 1, where it was obtained 
using the theory of elasticity but by a more cumbersome 
method. If the operators oap in Eq. ( 16) are simplified only 
to their diagonal parts, we obtain the result of Ref. 3. 

The second part of the Hamiltonian (4)  due to local 
rotations is 

To some extent this expression reminds us of the usual 
dipole-dipole interaction. Only the shear modulus occurs in 
the expression. The minus sign is to be expected because the 
energy of the interaction is minimal when the local rotations 
of different centers are opposite. 

5. INTERACTION OF IMPURITY CENTERS IU C U W  
CRYSTALS 

The general expression for the interaction energy is 
quite cumbersome. For this reason we shall consider only 
two special cases. 

Ions with twofold orbital degeneracy located along four- 

fold axes. The operator ( 1 ) is usually employed in the form13 

H==oai(e,+e,,+e,,) +0e'(2e,,-e,-e,~)/2+~%,~(e,-e,)/2, 

(18) 
where a,, a,, and a, are the effective operators in the space 
of an orbital doublet. In particular, in the case of ions located 
along the z axis, we have3' 

where 
2dcbz 

@I$---  " [ de 
A' (2A+3B/4) 

BZ [ A  ( A  + B/4)  1 y1 BZ 

In the particular cased = 0, Eqs. ( 19a)-( 19c) reduce to the 
familiar expressions of Ref. 1. An attempt made in Ref. 1 to 
find the form ofHE., for cubic media in a dimensional analy- 
sis was not successful. Our result has nothing in common 
with the predictions of Ref. 1. On the other hand, in the case 
of a weak cubic anisotropy Eqs. (19a)-(19c) reduce to ex- 
pressions obtained on the basis of the Lifshitz-RozentsveKg 
tensor of Eq. ( 15). 

Ions with threefold orbital degeneracy. In this case the 
operator ( 18) is supplemented by the expression 

where u4, a,, and a, are the operators in the space of the 
effective orbital momentum L = 1 (Ref. 13 ) . When the in- 
teracting ions are located along the z axis, Eq. ( 19) must be 
supplemented by 

where 
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If d = 0, then Eqs. (2 1 a )  and (2  1 b)  reduce to the expression 
familiar for isotropic media. In the case of cubic media, these 
expressions differ from that given in Ref. 1. The terms allow- 
ing for local rotations are not included because of the simpli- 
city of the general expression (7).  

6. SOME MANIFESTATIONS OF THE INTERACTION VIA THE 
DEFORMATION FIELD IN THE CASE OF JAHN-TELLER 
CENTERS 

By way of example, we shall consider some manifesta- 
tions of the interaction of orbitally degenerate ions with a 
partly filled 3d shell in cubic crystals. A direct substitution 
of the elastic moduli into Eqs. ( 19) and (21 ) using the em- 
pirical values of the deformation potential parameters shows 
that the interaction via the deformation field predominates 
over the interaction of electrostatic multipoles. For example, 
in the case of the Cu2+('E, ) at distances rU z 8A for 
Cll = A x ,  = 13.45, C4, =Axyxy  = 3.81, and C12 = A ,  
= 5.27 (all in units of 10" dyn/cm2), both for a KZnF, 
crystal'' and for a, =:20 000 cm-' (Ref. 13), we have HE. 
,- 125 cm-'. The interaction of electric quadrupoles at 

these distances does not exceed 10 cm- I. Such a strong inter- 
action indicates that in some cases it should be allowed for 
even before solution of the vibronic problemI4 for each of the 
centers. 

Let us assume that, for example, we are dealing with a 
pair of octahedrally coordinated Cu2+ ions separated by dis- 
tances ru - 8 A along the fourfold axis. Averaging the inter- 
action operator (19) over electron variables and allowing 
for the corrections due to the anharmonicity, we can repre- 
sent the adiabatic potential of a pair in the form 

V=P, COS 39if f ~ ?  Cos 3q2+K8 (COS ( P ~ + C O S  9 2 )  

+Kee cos 9, cos qz+I~, ,  sin 91 sin 92. (22) 

Here, 0, and 0, are the anharmonicity parameters amount- 
ing to 300 cm- ' (Ref. 13 ); the angles q,, and p2 have their 
usual meaningI3; K g ,  KO,,  and K,, are quantities which rep- 
resent the interaction of the centers. It follows from the re- 
sults of specific calculations given in Table I that KO, > 0, 
K,, <0, and K,, > IKEE I .  The quantity K, is governed by 
two coupling constants: the constant describing the interac- 
tion between one center and a totally symmetric vibration 
and that representing the interaction of another center with 
a tetragonal mode. Therefore, this quantity differs from 
crystal to crystal also in respect of the sign. 

It is known that without allowance for the interaction 
the adiabatic potential minima in the range0 < 0 correspond 
to dilatation of each of the octahedra along one of the four- 
fold axes (q,  = 0, 2n-/3, 47~/3). Impurity centers may have 

TABLE I. Values of elastic moduli ( 10" dyn/cm2) and of constants @, 

the tetragonal symmetry. An analysis of the adiabatic poten- 
tial (22) as a function of the angles p, and p, readily shows 
that if the interaction is included, then self-localized distor- 
tions of a new type may appear. The principal minima of 
(22) in the range K,, >KO correspond to two equivalent 
configurations of a "bioctahedron" of the orthorhombic 
symmetry. Naturally, such self-localized pairs with a new 
symmetry can be detected experimentally only when the fre- 
quency of observation is higher than the frequency of tunnel- 
ing between equivalent minima of the adiabatic potential of 
Eq. (22) .4' Similar behavior has recently been reported for a 
tetragonal K2ZnF4:Cu2+ crystal with centers exhibiting the 
JT pse~doeffect.'~ A series of experiments involving an in- 
crease in the concentration of magnetic ions was carried out 
and the ESR method applied at T <  77 K revealed the ap- 
pearance of centers with correlated distortions at distances 
exceeding the radius of the superexchange interaction. In 
this example the interaction via the deformation field result- 
ed in "freezing" of the tunneling and self-localization of stat- 
ic distortions at each of the centers. 

7. CONCLUDING REMARKS 

These examples of a strong manifestation of the interac- 
tion via the deformation field do not exhaust all the possibili- 
ties. The interaction plays an important role in the transfer 
of energy quanta in the acoustic range5' between various im- 
purity centers. For example, the Stark splitting of rare-earth 
ions is frequently =: 10-100 cm-'. A direct calculation 
shows that in this case the probabilities of energy transfer 
over distances =: 10 A are higher than because of the quadru- 
pole-quadruple interactions. This result is readily under- 
stood on the basis of the following qualitative consider- 
ations. It is clear from Eqs. (7)  and ( 17) that the energy of 
the interaction due to local rotations depends weakly on the 
values of the deformation potential parameters; it is gov- 
erned by the splitting and elastic properties of the medium. 
In more rigorous calculations we then face the problem of 
validity of tackling energy transfer within the framework of 
the theory of elasticity. As illustrated above in the example 
of an isotropic medium, an analysis based on the theory of 
elasticity corresponds to just an allowance for the interac- 
tion via acoustic phonons and complete neglect of the retar- 
dation effects. On the other hand, it is quite clear that an 
analysis based on the theory of elasticity suggests a method 
for compact formulation of complete quantum-mechanical 
expressions allowing for the retardation effects.' In particu- 
lar, the complete operator representing the interaction via 
acoustic phonons in an isotropic medium can be represented 

of some crystals. 
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as follows: 

We can see that, in the limit (w,, r / u ) 4 ,  Eq. (24) becomes 
exactly identical with the classical expression (15) corre- 
sponding tod = 0. It should be stressed that an explicit sepa- 
ration of the operations of differentiation in ~4 (23) not 
only leads to a compact expression, but it also simplifies 
greatly the quantum-mechanical calculations of the Green 
functions. In other words, the classical (elastic field) and 
quantum-mechanical (phonon field) approaches comple- 
ment one another. 

"We are stressing this circumstance because there have been several later 
treatments based on the theory of the indirect interaction via a phonon 
field in which this passage to the limit is not carried out. The results of 
such in~esti~ation~shouid apparently be regarded as incorrect. 

*'Some inaccuracies in Ea. (5)  of Ref. 6 were vointed out in Refs. 11 and 
12. In the old edition4 and in Ref. 2 the plus sign should be replaced with 
minus in the case of the Green tensor inside the parentheses. 

3'It is assumed here that A > 0 and B > - A.  In the opposite case the inte- 
grals of Eq. ( 13) should be recalculated. We are not aware of any cases 
when these conditions are not obeyed in the case of real crystals. 

4'It should be pointed out that this self-localization of distortions of new 
symmetry may not occur if the kinetic energy of ion motion is greater 
than p and K,, . 

5'The treatment in Ref. 17 deals with the transfer of an energy A in the 
optical range via a phonon field but it suffers from some misunderstand- 
ings. If the phonon energy is ho,, (A, the interaction ceases to depend 

on the phonon dispersion law and vanishes. In the case of centers occu- 
pying nonequivalent positions in a unit cell this can be demonstrated by 
using the relationship describing the orthogonality of the polarization 
vectors B, 121 $" = 6&6,, , where the index s labels the vibration 
branches, and k and I are the numbers used to label various sites within 
one unit cell. 
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