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Using Keldysh's diagram technique we show that it is possible to write the Hamiltonian of a 
normal Fermi system of strongly interacting particles in the statistical limit in the form of a 
functional of the quasi-particle occupation numbers. Landau's Fermi-liquid theory is 
generalized to the case of arbitrary temperatures. We show that a low-temperature specific- 
heat singularity may occur at a certain density. 

1. Landau's phenomenological Fermi-liquid theory1*' is 
based on the existence of quasi-particles for which the damp- 
ing is small compared to their energy. In the microscopic 

Landau's quasi-particles are interpreted as the 
poles of the single-particle Green function lying close to the 
real axis in the complex frequency plane. The smallness of 
the quasi-particle damping is caused by the scattering sup- 
pression due to the Pauli principle and by the presence of a 
jump in the Fermi-particle momentum distribution function 
in the ground state. When the temperature increases the 
jump in the distribution function vanishes and the quasi- 
particle damping increases. The Landau theory therefore de- 
scribes only weakly excited states of the Fermi system and 
holds at temperatures which are low compared to the Fermi 
energy E,. Landau's Fermi-liquid theory was generalized in 
Refs. 5 to 9 to finite temperatures under the assumption that 
the single-particle Green function of the system has a pole in 
the complex momentum plane rather than in the complex 
frequency plane. 

It was shown in Ref. 10 that not only the energy of 
weakly excited states but the whole spectrum of a normal 
Fermi-system with strong interactions can be expressed in 
the form of a functional of the quasi-particle distribution 
function, the existence of the quasi-particles not being con- 
nected with the presence or absence of poles in the Green 
functions. In contrast to the Landau theory, the quasi-parti- 
cle lifetime then turns out to be infinite, and the states of the 
system with different numbers of quasi-particles are found to 
be stationary. This fact enables us to generalize Landau's 
Fermi-liquid theory to the case of arbitrary temperatures. 
One should note that the possibility to write the free energy 
(but not the spectrum of the system) in the form of a func- 
tional of the quasi-particle distribution function was estab- 
lished before in Refs. 11 to 15. 

The possibility to express the energy as a functional of 
the occupation numbers can b%most clearly seen when one 
attempts to fin$ anAoper%or S which changes the system 
Familotian H = H, + H, to a possibly simplerA form 
E = 2HS - I .  Formally one can choose the operator S such 
that E will coFmute with the Hamiltonian of non-interact- 
ing particles H,. It has not been possible to overcome the 
difficulties arising when one tries to perform the calculations 
based on these considerations. The ~ a i n  obstacle is clearly 
the degeneracy of the spectrum of H,. However, the diffi- 
culty disappears if we assume the system to be normal. This 

assumption means, in particular, that the spectrum of a sys- 
tem of N particles is continuous for any fixed N when the 
volume is infinite. Thanks to the presence of Mdller op^era- 
tors it is possiblejn that case to number the spectrum ofHby 
the spectrum of H,. This procedure is carried out in the pres- 
ent paper using Keldysh's diagram technique.I6 Ifs result 
reduces to the diagonalization of the Hamiltonian H and to 
expressing it as a non-linear functional of the momentum- 
density operators rip = &: L i p .  

We note that it is far from trivial that it is possible to 
apply the diagram technique to excited system states which 
are multiply degenerate. This possiblity is produced by the 
properties of a normal Fermi-system in the thermodynamic 
limit, and first and foremost by the continuity of its energy 
spectrum. We emphasize that in the present paper we are 
dealing with the determination of the true spectrum of the 
Hamiltonian of a system which lies on the physical sheet of 
the resolvent and not with the poles of the analytical con- 
tinuation of the Green functions which are well known to lie 
on the non-physical sheet. The latter determine quasi-sta- 
tionary states with energies close to the energies of station- 
ary states, provided that the damping is sufficiently small. 

The quasi-particle operators &p turn out to be statisti- 
cally independent with respect to the Gibbs distribution. 
Thanks to this the free energy of a normal Fermi system can 
be obtained as the solution of an equation in functionals of 
first order derivatives which in this paper is solved "explicit- 
ly" using a trivial generalization of the well known Cauchy 
method for solving analogous equations in the finite-dimen- 
sional case. As a result we express the free energy as a func- 
tional of the Firmi distribution function E (p) of a perfect gas 
of quasi-particles which has an energy spectrum ~ ( p )  which 
is determined by the functional derivative of the mean ener- 
gy of the system. The entropy is expressed in terms of the 
quasi-particle distribution function Z(p) by the same for- 
mula as in the case of a perfect gas. Since the total number of 
particles is equal to the number of quasi-particles in the sys- 
tem, it follows immediately that the Fermi momentum of the 
quasi-particle distribution is connected at zero temperature 
with the system density in the same way as for a perfect gas. 
This approach is attractive because it yields these results 
without resorting to additional considerations (such as a 
maximum entropy principle). 

The thermodynamic quantities can thus be determined 
completely once the quasi-particle energy ~ ( p )  is known. 
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One should note that, notwithstanding the simplicity in 
principle of the thermodynamic formulae, the evaluation of 
the quasi-particle energy spectrum ~ ( p )  for a system with 
strong interactions is in the general case a problem which is 
not less complicated than the evaluation of the Green func- 
tions by the usual temperature diagram te~hnique .~  

In the pressent paper we study the thermodynamic 
characteristics of a system at low temperatures and show 
that if the quasi-particle energy ~ ( p )  as function of the mo- 
menta changes discontinuously, there occurs for a certain 
particle-number density a singularity of the form 
C, zaT(lnT12 in the specific heat Cy as a function of the 
temperature T. The reason for this behavior of the specific 
heat is the instability of the Fermi jump in the quasi-particle 
distribution which leads to complete restructuring rather 
than smoothing of the jump when the temperature is in- 
creased. We emphasize that this result is obtained for a fer- 
mion system with strong interactions; in particular, the coef- 
ficient a in the temperature dependence of the specific heat is 
determined solely by Landau's Fermi-liquid quasi-particle 
interaction function f (p,pf ) . 

It is of interest to compare the quasi-particles consid- 
ered here with the quasi-particles whose spectrum is deter- 
mined by the poles of the Green functions. The existence of 
poles lying close to the real axis in the complex frequency 
plane means that the state ri,+ I$,), where 2; is a particle 
creation operator and I$,) the exact ground state of the sys- 
tem, is almost stationary. Hence it follows that in Landau's 
theory when the interaction is switched on not only does the 
ground state I$;')) of the perfect particle gas change to the 
state I$o) , but the state 2; \$A0') change also to the state 
Z, ci,+ I qb0) ( Z ,  is a renormalization constant). In that sense 
one can state that in the Landau theory a state with a single 
excited particle is represented with high probability by a 
state with a single quasi-particle. In contrast, the state 
&,f (q0) with a single quasi-particle considered in the pres- 
ent paper is a superposition of excited many-particle states of 
the system. Only at temperatures close to zero, when the 
degeneracy of the energy levels E is small, is the quasi-parti- 
cle energy the same as the Landau quasi-particle energy de- 
termined by the real part of the mass operator. 

2. We consider a system of N particles, in a volume V, 
described by the Hamiltonian 

+ $ (pip, 1 D.1 ~ , ' ~ ~ ) ~ p . t ~ p , * d ~ ~ ~ d ~ , ~ = B ~ + A ~ ,  
PIP~PI' PI' 

(1) 
where 2; and 2, are the Fermi creation and annihilation 
operators for a particle in a statep = (p,a) with momentum 
p and spin (T,E~(P) = p2/2m is the kinetic energy of a parti- 
cle, and 

is the interaction potential energy for a pair of particles. 
Let I$) be any eigenstate of the Hamiltonian 

We define for each stationary state I+) the Green function 

iG(t, t', p) =($IT(ip(t)(iP+(t') (I)), (4)  

where T is the chronological ordering ~ p e r a t o r , ~  while the 
a, ( t )  are operators in the Heisenberg representation. Since 
the Hamiltonian commutes with the total momentum opera- 
tor Pzne ca? choose the base 1 $) to be common to the opera- 
tors H and P, and the Green function (4) is diagonal in the 
momentum representation. Changing to the interaction rep- 
resentation we write 

iG (t, t', p) =($(" 1 I-' (t,, to) ~(ii" (t) 6:"' (t') 5 (t,, to) I $("> 

where t, = max(t,t '),to < 0 is some initial time, 
1. 

I ~ ) = I ( o ,  S(t, , t ,)= Texp [- j dtfil(t) 1, (6) 
t ,  

T, is the ordering operator along a contour c going from to to 
t, (the branch designated in what follows by a minus sign) 
and back from t, to to (the branch designated by a plus 
sign) .I6." The Green function of (6)  can be represented by a 
sum of d i ag ra rn~ '~? '~  

containing the free Green function 

iG(O) (t, t', p) 

={O,(t-t') [l-npl--Oc(t'-t) np}exp[-ieo(p) (t-t') ] (8)  

and the correlation functions 

gCk) (PI . - Pkr P*' . . . Pk') 
L 

depicted by two lines connecting each of two, three, . . . 
Green functions. Here 0, ( t  - t ' ) = 1 ifthe time t ' precedes t 
on the contour c, and 8, ( t  - t ') = 0 in the opposite case, and 
n, = ($("l2; 4 ($"') are the occupation numbers for the 
state 1 $"'). The correlation functions g ' k )  are defined using 
the single-time k-particle density matrices 

f(k) (pi . . . pk, P,' . . . pkr) =($(o) I . . .&Lap k.. . (ip,l $(o)), 

k=l, 2, . . . , N 

through the relations 
k 

f ' * ' (~*  . Pk. P*' . . . ~ , ' ) = ~ t . , . k  { I IP)  (pi, pi1) 
I-I 

* 
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where 

is the antisymmetrization operator, and PU the operator 
which interchanges a pair of particles, acting on the un- 
primed variables pi and p, . 

We shall assume that all correlation functions are con- 
tinuous functions of the momenta in the statistical limit as 
N- w , V-+ w , and N /V = p = constant. This assumption 
means that there is no discrete spectrum, and in particular 
that there are no bound states of two, three, . . . particles. It 
means also that there is no long-range order and, hence, it 
excludes from our considerations crystalline, superfluid, 
and superconducting systems. The continuity of the correla- 
tion functions in the momentum representation is destroyed 
also near second-order phase transition points when the spa- 
tial correlation length tends to infinity. The continuity of the 
correlation functions causes the contribution from (9)  to 
(7)  to tend to zero in the statistical limit as to+ - W ,  ac- 
cording to the Rieman-Lebesque theorem, in view of the os- 
cillating behavior of (9) .  

As a result the Green function (5)  reduces in the statis- 
tical limit to an average over the state of a perfect gas with 
some integrable particle momentum distribution function 
n (p). One can write this average as the limit of averages over 
states of a perfect gas with a finite number of particles N in a 
volume VasN-W, V-W, and N / V = p .  Let 

be states of a perfect gas determined by the occupation 
numbers n, = 1 or 0 of the single-particle states; W = VAp/ 
( 2 . ~ 1 ~  is the number of such levels corresponding to a given 
value of spin and belonging to a volume Ap in momentum 
space; N(p,Ap) is the number of particles in those levels. We 
consider also a sequence of states (12) for which the ratio 
N(p,Ap)/ W tends to a limit n (p). For sufficiently large N, 
V, Itol we then understand the function $'O' to mean the cor- 
responding function ( 12) and put n, = 1 or 0 in (8).  

It was shown in Ref. 20 that when one averages over a 
mixed state there are secular divergences in the expansion of 
the Green function. The presence of these divergences pre- 
cludes the use of perturbation theory and the ability to 
"number" the Green function by the occupation numbers 
n, . We show that when one averages over the pure state ( 12) 
the divergences do not occur. To do that it is sufficient to 
consider the "dangeous" diagrams ,containing irreducible 
insertions in the Green function2': 

Since n, ( 1 - n, ) = 0 we see that the terms in ( 13) which 
diverge as to+ - cc , and which contain an integration over 
the interior times t2,t, with infinite limits along the contour 

c, vanish. On the other hand, in the remaining non-divergent 
terms the integration over t2,t3 along the contour c takes 
place over a finite interval limited by the values of the exteri- 
or times tl,t4. As a result, perturbation theory turns out to be 
applicable in the case considered by us and we can express 
the exact Green function of the pure state as a function of the 
occupation numbers n, of a state of a perfect fermion gas. 
We can t h ~ s  put in (5)  to = - W ,  insert a factor 
A 

S - ' ( w ,t, )S( w ,t, ) which is identically equal to unity, and 
use Keldysh's diagram technique16 to evaluate the Green 
function G. We note that owing to the degeneracy of the 
energy levels E 'O' of the excited states of a fermion system 
without interactions the S-matrix changes the state $''' with 
energy E ' O '  into a superposition of states belonging to the 
same energy level E 'O' of the unperturbed Hamiltonian. This 
fact prevents us from "removing" the operator 
A 

S - ' ( cc , - w ) from under the averaging sign as can be done 
for the ground state.4 

The energy spectrum E can be expressed in the usual 
way in terms of the exact Green function4 in the form 

or in the form, which contains an integral over a parameter: 

Here iG - + (w,p) is the Fourier transform of the Green func- 
tion (4)  with respect to t - t ': 

iG-+(t, t', p) =-(qlci,+(t')&, (t) I$>, 

in which the time t lies on the "minus" branch and the time t ' 
on the "plus" branch of the contour c, while,% is a parameter 
varying from 0 to 1 and introduced through the substitution 
U+A U in (2).  Expressions ( 14), ( 15 ) enable us to con- 
struct an expansion of the energy spectrum in a perturba- 
tion-theory series in powers of the interaction or the density 
and to "number" it by the occupation numbers n, of the 
states of a perfect Fermi gas. In the limit as V+oc this ex- 
pansion determines the energy per unit volume in the form of 
a functional of the continuous distribution density n ( p )  
which satisfies the condition 

We consider, for instance, the expansion of the energy 
in powers of the density: 

The volume dependence of the coefficients of the expansion 
can be determined, with an accuracy which is sufficient for 
us, from the following considerations. If we fix Nand let V 
tend to w we must obtain the spectrum of an N-particle 
scattering problem. As this spectrum is the same as the spec- 
trum of the unperturbed problem, the coefficients f '"' must 
tend to zero as V--+ w . On the other hand, as N-t w , V+ cc , 
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N / V  = p the energy must be proportional to V. To the main 
order of magnitude, therefore 

( V )  
fP ,... P k = f  (pi  . . .pa) lVk-', 

where f (p,,. . ,pk ) is independent of the volume. When tak- 
ing the limit V-+ w , N / V = p we assume that it is sufficient 
to consider the configurations n, which have a density n (p), 
i.e., such for which the number of points falling in a small 
volume A with center at the pointp is equal to n (p) A. Clear- 
ly, 

whence we obtain Eq. ( 16). Taking the limit we get the limit- 
ing spectrum in the form of a functional of the momentum 
density n ( p )  : 

The expansion coefficients f (p,.  . .pk ) can be determined by 
a diagram method and can be expressed in terms of the 
MBller operators of k-particle problems (k  = 2, 3, . . .). 

3. The discussions given here mean that it is possible to 
reduce the total Hamiltonian to the form 

which is diagonal in the rep~esentation of the occupation 
numbers n, . The unitarity ofS(0, co ) is a consequence of the 
fact that the Fermi system is normal. Formula (19) is sym- 
bolic, i.e., indicatesAa means of evaluati~g approximations 
for the operator E[N, 1. (The operator H is not defined for 
N = co and neither are its eigenfunctions. The usual, some- 
what slipshod terminology which we use in what follows 
presupposes that N is very large but finite.) 

Introducing the quasi-particle operators 

&,=8(0, - m ) d p S + ( O ,  - m ) ,  

we find from ( 19) that 

We evaluate now the partition function: 

exp ( - P S Z )  = exp (PVP)  = Sp exp (-fir) 

E ,  = E / V  is the energy per unit volume, p the chemical 
potential, P the pressure, 0 the thermodynamic potential. 
We add to the Hamiltonian a term with an auxiliary external 
field p (p )  which is momentum-dependent and we consider 
instead of (22) the more general expression: 

which changes into (22) when t = 1, e, = 0. 
We consider the set of n, configurations having a den- 

sity as defined in section 2 and determine the average value 
of the functional @(n),  putting 

= lim exp (-i3 V P )  
v-c- 

Replacing in (23) p (p )  by p (p )  + q ( p )  and differentiat- 
ing we get 

Replacing now in (23) the function p (p )  by 
p (p) f EV (p + 6x (p) and differentiating with respect to E 
and 6 we get 

which after division by V and taking the limit gives 

It now follows from (27) and (25) that 

Equation (28) holds only almost everywhere (for instance, 
it is incorrect when p = q) .  It is clear that the discussion 
given here can be extended and we are led to the conclusion 
that our quasi-particles (20) are statistically independent in 
the sense of the definition (24). 

The statistical independence of n (p) gives us a basis to 
consider that class l? of functionals @(n)  for which 
@(n)  = @(i i ) .  For instance, functionals such as 

belong to that class. We assume that E ;[n (p) ] belongs to 
that class. This assumption enables us, by differentiating 
(23) with respect to t and using (28), to obtain for P an 
equation in functional derivatives: 
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d 8P tions g (x )  = 0 and A ,  ( x )  >0, . . ., A, (x)  20, where g and A - - ~ ( t ,  q) = E ~ /  [ - (2n)'-]  
at 6 ~  ( P )  (30) are given. 

If the minimum is reached at the point X lying inside the 
with the initial condition admissible domain, i.e., if Ai (X)  > 0, i = 1, . . .,k the limita- 

1  tions are unimportant and the minimum is looked for, using 
' ( 0 7  q ,  = a j & ln[i+e-*'p) l'po[q(p) I .  ( 3  ) Lagrangian multipliers, as the minimum of the function 

F - P ~  
This problem is the continuum analog of the Cauchy prob- Assume, however, that the minimum is reached at a 
lem: point X lying on the boundary: Ai (2 )  = 0, i = 1,. . ., I, I<k. 

d In that case we must have at the point X F ( X  + 6 )  )F(X) for 
- P ( t , x ) = D ( y ) ,  P(O,x)=Po(x) ,  at any sufficiently small vector S satisfying the condition 

ap g(X + 6 )  = 0, Ai (X + S)  20, i = 1, . . .,I. This requirement 
x  . . . ,  y= ( p i . .  . y,,), y{ = -, (32) is equivalent to the inequality (S,VF) 20, if (S,VAi ) > 0, 

ax{ i - 1,. . .,I which means . . 

and its solution can be written down using  characteristic^'^ 
n VF (5) =c, Val+ . . . +ckVh+pVg,  ci>O, 

i = l  ' Jy i  
v (F-clhi-. . .-~hhh-pg) =O. 

where y (6) = P i  while the parameters 
(41 

6 = (<,. . . l,, ) can be expressed in terms of the coordinates A final conclusion: there must exist a p and non-nega- 
x from the equation tivec,,. . .,c, such that for them3 is a stationary (minimum) 

point of the function 
i = i , .  . . , n. (34) 

k 

Accordingly the solution of Eq. (30) has the form 

P ( t ,  cp)=-tEVf[ii(p) I 

(35) 
where 

while ~ ' ( p )  is determined from the equation 

q ( p ) = e l ( p ) -  (2n)'t8E~'[fi(p)1/6ii(p), (37) 

i - I  

Transferring this discrete formulation to the contin- 
uum case and taking into account that our limitations are 
n (p) 20, 1 - n (p) > we get the following problem: We need 
a constant p and also non-negative functions A ,  (p) , A, (p) 
with the limitation A ,  (p)R,(p) = 0, such that the functional 

which is the continuum analog of (34). Putting in t = 1 and reaches a minimum. 
p(p)  = 0 (35) and (37) we get the final expression for the Calculating the variation of r leads to the problem of 
thermodynamic potential and the entropy of the system: finding functions O(n (p)  < 1 and p ,  A ,, A, such that 

a = - ~ v = ~ ~ [ n ( p )  ]+i3-1S, (38) E' ( P ,  n )  = E  ( P ,  n )  -p=hl ( p )  -hz ( P )  , 

s=-v El% { ~ ( P ) ~ ~ ~ P ) + I ~ - % P )  I I ~ [ ~ - - Z ( P )  I ) .  E ( p ,  n )  --= ( 2 n )  36Ev/6n ( p ) .  (44) 
(I 

(39) We note that in the region w +, where n (p) = 1 the 
functions A,(p) = 0, A,(p) > 0 and hence the function 

where E (p)  is the Fermi quasi-particle distribution function 
E I  < in this region. 

(36), and the quasi-particle energy is given by the equation Introducing similarly a region w - : 

e l ( p )  = ( 2 n ) ' 6 E ~ ' [ E ( p )  1/6i i (p) .  (40) n  ( p )  =0, h2 ( P )  =O, e f ( p ) > O  

4. In what follows we shall show that for rather general 
forms of functionals of the energy E ( n )  a singularity may 
occur in the specific heat at a temperature which tends to 
zero (and a certain fixed density). We start with the problem 
of finding the quasi-particle distribution function at zero 
temperature. This problem reduces to finding the minimum 
of E ( n  ) under the limitations ( 16). 

The corresponding general discrete problem is the fol- 
lowing: find minF (x) ,  x = (x,  . . . x ,  ) under the condi- 

and a region w,: 

we are led to the following conclusion: the solution of our 
problem is a function O<ii(p)<l such that the regions 
w+ (E(p) = 1) and w- (ii(p) = 0 )  are the same as the re- 
gions a'+ (E1(p,n) < 0 )  and w' (E1(p,n) > 0).  In the region 
complementary to o + + w - the function E' (p,n ) vanishes. 

In what follows we only consider the isotropic case. We 
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under the condition - 
1 exp ( v  ( r )  / E )  1 

P=Z! 1 + e x p ( v ( r ) / c )  
r 2 d r = -  J r ~ d r - - ~  (49) 

z2 0 

FIG. 1.  Momentum dependence of the quasi-particle energy: 1: 
z = f ( r , r i ) ; 2 : z = i j - ? ; 3 : z = ~ - 3 .  

also assume that ~ ( p , n  ) has the form 

where r = I and that 1 ) f (r,n ) >O and continuous; 2)  there 
exists a constant k such that 

does not change when we vary n (p) solely in the region rak;  
3 if ii ( r )  = 1 when r<k the function f (r,ii) has the form 
shown in the figure. 

These requirements can be greatly relaxed, as they are a 
compromise between the consideration of an actual model 
and an excessively general one. Assumption 2 is a generaliza- 
tion of the condition f (p,q) = 0, I p 1 > k, Iq 1 > k, if 

and assumption 3 is that there exists a parabola z = ij - ? 
touching the curvez = f (r,ii) in a point ro and intersecting it 
only once. To simplify the calculations in what follows we 
consider the simplest case k <l (see the figure). 

One shows easily that for any ~ g i j  the solution of our 
extremum problem is a Fermi jump n, ( r )  = 1 when r(6, 
and n, ( r )  = 0 when r > 6,. Indeed, by virtue of assumption 
3 the function 

vs=-2me1(p) =q-72-f ( r ,  n , ) ,  q=2my (47) 

is non-negative in the region where n, ( r )  = 1 and negative 
there where n, ( r )  = 0. 

In what follows we consider the limiting situation 
7 = ij. In that case the corresponding functions nT and vT 
are denoted by ii and V .  We denote by 

E 

the density corresponding to 7. To find the distribution 
function 

exp ( v  ( P I  l e )  2m 
n ( P )  = 1+exp ( v  (p) / E )  ' B 

for a given density p and a non-zero temperature E we must 
solve Eq. (40) 

v ( p )  =q+ o-rz-j (r ,  n)  (48) 

(here the addition a to the chemical potential ij is deter- 
mined by specifying &). We have 

n ( r )  =ii ( r )  + exp ( v  ( r )  18) -ii(r) 
I + exp ( v  ( r )  / E )  

By virtue of assumption 2 we can write 

1 
v (r) =O+V ( r )  + f  (r, a)  - f  ( r ,  n - 

I + exp ( v  ( r )  / E )  

1 r,2 drl 
=o+o ( r )  + ,j f ( r ,  r,, a )  

l+exp ( v  ( r , )  / E )  
. (51) 

n o  

Here f (r,r,,E))O is the second variation of E (n ) .  
It is clear that only the vicinities of the points ro and 

are important for finding the asymptotic behavior of v as 
E+O. However, when r = ro + s(s(ro) we have 

In what follows we shall show that a is positive. We may thus 
assume that v(rO.+ s))41/(ro)s2, since f (ro,n) > 0. 

We take now 0 <a < 1/3. In that case 

exp ( v  ( r )  / E )  >exp ( v N ( r O )  ~ ' ~ 1 2 ~ )  

when Is1 and, hence, Eq. (5 1 ), apart from exponential 
corrections, is 

ro+ca 

1 r i2f  ( r ,  r l ,  f i )  
v ( r )  =O+V ( r )  + J drl i+enp(v (r , )  / E )  

-o+o ( r )  + y  ( r ) ,  " ,,-,a 
where 

y ( r )  =n-'f (r ,  ro, f i )  r,2V7 

We shall find below the point ro + h where 
vl(ro + h) = Oandshow that Ih 1 -E( - ln~) .Us ing  that we 
can rewrite (55) in the form 
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where D(E) is bounded and non-vanishing as E-0. Using 
(53) and (54) we now get 

where 

We now must determine 7 and a from (57) and (49). 
To do this we must first find the points in which 
vl(rO + h )  = v(f + I) = 0. From (53) we get 

Moreover, from ( 53 ) and ( 54) we have 

We now rewrite (49) in the form 

Evaluating J2 and J, we restrict ourselves to contribu- 
tions from the vicinities of ro and the (one-sided) vicinities 
off + I. From the expression 

exp ( - V I E )  rZ dr 
I, = I- + J exp(-v /e )r2  dr 

1 + exp ( - V I E )  1 + exp ( - V / E )  
=gi+gz (61) 

(1.) 

we get 

exp (- v /e )  dr - =ro8y, ge=O(e) .  (62) 
r,-ea 

1 + exp (- v/e) 

Similarly J2 = O(E). Assuming that ~ 7 - '  = O(E) (as will 
be checked below) we find now from Eq. (60) 

whence, using ( 58 ) we get 

Assuming 7 = &'I2tc and using (64) we now find from (57) 
that 

( a+J )  x=-'I2 In e-ln x+ln D, (65) 

where 

We note finally that (see (57),(66)) 

We now study the calculation of the specific heat C, .  
We must evaluate dEV/d& under the condition (49). How- 
ever, 

0. 

From (49) it follows that 
m 

We can therefore rewrite (68) in the form 
rn 

-=- 1 
dru ( r )  @ ( r )  + - dru(r)  (r4-E2?) 

de n2 ,I,,, 3 t 2 ( E + 1 ,  

= J,'+JZf+J,', 

where we have put 

Y ( r )  --f +?f (r, 3) -%zr2, 

exp ( v / e )  
~ ( ~ 1 -  ($-+) [[I + e x p ( v / ~ )  l a  . 

However, 

Y ( r o )  =Y' ( ro)  =Y ( E )  =O, 

as follows easily from the equations 

Moreover, from the estimate Y (ro) =;u + f 7 and (67) it fol- 
lows that 

whence 
.D 

exp[-v  (ro+h) /E-V" (ro+h) s2/2E] 
X 

[ 1 + exp ( - V I E )  l 2  9 (74) 

v  (ro+h) =v ( ro )  +i/2h2v" ( rO)  =o+fT (75) 

and, hence, (see (67))  

exp[-v  (ro+h) (76) 

Taking now (72) and (59) into account we find that 

];<E2 E, Ill E .  (77) 

Finally, when r z s  + f + I and sgro  we have 
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1 
+O (P)) - J d s v  ( s )  [ v ' ( F ~ l ) s  + ~ " ( a + l ) s ~ ]  

- m  2e 

- exp (v' (g+ l )  s l e )  
V t s ) - [ ~ + e x p ( v ' ( E + ~ ) s / e ) ~ 2 .  (79) 

It is clear that the first term is of order 
a( - 1nE)lm = aE21n2&, where a > 0, while the second term 
is much smaller than the first since v(s) is an even function. 
Combined with (77) this finally gives us 

25 I =C,=,, (In 8)'. 
de 0 

As should have been expected the main contribution to 
the specific heat C ,  comes from the edge { of the Fermi 
jump. The specific heat is thus discontinuous and tends to 
zero as E--+O in agreement with Nernst's theorem, but its 
derivative with respect to the temperature becomes infinite 
at a temperature which tends to zero. 

The authors express their deep gratitude to A. M. Dyu- 
gaev and V. L. Pokrovskii for discussions of this work and 
useful hints. 
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