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The spectrum, damping, and interaction of the major modes of macroscopic surface oscillations 
at an interface (either atom-smooth or atom-rough) between solid helium and He I1 are 
investigated with allowance for surface second sound and surface dissipation. The conditions are 
found for the existence of weakly damped second-sound surface waves on the interfaces of He I1 
with solid helium and with a perfect crystalline dielectric. It is shown that if both the'surface and 
bulk thermal excitations are in the hydrodynamic-oscillation regime the second-sound surface 
wave is a weakly inhomogeneous bulk second-sound wave in one of the contacting phases. It is 
pointed out that the surface second sound is a two-dimensional gas of surface thermal excitations 
only when the surface and bulk excitations are respectively in the hydrodynamic and ballistic 
oscillation regimes. The interaction and mutual transformation of Rayleigh and crystallization 
waves on an atom-rough interface are analyzed with allowance for the effective surface mass that 
leads to the acoustic character of the crystallization-wave spectrum in the high-frequency region. 
The damping of the crystallization wave is investigated with allowance for the effective surface 
mass and for the surface dissipative coefficients. The contribution of the thermal crystallization 
waves having an acoustic spectrum to the surface tension of an atom-rough solid helium-He I1 
interface is found. 

The interface between solid and superfluid 4He is an 
unusual object, since it can be regarded below 1.2 K as either 
an atom-smooth or an atom-rough surface. The difference 
between the microscopic structures of the two types of sur- 
face leads to a difference between the basic types of macro- 
scopic surface oscillations of the interface. At low surface- 
oscillation amplitude the atom-smooth face remains stable 
to recrystallization so that the lowest frequencies on such 
faces are possessed by oscillations in the Rayleigh-Stonely 
wave that propagates along the solid-liquid in te r fa~e .~  On an 
atom-rough surface there exist two types of low-frequency 
oscillations: a weakly damped crystallization-melting 
~ a v e ' . ~ , ~  and a Rayleigh wave that propagates along the free 
surface of the solid h e l i ~ m . ~ . ' ~  

The quanta of the aforementioned surface waves are 
elementary excitations of the corresponding boundary and 
contribute to the surface energy, entropy, "normal density," 
and others. Since bulk second sound can propagate in solid 
helium below 1 K (Ref. 11 ), one can posit in this tempera- 
ture region the existence of weakly damped surface second 
sound on the solid helium-He I1 interface. Just as in the case 
of a free surface of pure He I1 (Ref. 12), on the interface 
considered the surface second sound can comprise a secon- 
dary wave in a gas surface excitations, accompanied by tem- 
perature-temperature oscillations at a practically immobile 
boundary. The present paper is devoted to calculation, in the 
hydrodynamic approximation, of the damping and interac- 
tion of the major modes of surface oscillations with account 
taken of the surface second sound and of the surface dissipa- 
tion on both types of an hcp solid-helium crystal." Attention 
is called to the fact that the developed theory of surface sec- 
ond sound on atom-smooth faces of solid helium is applica- 
ble also to the case of the corresponding boundary (free or 
with He 11) of a perfect diaectric crystal, in which condi- 

tions for propagation of bulk second sound are realized 
(e. g., LiF and NaF, Ref. 13). An experimental study of 
surface second sound both in solid helium and in other die- 
lectrics would yield additional information on the thermo- 
dynamic and kinetic properties of the boundary. 

ANALYSIS OF BOUNDARY CONDITIONS AND BULK 
EQUATIONS OF MOTION 

The spectrum, damping, and interaction of the surface 
oscillations are obtained by solving the bulk equations of 
motion for the first second in both media, with boundary 
conditions imposed on the mass flux, momentum (and qua- 
simomentum), entropy and energy, as well as the condition 
that the phases be in thermodynamic equilibrium (on atom- 
rough faces). The boundary conditions for the bulk equa- 
tions must take into account the transport of the surface 
entropy, momentum, etc., i. e., allowance must be made for 
the surface hydrodynamics of the considered b~unda ry . ' ~ - ' ~  
We shall discuss the basic equations of surface hydrodyna- 
mics and the bulk equations of motion which are necessary 
to solve the boundary-value problem. 

Let the interface coincide with the planez = 0, the crys- 
tal occupy the region z > 0, and the indices p,  v = 1,2 num- 
ber the coordinate axes in the tangent plane. We introduce 
the quasimomentum per unit surface, i,, for which we can 
use in the linear aproximation the expansion 

i,,=vj:) v:', (1)  

where V y' is the drift velocity of the surface excitations in a 
Lagrangian coordinate frame fixed in the underformed lat- 
tice, Vpv'"' US the tensor of the surface normal density, cal- 
culated in the general case in analogy with the bulk phonon- 
hydrodynamic tensor of the normal density in crystals (see, 
e. g., § 15 of Ref. 15). In the simplest case of a face that is 
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isotropic in its own plane we have Vpd" = vs) Spy. 
The boundary condition that the quasimomentum flux 

be continuous takes, with allowance for i, , the form 

ai,, aa a%,':' --- ( I )  + - = II:,? -IIz,, , 
dt dx, dx, 

where a is the surface free energy of the boundary, rpv'"' is 
the dissipative part of the surface-quasimomentum flux ten- 
sor, II, is the bulk quasimomentum flux tensor (the 
phonon-hydrodynamic tensor in a crystal), and the indices 1 
and 2 refer to the crystal and liquid, respectively. Surface 
umklapp processes can be neglected in (2) .  

The boundary condition of continuity of the entropy 
flux, with allowance for the transport of the surface entropy 
us, is given by 

80. a - + - (0.~:") =s, (v,,-H) -8, ( ~ . - 8 > ,  (3  
dt dx, 

whereSis the entropy per unit volume, V is the drift velocity 
of the phonons in the crystal, Vn is the velocity of the normal 
motion in He 11, and 6 the displacement of the interface from 
the equilibrium position in the course of recrystallization. 
On an atom-smooth face at low amplitude of the surface 
oscillations we have 6 = 0. On an atom-rough boundary the 
total displacement H consists of the elastic component u, 
and of the displacement 6 in the course of the recrystalliza- 
tion, H = u, + 6 (u  is the vector of elastic displacement in a 
solid ) . 

We define the interface, as usual, as satisfying the con- 
dition that there be no surface particles: Ns = 0.16 The fol- 
lowing expansions are then valid in Eqs. (2)  and (3)  on the 
considered interface: 

where T, is the surface temperature.I4 
It is necessary to add to Eqs. ( 1 )-(4) the conditions 

that connect the surface quantities ( VF) and T, ) with the 
corresponding bulk quantities. We write down these condi- 
tions together with the conditions for thermodynamic equi- 
librium of the phases for an atom-rough surface with 
allowance for the capillary effects and for the fact that the 
surface dissipative coefficient be finite. These conditions 
take the form 

The matrix a, in (5)  is positive-definite and symmetric (by 
virtue of Onsager's symmetry principle for the kinetic coeffi- 
cients); 

- b,,- 
dx,, dx, 

is the difference between the chemical potentials (per unit 
mass) of the contiguous phases; aT is the deviation of the 
temperature from the equilibrium value (on the melting 
curve); = Sp, + r::', where up, is the deviation of the 
pressure in the liquid and T,, ( 2 )  is the dissipative part of the 
tensor of the momentum-flux in He 11; a is the entropy per 
unit mass, p is the mass density (S = p a ) ,  

is the surface rigidity tensor (we assume hereafter for simpli- 
city that E,, = ZS,, ; M, is the effective surface mass of the 
atom-rough boundary1'-19; 

is the flux of matter through the boundary. In the continuity 
equation ( 7 ) ,  j = p, V, + p, V, is the mass-flow vector in 
He 11, while 6, and 6, are the densities of the normal and 
superfluid components in the He 11. 

In connection with the boundary conditions (S), we 
call attention to the following circumstance. If surface exci- 
tations are neglected (for example, in a crystallization 
wave), the system (5)  reduces to (see Refs. 20-23) : 

Ap/T=aJ,+ b f  ,, 

where J ,  = - p16 is the mass flux, 

jE=TS2(v,,-8) = T S ~  (vZ-k) 
is the energy flux referred to the equilibrium chemical poten- 
tial, 

n,,=rt:) =nl:) 
is the quasimomentum flux through the boundary, 

a=all, b=alZf alJ, c=az2+2aZ3+as3, d=arh+2a,,f a,,. 

(5b) 
The physical meaning of the surface dissipative coeffi- 

cients is clear from the form of (5a) : 

is the reciprocal kinetic growth coefficient of the atom- 
rough boundary; 

is the Kapitza thermal resistance of the interface; d > 0 is the 
surface dissipative coefficient and is inversely proportional 
to the coefficient of passage of the phonons through the 
boundary.22923 A detailed kinetic-theory calculation of the 
growth coefficient K (and of the crossover coefficient 6 )  of 
an atom-rough solid helium-He I1 interface is given in 
Refs. 22 and 23, and the Kapitza thermal resistance of such 
an interface was investigated in Refs. 9, 19,24, and 25. There 
is at present no kinetic-theory calculation of all the compo- 
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nents of the matrix a, of the system ( 5  1. Therefore, on the 
basis of the available estimates ofa,b,c, and d and of relations 
(5b), we assume hereafter that 

ali=a-pnc~Ip12T, a ~ a -  b - p c ~ T ' ~  (5c) 
azz- I aZ3 1 -ass>c- (aLsS2cLTZ) -', 
a&'- lats I -a,,>d- (aL,pncL) -', 

where c, is the speed of sound in the liquid, aLs is the coeffi- 
cient of transition of the phonons from the liquid into the 
solid, with a-  (T/O)2  in the temperature region T50.2 K 
(Refs. 9, 19,24) and O the Debye temperature. 

The boundary conditions on the normal stresses a,, in a 
solid follow from the continuity of the momentum flux 
through the boundary: 

In Eqs. (8)  and (9)  are taken into account the capillary 
effects in the boundary conditions of elasticity in 
the high-symmetry-face approximation; g,, =g6,, is the 
surface-stress tensor; h = h , ,  is one of the excess surface 
elastic moduli; P, is the density of the excess surface mass. 
Note that the surface mass P, that enters in the mechanical- 
equilibrium conditions (8)  and (9)  is an independent char- 
acteristic of the surface, together with the effective surface 
mass M, that enters in the thermodynamic-equilibrium con- 
ditions (5)  and (6) .  The effective mass M, can be deter- 
mined, for example, by the connected hydrodynamic mass of 
the delocalized growth steps and of the kinks on them and 
the atom-rough solid helium-He I1 interfaces (see Ref. 17). 
At the same time, the excess mass P, on the considered inter- 
faces is determined by the excess number N, of the surface 
particles: P, = mN,, where m is the helium-atom mass. 
With the interface so defined, this quantity vanishes identi- 
cally (P, = 0), whereas the effective surface mass M, has a 
nonzero value that can be estimated from experimental data 
(see Refs. 18 and 19) .*' 

The set of boundary conditions ( 1 )-(9) enables us to 
determine the spectrum, damping, and interaction of all 
types of long-wave surface oscillations with account taken of 
the surface second sound and of the surface dissipation on 
both types of solid helium-He I1 interface. This set of equa- 
tions can also be used in boundary value problems of anoma- 
lous reflection of sound and mutual transformation of first 
and second on atom-rough faces below 1 K, 
when the solid He can no longer be regarded as a thermal 
insulator. 

We precede the consideration of the boundary-value 
problems by a brief analysis of the bulk equations of motion 
in both phases. In the liquid phase the equations of motion 
are described by two-velocity hydrodynamics of superfluid 
l iq~ids.~ '  Motion in a solid is described by the equations of 
elasticity-theory" and of phonon hydrodynamics.15 

In both media we can neglect as small the thermal ex- 
pansion that determines the interaction between the volume 
first and second sounds. 

The general solution of bulk equations of motion of 

He II for the velocity of the normal component can be repre- 
sented in the form 

~ n = ~ n l + ~ n L + ~ n t i  (10) 

where v,, is the velocity of the normal motion in a longitudi- 
nal first-sound wave, v,, is the velocity in a longitudinal 
second-sound wave, and v,, is the velocity in a transverse 
viscous wave: 

pn~ni=qzAvntl div vnt=O, 

where 7, is the first-viscosity coefficient of He 11. 
Let the x axis be directed along the wave vector k of the 

surface wave and let w be the wave frequency. In a liquid 
occupying the half-space z < 0 the relations between v,, and 
v,, in the surface waves are then given by 

where T i  andp; are the oscillations of the temperature and 
pressure in the wave, 

rrl- ( k " a ' / ~ ~ ' )  "'( rLZ= ( k z - ~ ' / ~ a a ) ' (  7 1 8 -  ( - f @ ~ m / l l ~ )  't 

c, and u, are the velocities of the first and second sounds in 
He I1 with allowance for their viscous damping,30 and 
U,, = ( - i 07~ /p ,  ' 1 2  is t+ velocity of the viscous wave in 
He I1 (the condition w 2 ~ U , ,  'k ') must be satisfied for 
weakly damped oscillations). 

The solutions of the equations of the elasticity-theory 
for the sound oscillations and of phonon hydrodynamics of 
an isotropic solid can also be resolved into purely longitudi- 
nal and transverse components: 

u==u~+u~, (14) 

with the following relations between u, and u, in the surface 
wave on the crystal ( z  > 0)  

where 

xi= ( k 2 - ~ 2 / ~ 1 2 ) " ' ,  xi= ( ~ * - O ~ / C ~ ~ ) ' ~ * ,  

c, and c,  are the velocities of the longitudinal and transverse 
first sound in the solid. 

For the drift velocity of phonons in a crystal we have 
similarly 

V=Vl+Vt, (16) 

where V ,  and V ,  are the second-sound wave drift velocities 
in a longitudinal wave and in a transverse viscous wave de- 
scribed by 

Here v ,  is the normal density of the phonon gas (the coeffi- 
cient of proportionality of the quasimomentum per unit vol- 
ume to the phonon drift velocity), 7, is the phonon-hydro- 
dynamic viscosity of the crystal, and x ,  is the thermal 
conductivity. The phonon-hydrodynamics equations take 
into account additional terms that describe umklapp pro- 
cesses (the crystal anisotropy is disregarded for simplicity). 
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The relations between V, and V, in the surface wave are 

ikSi -7~tS t  
V M  3 Ti', V1, = Ti', ~ o Y ~ - T S ~ ~ I ? I ~  

(17) 
iov,-TSi21xt 

Vtz= ikVtz /y t i ,  (18) 

where T ; is the oscillation of the temperature in the wave, 

u, is the velocity of the bulk second sound in the crystal, with 
account taken of the velocity damping due to the viscosity of 
the crystal phonon gas,'' and 

uti= [ 1 1 0 Z ( i ~ ~ i - T S i 2 1 ~ i )  -'I ' 
is the velocity of the viscous phonon wave in the crystal. Just 
as in a liquid, the existence of weakly damped oscillations of 
the drift velocity in a solid calls for satisfaction of the condi- 
tion m2>u, 2k 2. 

Note that in these boundary-value problems there is no 
need to write down the solution for the superfluid motion 
velocity v, in He I1 since v, does not enter explicity in the 
conditions ( 1 )-(9), and all the necessary relations between 
the normal and superfluid components in the bulk of the 
He I1 are contained in Eqs. ( lo)-( 13). 

SURFACE WAVES ON ATOM-ROUGH BOUNDARIES 

We shall use Eqs. ( I )-(  18) to find the spectrum and 
damping of surface waves on an atom-rough solid helium- 
He I1 interface. Solution of the boundary-value problem 
yields three types of long-wave surface oscillation. 

The dispersion equation for coupled oscillations in a 
weakly damped crystallization-melting wave (<)u, ) and in 
an elastic surface wave (u, )c), without allowance for dissi- 
pation, is 

In the long-wave region k(( p ,  -p2)2/M,p, Eq. ( 19) 
describes a crystallization wave with a "capillary" disper- 
sion law,' with account taken of the surface mass of the 
atom-rough boundaryI7 and the compressibility of the solid 
and liquid: 

and an elastic surface Rayleigh wave (w = c, k) on the free 
surface of a solid with allowance for capillary effects: 

In the short-wave region k) ( p ,  -p,)2/M,p, Eq. ( 19) 
describes a crystallization wave with an acoustic spectrum 
and with velocity 

and an elastic surface wave whose velocity is determined 
from the equation 

The velocity of the elastic surface wave on the solid heli- 
um-He I1 interface in the short-wave region is close (both 
at c, <c,  and at c, > c, ) to the velocity c,, of the Ray- 
leigh-Stonely wave on a solid-liquid interface; the latter ve- 
locity is determined from the equationh 

We note that, as can be seen from (2 1 ), the influence of 
the capillary effects on the Rayleigh-wave velocity in the 
long-wave region is enhanced (by a factor 
( p, -p2) z lo2) compared with the case of the free surface 
of a solid (c2 = 0) .  Thus, the capillary effects decrease the 
velocity of the Rayleigh wave (as the frequency is increased) 
at c, < c, and increase it at c, > c, . This means thatC'inter- 
section" and mutual transformation of the crystallization 
wave and of the elastic surface wave takes place only at 
c, > c, (see Fig. 1).  In other words, a sufficiently large 
effective surface mass M, (i. e., c ,  < c, ) can substantially 
alter the character of the interaction of crystallization and 
gayleigh waves, compared with the case M ,  = 0 (Ref. 0 ) .  
Cerenkov emission of transverse sound into the crystal does 
not lead to substantial dissipation of the short-wave acoustic 
crystallization wave at c, > c, (since f) /ul in the crystalli- 
zation wave). In the limit M, = 0 we have c, - c, ,  where cl 
is the velocity of the longitudinal sound in the crystal (the 
maximum velocity of elastic waves in the system). 

The velocity of a Rayleigh wave on the free surface of 
solid helium is c, = 245 m/s (see the Appendix). Accord- 
ing to the available experimental data, Z ~ 0 . 3  erg/cm2 
(Refs. 1, 3, and 5) and M, z 2  . g/cm2 (Ref. 19). At 
k > k l = 8 .  lo6 cmp'  the crystallization wave acquires 
therefore a0 acoustic spectrum and a velocity c, ,-- 300 m/s. 
In the wave-number region k - k , ~  5 . lo6 cm- ' is located 
on an arbitrary intersection point of the "bare" branches 1 
and 2 (dashed lines in the figure). In this wavelength region 
we have the strongest interaction and mutual transforma- 
tion of the Rayleigh and crystallization waves, while at k)k, 
the velocity of the crystallization wave exceeds that of the 
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FIG. 1. Dispersion curves w ( k )  of a surface elastic wave (solid curve 1 ) 
and a crystallization wave (solid curve 2 )  on the interface of solid helium 
and He 11: a )  at c, > cR -presence of resonance and mutual transforma- 
tion of the surface waves; b )  at c, < cRs-absence of mutual transforma- 
tion of the waves, where c, = (E/M,  ) ' I 2  (curve 3 )  is the velocity of the 
high-frequency crystallization having an acoustic spectrum, while c, and 
c,, (curves 4 and 5 )  are the velocities of the Rayleigh wave and the 
Rayleigh-Stonely wave. 

Rayleigh wave. We note that this value of c, is only an 
estimate (in view of the scatter of the experimental data, the 
anisotropies of and M, (Refs. 3 and 19), and other factors). 

We write down also the spectrum of the bare crystalli- 
zation wave with allowance for damping due to viscosity and 
to the surface dissipation coefficients a, (5)  and (5a). Us- 
ing Eqs. ( 12) and ( 17), we introduce the thermal impe- 
dances Z ,  and Z2 of the contiguous 

Zt-1=-TSi2y,i/ ( i o ~ ~ - T S , ~ / x t ) ,  (25) 
Z,-i=iTSzp,a2yLz/p,o (26) 

for the solid and liquid, respectively (according to the defini- 
tion of the thermal impedances we have 
TS,V, =ST,/Z,, TS,v,,, = -ST,/Z,). At sufficiently 
low temperatures, T <  0.5 K, where an anomaly of the Ka- 
pitza jump is observed on an atom-rough interface of solid 
helium and He I1 (Refs. 9, 19, 24, 25), and the heat trans- 
port is both phases is in the second-sound regime or by ballis- 
tic phonons, the thermal resistance RK = cT2 of the bound- 
ary is large compared with the thermal impedances of the 
contiguous phases: RK )Z,, RK )Z2. In this case we can ne- 
glect the left-hand side of the second equation in (5a) and 
obtain for the spectrum of the "bare" low-frequency crystal- 
lization wave (with allowance for the effective surface mass) 
the expression 

The surface and bulk dissipation mechanisms are, naturally, 
additive. 

At higher temperatures T20.fL0.7 K the heat trans- 
port in the crystal at low wave frequencies w(TS : / x , v ,  is by 
diffusion through heat conduction. In this case the thermal 
impedance Z,  of the solid phase increases appreciably and 
can exceed both the thermal impedance Z2 of He I1 and the 
thermal resistance RK of the boundary: Z, )Z,, Z, )RK . At 
the same time, just as at low temperatures, we have Z2(R, 
because of the nondissipative (convective) heat transport in 
He 11. It can be readily seen from (3 )  and (5a) that at this 
relation between Z,, Z,, and RK we have on the interface 
ST2(ST,, VZ 46, V,, -6 and we obtain for the spectrum of 
the initiating low-frequency crystallization wave 

The contributions of the viscosity of the phonon gas and 
of the thermal conductivity of the crystal to the damping of 
the crystallization wave are much longer in this temperature 
region than that on He I1 (since V<v,, - J ) .  The surface 
jump of the tangential velocities (allowance for the fact that 
the coefficient d in (5a) is finite) makes likewise no notice- 
able contribution to the crystallization-wave damping in this 
temperature region (in contrast to the surface temperature 
jump, which is governed by the quantity RK = cT2) .  

It can be seen from (27) and (28) that in the hydrody- 
namic regime the contributions of the He I1 viscosity and of 
the phonon gas of the crystal to the crystallization-wave 
damping are small compared with the contribution from the 
surface dissipative coefficients a,b,c, and d by factors 
k12(l, kl, < 1(12 is the phonon mean free path in He I1 and 
I, is the mean free path of the phonons due to the normal 
processes in the crystal). The crystallization-wave damping 
on account of the kinetic growth coefficient 
K - ' = p ,  T(a - b 2/c) in the form (27) is preserved also in 
the ballistic regime kl,) 1, kl, ) 1 (see Ref. 23). Thus, the 
damping of the low-frequency crystallization wave has the 
same characteristic form Im w a k (Ref. 7) both in the hy- 
drodynamic and in the ballistic regime, and the transition 
from one regime to the other (e. g., change of temperature) 
should not influence the damping substantially. 

Absorption of a crystallization wave of given frequency 
increases monotonically with increasing temperature, in 
contrast, e. g., to the case of bulk first sound in He I1 or in a 
perfect solid dielectric, when the transition from the ballistic 
to the hydrodynamic regime determines the maximum on 
the absorption c u r ~ e . ' ~ , ~ ~  In the temperature region T 5  0.5 
K we have Im w oc T 4  (phonon region), and at T 2  0.5 K we 
have Im w a exp( - A/T) (roton region, with A the roton 
gap).' The frequency dependence of the damping of long- 
wave crystallization wave of the type Im w a k causes the 
quality factor of the oscillations to increase with increasing 
frequency (at a fixed temperature. In fact, in that frequency 
region where the crystallization wave has an acoustic char- 
acter (k  > k,, see Fig. I ) ,  we have from (27) and (28) 
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Im w, = y ( T) , where the function y ( T) has the form de- 
scribed above. This means that at such a temperature the 
high-frequency crystallization oscillations of the boundary 
can be weakly damped. Such oscillations are, for example, 
the thermal crystallization oscillations at T k 1 K. Therefore 
the contribution of the thermal crystallization oscillations 
(with the acoustic dispersion law w, = c, k ) to the surface 
free energy of an atom-rough surface at T 2  1 K, viz., 

68a2=-f ( 3 )  T 3 / 2 n f i c ~ '  , (29) 

is of the same order as the contribution of the Rayleigh 
waves with w, = c, k (Ref. 10). Allowance for the contri- 
bution (29) can decrease the discrepancy between the ex- 
perimentally observed and theoretically predicted tempera- 
ture dependence of the interfacial tension of an atom-rough 
interface between solid helium and He I1 above 1 K (Ref. 
32). 

The third type of surface waves on an atom-rough solid 
helium-He I1 interface are coupled oscillations of surface 
and bulk excitations, accompanied by temperature oscilla- 
tions but with the interface practically immobile. To analyze 
the spectrum of such oscillations we introduce the thermal 
impedance Z,  of the surface excitations, defined by 

1 do, - = i T ( r n - - E $ )  
2. dT o v, 
At low temperatures, when the characteristic wave 

number k ,  of the thermal surface excitations is smaller than 
ko or k ,  (see Fig. 1 ) we have 

5 T"'a 
v. =* [ '"""']";. (f) 4;) .  

aP2 

o dT 63 ( / ) ( ' / )  [ Ep, 
TIh U s 2  = 2 ---- = --. 

V, do, 40 r ( 5 / s ) f ( ' / s )  ( ~ i - ~ z ) '  

Here us is the velocity of the surface second sound (in the 
gas of the crystallization-wave quanta), and increases with 
increasing temperature like us m T ' I 3 ,  just as on the free sur- 
face of pure He I1 (Ref. 12). At higher temperatures, when 
k ,  > ko,kl,  we have 

where c-min(c, c,, ) = c,, z 200 m/s is the velocity of 
the Rayleigh-Stonely wave on the solid helium-He I1 inter- 
face (see the Appendix). In this temperature region the sur- 
face second sound propagates in the gas of the quanta of the 
Rayleigh-Stonely waves, and its velocity does not depend on 
the temperature (just as on an atom-smooth face). The sur- 
face second sound velocity reaches a constant value=: 140 
m/s at T = To zz 0,6-0,8 K. 

Taking expressions (25), (26), and (30) for the bulk 
and surface thermal impedances into account, we obtain the 
following dispersion relation for coupled surface tempera- 
ture oscillations (neglecting the bulk viscosities 7, and T,)~': 

The connection between the temperature-oscillation ampli- 
tudes is obtained from the relations 

(34) 
Note that the estimates (5c) for the matrix elements a,, 
were not used in the derivation of (33) and (34). 

To solve (33) we must take the following circumstance 
into account. The region of applicability of expressions (33) 
and (34) is bounded by the conditions of the hydrodynamic 
regime of oscillations for bulk and surface excitations: 
kl,( 1, klN ( 1, wrNs 4 1, where r,, - ' is the frequency of the 
surface normal collisions. In a crystal, the phonon mean free 
path IN decreases with increasing temperature in proportion 
to T -', in He I1 in the region of phonon-phonon collisions 
( T5; 0.5 on the melting curve) the phonon mean free path is 
1, a T -9 for four-phonon processes30 and I, m exp( A/T) in 
the region of the phonon-roton collisions ( T 2  0.5 K) .  The 
normal processes in a surface-excitation gas are three- 
phonon processes (since the spectrum is a decaying one). 
For the lifetime r, of the quanta of the crystallization waves 
(with "capillary" dispersion law) of frequency w we have 
r, a k - 5  m (see Ref. 33). From this we obtain at 
temperatures T <  To a surface normal-collision frequency 
rNs - I  cc T ''I3. At T >  TO, when the thermal surface excita- 
tions are the quanta of the acoustic Rayleigh-Stonely waves, 
just as on atom-smooth faces, we have r, - '  a T4. From the 
foregoing estimates of the limiting frequencies and from ex- 
pressions (30)-(32) it follows that the inequality Z, &RK 
holds in the entire region of applicability of the dispersion 
equation (33). When solving Eq. (33 ),just as in the analysis 
of the damping of crystallization waves, a distinction must 
be made between the two limiting cases R ,  )Zl  and R ,  (Z,. 

In the case RK >Z,, Z, (low-temperature region, the 
heat is transported in the crystal in the second-sound re- 
gime), Eq. (33) has two different roots corresponding to 
weakly damped waves. The first root 

corresponds to ST,>ST,, ST,. At R ,  = co and d = co [see 
(5)  and (5a) 1, meaning absence of heat exchange and quasi- 
momentum exchange between the media, the solution (35) 
describes a homogeneous bulk second-sound wave propa- 
gating in the He I1 along the interface (v,,  = 0)  and satisfy- 
ing the boundary condition that there be no heat or quasimo- 
mentum flux through the interface: n, = 0. At large but 
finite boundary thermal resistance, Eq. (35) describes a 
weakly inhomogeneous bulk second-sound wave propagat- 
ing in a liquid at a small glancing angle q, to the interface: In 
He I1 (z < 0)  the temperature distribution in the wave is of 
the form 

6T,=6Tzo exp ( i k x - i o t f  T L Z ~ ) ,  
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the glancing angle is q, = ( y,, I/k< 1); in the crystal ( z  > 0)  
we have 

6T,=6Tlo exp (ikx-iot-y,,z) , yll= (kZ-~02/~,z)k>0. 

It can be easily verified that the damping of the wave in 
question is determined mainly by bulk dissipation and is 
close to the damping of bulk second sound in He 11, 
Im w -q2k 2/Pn .The surface dissipation (finite Rk - I )  leads 
only to a relatively small increase of the surface-wave veloc- 
ity relative to that of the bulk wave: 

and to the onset of weak inhomogeneity of the depth distri- 
bution of the amplitude of the temperature oscillations in the 
wave [see (36)l.  

The second root of (33) at RK >Z,, Z, 

(37 
21 RH 

corresponds to a weakly inhomogeneous bulk second-sound 
wave propagating in the crystal (STl%ST2, ST, ) at a small 
glancing angle with the boundary: 

6T1=6T10 exp (ikx-iot-yd), 

The damping of the wave considered is also close to the 
damping of the bulk second sound (inside the crystal in this 
case), see Ref. 15: 

Im a-q1k2/v,+TSl2/x1vi. 

At low temperatures, when the heat is transported in both 
media in the second-sound regime and RK SZ, ,  Z,, the sur- 
face (more accurately, the weakly inhomogeneous near-sur- 
face) second-sound wave has thus a velocity and damping 
(in the weak-damping region) that are close to the velocity 
and damping of the corresponding bulk second-sound wave. 

If Z,bR,)Z2 (higher temperature, and the heat is 
transported in the crystal by thermal conduction), Eq. (33) 
has one root 

I/Z2=I/Zs-IIZi, (38 
which corresponds to uT, =:uT2=:uTs. In this case (e. g., at 
wgTS~/?t,v, ,  k((wCl/x,)L'2, where C ,  is the heat capacity 
per unit volume of the crystal), Eq. (38) takes the form 

This equation describes a weakly inhomogeneous second- 
sound surface wave propagating in He II(w=:u2k) and 
weakly damped (in the considered frequency range) be- 
cause of the thermal conductivity of the crystal and the vis- 
cosity of the He 11: 

Im o-~~C,k~/C,2+q,k~/p,,, 
where C2 is the heat capacity per unit volume of He 11. It can 
be seen from ( 3 8a) that allowance for the surface excitations 
causes, together with the thermal conductivity of the crystal, 
a weak inhomogeneity of the depth distribution of the ampli- 
tude of the temperature oscillations in the wave. 

Thus, under conditions when both the surface and the 
bulk excitations are in the hydrodynamic regime, the bulk 
thermal impedances "shunt" the surface impedance, and the 
surface second-sound wave constitutes a weakly inhomogen- 
eous bulk second-sound wave in one of the contiguous me- 
dia. However, the estimates presented for the mean free 
paths (or the lifetimes) of the bulk and surface excitations 
show that at sufficiently low temperatures (and high fre- 
quencies) conditions are realizable under which the surface 
excitations can be in the hydrodynamic regime, wr,, ( 1, and 
the bulk ones in the ballistic regime, or, > 1, wr, ) 1, where 
rN is the time of the normal phonon collisions in the crystal 
and rl is the time of the transverse relaxation in He 11. This 
is possible because at low temperatures ( TgO) the frequen- 
cy of the normal collisions in a surface-excitation gas 
(rNs - I a T ''I3 at T <  To and T <  To, r,, - '  a T 4  at T >  To) 
is higher than in a crystal (7,-' a T 5 )  and than the rate 
7,- ' a T 5  transverse relaxation in He 11. In such an "inter- 
mediateWregime the interaction between the surface and 
bulk excitation is substantially weakened compared with the 
fully hydrodynamic regime considered above. These condi- 
tions correspond in fact to "freezing out" of the bulk thermal 
excitations compared with the surface ones, when a normal- 
motion velocity and a normal component exist only on the 
surface (see Ref. 12), meaning that one can neglect the 
right-hand sides in the boundary conditions (2)  and (3) .  In 
the intermediate regime the surface second sound is there- 
fore a thermal wave in a gas of surface excitations: it is prac- 
tically nondispersive (w = us k) ,  and its damping is deter- 
mined mainly by the purely two-dimensional processes of 
scattering of surface excitations (by the surface viscosity 
7, ) :Im w -- vs k '/us (2).  This mechanisms limits from above 
the frequency region where weakly damped second sound 
exists: w-'Im w-7, rNs . 

The interaction between the crystallization wave and 
the surface second sound is also determined essentially by 
the temperature and frequency regions. This interaction is a 
minimum at the lowest temperatures of the intermediate re- 
gime of the surface second sound (owing to the weak interac- 
tion between the bulk and surface excitations) and a maxi- 
mum in the highest-temperature region Z,>RK >Z2, where 
it is determined by the heat of crystallization T(u2 - a,) 
(the interaction in the hydrodynamic region R, >Z,, Z, is 
determined also by the crossover elements of the matrix a, 
( 5 ) ) .  

SURFACE WAVES ON ATOM-SMOOTH INTERFACES 

Consider an atom-smooth interface that is isotropic in 
its own plane (such as (0001 ) for an hcp solid-helium single 
crystal). To find the spectrum and damping of the surface 
waves on such an interface we use Eqs. ( 1)-(25), in which 
we put = 0 and disregard the first equation of the system 
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(5) .  The solution of the boundary-value problem yields two 
types of long-wave surface oscillations that do  not interact 
with each other in the absence of thermal expansion. 

The first type of oscillation is an isothermal elastic Ray- 
leigh-Stonely surface wave w = w, ( k )  on a solid-liquid in- 
terface, calculated with allowance for capillary effect. The 
dispersion equation for this wave is 

The right-hand side of (24a) describes in the linear approxi- 
mation the influence of capillary effects on the Rayleigh- 
Stonely wave [see (24) 1. Capillary effects, generally speak- 
ing, lead only to weak dispersion of the velocity of the wave 
in question (the relative change of the velocity is of the order. 
ofgk /p,c, -ak, wherea is the interatomic distance), just as 
in the case of a Rayleigh wave on a free surface of a solid 
( p = O ) .  

Let us estimate the velocity c,, of the Rayleigh-Stonely 
wave. When the parameters 

are used, solution of (24) yields c,, =: 192 m/s (c, are the 
elastic moduli of the crystal. The velocity c,, can be estimat- 
ed more accurately by regarding solid helium as a strongly 
anisotropic hexagonal crystal in which the various elastic 
moduli differ rather strongly3,: c,,,c,,(c, ,,c,, (for example 
c,,~/c,, c3,z0,07, c,32/c,, c,, z0 ,05) .  Such a calculation 
(see the Appendix) yields the more accurate value c,, =: 205 
m/s for the Rayleigh-Stonely wave velocity on an atom- 
smooth solid-helium-He I1 interface. 

The second type of surface oscillation of the considered 
boundary constitute a surface second-sound wave 
w = w2(k),  in which the temperature oscillates while the 
lattice sites remain immobile (u = 0) .  The dispersion equa- 
tion for the surface second sound is given by (33) in the 
notation in (25),  (26),  and (30) .  Expressions (32) arevalid 
for v , ,  a, and us = c,,/fi. On atom-smooth faces, just as 
on atom-rough ones, we have apparently RK ,Z,, Z, is the 
heat transport in both contiguous phases is in the second- 
sound regime (and Z ,>RK >Z2, if the heat is transported in 
the crystal by diffusion). Therefore all the conclusions con- 
cerning the character of the surface second-sound wave, 
which follow from the solution of the dispersion equation 
(33) [see Eqs. (35)-(38) 1, remain in force also in the case 
of an atom-smooth interface between solid helium and 
He 11. Thus, under conditions of diffusive heat transport in 
the crystal, at  sufficiently high values of the thermal conduc- 

tivity x ,  ( T k 0,8K), a deeply penetrating second-sound sur- 
face wave w =:u2k can propagate in the He I1 on the consid- 
ered interface. A similar weakly damped surface-second 
sound wave can exist also on the interface of He I1 with a 
perfect crystalline dielectric, in which a transition from dif- 
fusive to wave propagation of the heat is observed, such as 
LiF or NaF (Ref. 13). 

The conclusion that a temperature wave can propagate 
in a two-dimensional gas of surface excitations under the 
intermediate-regime conditions (relative to bulk excita- 
tions) is valid also for the case of atom-smooth solid helium- 
He I1 interfaces, just as for the interfaces with a perfect di- 
electric crystal. In the case of the interface of He I1 with a 
dielectric crystal it must be recognized that for He I1 the 
sound velocity and the density are much lower than for ordi- 
nary crystals. Therefore the slowest surface elastic wave on 
such an interface will be a Stonely wave with velocity close to 
that of sound in a liquid (see Ref. 6) :  in (32) we must put 
c = c, and accordingly Us = c, /fl. On the other hand, in 
the case of a crystal-vacuum interface we have c = c, , 
us = c, /fl, where c, is the velocity of a Rayleigh wave on 
the free surface of the crystal. 

The essential conditions under which weakly damped 
second sound can propagate in a solid dielectric is that the 
crystal boundary be smooth enough and perfect. The charac- 
teristic dimension S of the roughness should be less than the 
wavelength A ,  of the thermal surface excitations: 
S<AT -&IT. On atom-smooth faces at T(O this situation 
is certainly realized. The perfection of the boundary is deter- 
mined also by the condition T ,  +-, , where T , ~  is the life- 
time of the surface excitation due to processes with noncon- 
servation of the quasimomentum, such as surface umklapp 
processes. 

CONCLUSION 

The spectrum, damping, and interaction of the major 
types of macroscopic surface oscillations on an interface 
between solid helium and He I1 were investigated with ac- 
count taken of surface second sound and of surface dissipa- 
tion. Both types of boundary below 1.2 K were considered- 
atom-rough and atom-smooth. 

If both the surface and bulk excitations are in the hy- 
drodynamic oscillation regime, the bulk thermal impedance 
"shunt", the impedance of the surface excitations, and the 
surface second-sound wave constitutes a weakly inhomogen- 
eous bulk second-sound wave in one of the contiguous me- 
dia. Under certain conditions, weakly inhomogeneous 
(deeply penetrating) surface second-sound waves exist on 
the interfaces of He I1 with solid helium and with a perfect 
dielectric crystal. An intermediate case can exist, in which 
the surface and bulk excitations are respectively in hydrody- 
namic and.ballistic oscillation regimes. Under these condi- 
tions the interaction between the surface and bulk excita- 
tions is weakened and surface second sound constitutes a 
temperature wave in a two-dimensional surface-excitation 
gas, has no dispersion, and its damping is determined by 
two-dimensional scattering of surface excitations (by sur- 
face viscosity). 
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In investigations of the interaction between Rayleigh 
and crystallization waves, account must be taken of the ef- 
fective surface mass M, of the atom-rough 
which leads to an acoustic spectrum of the crystallization 
wave (with velocity c, =: (WM, ) ' I 2 )  in the high-frequency 
region. Noticeable interaction between the crystallization 
and Rayleigh waves occurs only at CM > CRs ~ 2 0 0  m/s. 
The available experimental data on the surface rigidity Z 
(Refs. 1,3 and 5 ) and on the surface mass M, (Ref. 19) lead 
to the estimate CM =: 300 m/s. Interaction and mutual trans- 
formation of the Rayleigh and crystallization waves can 
therefore be expected in the wave-number region k=: 5 . lo6 
cm-I. Damping of the crystallization wave, due to the sur- 
face dissipative coefficients and to the bulk viscosity of the 
contiguous phases, has been investigated with allowance for 
the effective surface mass. At temperatures T k 1 K the con- 
tribution of thermal acoustic-spectrum crystallization 
waves are of the same order as that of Rayleigh wave and of 
the surface tension of an atom-rough interface between solid 
helium and He 11. 

I am grateful to A. F. Andreev, V. N. Grigor'ev, M. Yu. 
Kagan, and A. Ya. Parshin for helpful discussions. 

APPENDIX 

Surface elastic wave in a strongly anisotropic hexagonal 
crystal 

The elastic moduli of the hcp phase of solid helium are 
greatly unequal: 

c ~ ~ ,  c i 3 ~ c l l ,  c33. (A.1) 
These inequalities identify solid helium as a strongly aniso- 
tropic crystal. In view of the presence in the equations of the 
the theory of a small elasticity parameter, the properties of 
the surface waves in such crystals can be calculated analyti- 
cally, just as in the case of an isotropic solid. 

Consider a plane of type (0001 ) in a strongly anisotrop- 
ic hexagonal crystal bordering on a liquid. The dispersion 
relation for a surface wave polarized in the sagittal plane 
(Rayleigh-Stonely wave) is 

Using the elastic moduli of the hcp phase of solid helium 
(with maximum molar volume),34 we find from (A.2) that 
c,, ~ 2 0 5  m/s. 

The Rayleigh-wave velocity c, actually realized on a 
free surface of solid helium an atom-rough solid helium- 
He I1 interfaces, can be obtained from (A.2) by putting 
p* = 0: 

c R Z =  ( ~ ' J p l )  (1-~44~/ciic35). (A.3) 
The numerical value is c, ~ 2 4 6  m/s. Note that for a 

strongly anisotropic crystal we have in Eqs. (A.2) and 
(A.3) one small parameter c ,~~/c , ,  c3 ,~0 ,07 ,  as well as an- 
other C , ~ ~ / C , ,  c~~ ~ 0 , 0 5  that does not enter in the equations. 
Using (A.3) and the bulk equations of motion we can find 
the penetration depth S of a Rayleigh wave on a (0001 ) sur- 
face of solid helium: 

HereA is the wavelength. Recall for comparison that 6 z A  in 
an isotropic solid. The dispersion equation for the velocity of 
a surface wave propagating along (0001 ) on faces of the type 
( 10T0) or ( 1170) can be obtained from (A.2) and (A.3) by 
interchanging in them c,, and c,,. In particular, for the ve- 
locity of a Rayleigh wave on a free surface of a crystal we get 
(A.3), while for the depth of penetration of the Rayleigh 
wave we obtain an equation close to it: 

8=h (clllc44) (c~slccc) IA=7h. 
On faces intermediate between (0001 ) and ( 1 0 n )  the veloc- 
ity and penetration depth of a Rayleigh wave with sagittal 
plane ZX are close to the cited values. Thus, Rayleigh waves 
penetrate deeply in a strongly anisotropic solid. 

I )  The content of the present paper was reported at the 23rd All-Union 
Conference on Low-Temperature Physics, Tallin, 1984. 

2' Note that if the interface is differently defined, with both surface masses 
M, and P, different from zero, all the observed physical quantities must 
depend on a combination of these two masses that is invariant to small 
shifts ofthe interface (in a direction perpendicular to itself), see Ref. 26. 
It can thus be shown that the coefficient of capillary passage of low- 
frequency sound through an atom-rough solid helium-He I1 interface is 
determined at T = O  by the invariant surface parameters 
E + g ( p ,  -p2)/p2 and M, + P s ( p l  -p2)/p2.  
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