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The diffusion, in phase space, of particles interacting with a monochromatic wave that propagates 
at an arbitrary angle to an external nonuniform magnetic field is investigated. It is shown that 
particles are heated in an inhomogeneous plasma at wave amplitudes much lower than the sto- 
chasticity threshold that corresponds to the homogeneous case. The diffusion coefficient is inves- 
tigated analytically and numerically as a function of the inhomogeneity parameter, of the ampli- 
tude, and of the wave propagation angle. It is shown that the diffusion coefficient has a periodic 
dependence on the inhomogeneity parameter. 

1. INTRODUCTION 

If the time of resonant interaction of particles with a 
wave is shorter than the characteristic wave-evolution time, 
the problem of particle motion in the field of a monochro- 
matic wave can be solved in the given-amplitude approxima- 
tion. Since the publication of the papers of Mazitovl and 
O'Nei12 this approach was used in numerous investigations 
(see Ref. 3 and the literature cited there). In the absence of 
an external magnetic field, there exists one group of resonant 
particles for which w = k-v. The nonlinear frequency wb is 
connected with the electrostatic-wave amplitude E by the 
relation wb = (eEk /m ) ' I 2  (Ref. 2) .  Here w and k are the 
frequency and wave vector of the wave, while e and m are the 
charge and mass of the particle. Allowance for the external 
magnetic field B and accordingly for the different cyclotron 
resonances w - k ,I v l  = n n ( n  = eB /mc is the cyclotron 
frequency and n is an integer that numbers the resonances) 
introduces into the problem a new parameter, viz., the ratio 
of the distance between resonances in phase space to the non- 
linear width of the resonance. At low wave amplitude, the 
various cyclotron resonances turn out to be isolated and the 
particle motion is regular. As the amplitude is increased, the 
resonances overlap and stochastic motion of the particles in 
phase space sets in. This phenomenon, which finds numer- 
ous applications in both laboratory and cosmic plasma, is the 
subject of an extensive literature (see Refs. 4 and 5 for cita- 
tions). The fundamental concept here is the nonlinear-reso- 
nance overlap introduced and investigated in detail in Chiri- 
kov's  paper^.^-^ 

It must be emphasized that overlap of high cyclotron 
resonances still does not mean that the force exerted on the 
particle by the wave exceeds the torque produced by the ex- 
ternal magnetic field. On the contrary, an external magnetic 
field can play, as before, a decisive role in the particle dy- 
namics. It is still correct to choose as the canonical variables 
the action and the angle of the unperturbed (without the 
wave) system, and the problem can be considered for times 
much longer than the cyclotron period. The opposite situa- 
tion was investigated in Refs. 9 and 10. 

Allowance for the inhomogeneity of the medium (of the 

density and the external magnetic field) alters qualitatively 
the character of the resonant interaction between the parti- 
cles and the wave. The main feature is here the departure of 
the particle from resonance with the wave, owing to the "dis- 
parity" of the resonant velocity and the longitudinal velocity 
of the particle, as well as the opposite process-transition of' 
the particles from the nonresonant to the resonant region. 

Obviously, if the spacing between the resonances ex- 
ceeds the thermal velocity of the particles it is meaningful to 
speak of interaction of the particles with the wave only at 
individual (not more than two) cyclotron resonances that 
correspond to the lowest absolute value of the particle veloc- 
ity. For example, in the case of whistlers with w 5 fie,  these 
are the Cerenkov (w = k ll vll ) and the first cyclotron 
(w = k uli + fl) resonances. These were precisely the re- 
sonances primarily invoked in the numerous studies (see, 
e.g., Refs. 3 and 1 1 ) of the interaction between whistlers and 
high-energy electrons in the magnetosphere. We shall base 
ourselves on the results of these studies when we consider the 
passage through an isolated resonance. 

If the thermal velocity of the particles exceeds the spac- 
ing of the resonances, the interaction can involve a large 
number of resonances. At wave amplitude exceeding the 
threshold of stochasticity in a homogeneous medium one 
can expect the inhomogeneity of the magnetic field not to 
change qualitatively the character of the interaction between 
the particles and the wave. If, however, the wave amplitude 
is small, the inhomogeneity of the medium leads to qualita- 
tively new effects compared with the homogeneous case. 

The onset of particle diffusion in phase space on passage 
through many resonances in an inhomogeneous magnetic 
field was considered for laboratory and magnetospheric con- 
ditions in Refs. 12-14. Notwithstanding the different char- 
acter of the magnetic-field inhomogeneity (sinusoidal mo- 
dulation of the field in a tokamak and monotonic variation of 
the field in dipole geometry ), the physical results are quite 
similar. The studies cited, however, were confined to purely 
transverse wave propagation. It must be noted that in a cer- 
tain sense this is a degenerate case, for the resonance condi- 
tions are determined here only by the particle position and 
hot by its velocity, and the nonlinear frequency of the oscilla- 
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tions at resonance is proportional to the wave amplitude E 
(and not to E ' I 2 ) .  Propagation at an arbitrary angle was 
considered in Ref. 15, but only for the case of strong nonlin- 
earity, which admits of an analytic description. There is thus 
at present no complete picture of particle diffusion at arbi- 
trary wave-propagation angles and arbitrary relation 
between the inhomogeneity and the nonlinearity. This ques- 
tion is the subject of the present paper. 

2. EQUATIONS OF MOTION 

Consider an electrostatic wave propagating at an arbi- 
trary (variable in space) angle to an external nonuniform 
magnetic field B. We express the potential of the wave in the 
form 

m=mo sin ( j k dr-at ) (2.1) 

and assume that the magnetic field B( r )  and the wave vector 
k ( r ) ,  both of which vary in space, lie in the same plane. 
Under magnetospheric conditions this corresponds to wave 
propagation in a meridional plane. 

It is known that where the adiabatic approximation is 
valid the canonically conjugate variables are the longitudi- 
nal particle velocity v i l  and its coordinates along the external 
magnetic field, the transverse adiabatic invariant I = v:/ 
2R, and the gyrophase q,. Here v, is the modulus of the trans- 
verse velocity of the particle. The Hamiltonian that de- 
scribes the particle motion is the total particle energy ex- 
pressed in terms of the canonical variables 

u112 em 'Is 

H = -+ l R  +-sin [ J k I l ( s ' ) d ~ ' + k L  (;) s i n p - o t  
2 m 

where k and k,  are the longitudinal and perpendicular 
components of the wave vector. The momenta in (2.2) are 
normalized to the particle mass. It must be borne in mind 
that the quantities k k ,  , and fl are functions of the coordi- 
nates. From (2.2) we have the equations of motion 

ds 
-= 

dull dS2 
dt  U " ,  -=-I--+ &kll cos 5 ,  

dt ds  

E kL2 d I  
(2.3) 

-- d p - ~ - - s i n p c o s c ,  -= Ep cos p  cos c ,  
dt PQ dt  

where 

Following the standard procedure of separating the reson- 
ances in particle-wave interaction, we write the Hamiltonian 
(2.2) in the form - 

H='/2~l:+IQ-& I. (p)sin En, (2.5) 
n--m 

where J, (p) is a Bessel function of order n, and 
8 

From (2.5) we get an equation for 6, (J is the derivative of 
Jn with respect t o p )  : 

Tlie vanishing of u,  is the condition of the nth cyclotron 
resonance. For particles that satisfy this condition, the nth 
term in the sum (2.5) is a slowly varying quantity, while the 
nearest terms oscillate at a frequency R. If the characteristic 
value of dc, /d t  in the resonance region is larger than or of 
the order of R, the resonances overlap and, according to 
Chirkov's criterion, the motion of the particles is stochastic. 
The inverse inequality 

enkL2Jn' ( p )  
max ( ~ u . ,  - 

PQ 
) Q, 

where Au, is the change of u,  in the resonance region, corre- 
sponds to the case of isolated resonances. When the condi- 
tions (2.8) are satisfied, the motion of the particles in the 
resonance region can be described by the averaging meth- 
od,16 i.e., only the slowly varying nth term need be retained 
in the Hamiltonian (2.5). It is important that, owing to the 
variation of the quantities k a, and v l l  , a particle in an 
inhomogeneous medium cannot remain infinitely long at the 
nth resonance with the wave, and inevitably goes over from 
one resonance to another. To describe the particle motion 
over a sufficiently long time it is therefore necessary to start 
from the exact Hamiltonian (2.2). We consider now the 
equation of motion for the nth cyclotron resonance, assum- 
ing that condition (2.8) is met. In this case the motion is 
described by the Hamiltonian 

~ = ~ / , v , ~ ' + 1 ~ - ~ 1 , ,  ( p )  s i n ( J  k l lds '+np-rt )  . (2.9) 

Since the variables p and t enter in (2.9) only in the form of 
the combination n p  - wt, the quantity 

is an integral of the motion and allows us to make the prob- 
lem one-dimensional. It suffices for this purpose to choose 
the coordinates as the new independent variable, to make gn 
the new phase, and to eliminate from the equations of motion 
the quantity v l l  with the aid of the integral (2.10). As a result 
we get for the canonical variables ( I , l ,  ) equations that are 
specified by the Hamiltonian 

2 'h 

u0 = {- [%.+I ( o - n R )  ] } sign vll. 
n 

We drop hereafter the subscript n of the phase c, . At k I I  #O 
and under some additional conditions (see below) the Ham- 
iltonian (2.11) can be reduced to standard form, i.e., to a 
sum of a kinetic and a potential energy. It is convenient for 
this purpose to change to a new independent variable r ,  
which is a single-valued function of s: 

8 

kIl2ds' 
T = J  -, (2.12) 

n V R  

where v, is the resonant value of the longitudinal velocity of 
the particle 
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after which the Hamiltonian take the form 

~n%vRJn ( P )  n U R  a$=%o - sin f ,  Zo = - (kl ,I -nuo) .  
kllzvo k112 

(2.14) 

The vanishing of the derivatived2Yo/dZ determines the reso- 
nant value of I as a function of the variable T and of the 
parameter x ,  : 

nQ-o  nvRz-2x, 
kll + - - - 0 yields I=IR = . (2.15) 

uo 2 ( o - n Q )  
At I = ZR we have v, = uR . Expanding now Po near ZR up 
to quadratic terms and substituting the value I = ZR in the 
second term of (2.14) we get 

1 a=- ( I - I ~ ) ~ - .  en%(pR) 
2 

sin f .  
kl12 

The region of applicability of (2.16) is determined by the 
inequalities 

where A(Z - ZR ) and A(p - pR ) are the variations of the 
corresponding quantities in the resonance region. The ex- 
plicit expressions for the inequalities (2.17), as well as for 
(2.81, depend on the relation between the nonlinearity and 
inhomogeneity, and will be discussed below. It must be em- 
phasized that ZR in (2.16) is a function of the "time" T, so 
that in a number of cases it is more convenient to replace Zby 
another momentum, u: 

Obviously, u is proportional to the deviation of the particle 
longitudinal velocity from the resonant value vR and differs 
therefore only by a factor from u, (2.7). Transforming to 
the variable u, we obtain in place of (2.16), in accordance 
with the general formulas for canonical transformations,I7 a 
Hamiltonian in the form 

%'=uz/2-p sin f+aE (2.19) 

and the corresponding equations of motion 

dk /d t=u ,  du/dz=P cos f-a, (2.20) 

where 

3. PASSAGE THROUGH AN ISOLATED RESONANCE 

The particle motion described by Hamiltonian (2.19) 
with constant or slowly varying parameters was discussed in 
many papers (see, e.g., Ref. 18). Using the results of these 
papers, we obtain expressions for the change of the momen- 
tum I on passage through an isolated resonance. These ex- 
pressions are needed to estimate the coefficients of the diffu- 
sion that sets in on passage through many cyclotron 
resonances. 

The Hamiltonian (2.19) corresponds to a potential en- 
ergy U = a{ - B sin {. The case IP /a 1 > 1 corresponds to 

weak inhomogeneity; U has in this case potential wells in 
which phase-trapped particles move. At Ifl /a [  < 1 there are 
no potential wells and trapped particles; this corresponds to 
the case of strong inhomogeneity. An essentially new factor 
in our analysis is allowance for the oscillations of the quanti- 
ty B. As a result of these oscillations, the value of fl goes 
through zero, and the potential U degenerates into a straight 
line, so that all the trapped particles leave the potential wells. 

We begin the analysis with the case of weak inhomoge- 
neity, assuming Ifl /a 1 > 1. According to Refs. 1 1 and 18 the 
change of the momentum I as a result of passage of an un- 
trapped particle through resonance (corresponding to re- 
flection of the particle from the potential) is equal to 

8 
AIuT =- - I pR I 'sign a, 

n 
(3.1) 

where the subscript R denotes the value offl at the instant of 
reflection (exact resonance). For trapped particles we have 
at the same time 

which follows directly from (2.18) and (2.21) when it is 
recognized that I = 0. The changes of the momentum I of 
untrapped and trapped particles are of opposite sign. We 
calculate now the average and mean squared changes of I as 
fl varies from zero to its maximum and then back to zero. 
Taking into account the definition (2.21) of fl and the 
asymptotic behavior of the Bessel function at p > n) 1, we 
note that in this case pR changes by n-. The corresponding 
time AT can be easily obtained from the equation [see (2.4) 
and (2.21)] 

so that 

SinceZis constant far from resonance, the rate of entry of the 
particles into the resonance region is determined by dZR /dr 
and is equal to lal. Consequently, the phase space of the 
particles that interact resonantly with the wave during the 
time AT is /a  /AT. We denciie by r the effective phase volume 
of the trapped particlesI8: 

and by r, its maximum value. If the phase volume of the 
trapped particle increases, then the fraction of the particles 
which is proportional to r = d r / d r  is trapped by the wave, 
and the remainder is reflected from the potential so that the 
capture and reflection probabilities are respectively 

Equations (3.6) hold at la 1 - > 0; in the opposite case, all 
the particles would be captured. It can be easily verified that 
(2.8) and (2.17) lead to la1 >r. If, however, the phase space 
decreases, a fraction of the trapped particles goes over into 
the untrapped region, and all the untrapped particles are 
reflected from the potential. The phase volume of the parti- 
cle in the trapped region is thus T,, and the mean time is AT/ 
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2. The change of momentum of such particles is then 

AT 8 
(AZ1.>=a - - - ( I p I '"> sign a, 

2 n 

where (ID Ill2) is the mean value of (p 1 '" and account is 
taken of the fact that on leaving trapped region the particle 
experiences a momentum change that corresponds to its re- 
flection from the potential [see (3.1 ) ]. For trapped parti- 
cles, the phase volume is ( la 1 AT - r, ), and the mean value 
of the particle momentum is given by (3.1 ) but with the 
substitution IP, 1 I/'-+( lp I I / ' ) .  Taking the foregoing into 
account, we obtain by elementary calculations for the aver- 
age and mean squared change of the momentum the expres- 
sions 

where ( lp I) is the mean value of Jp 1. 
We proceed now to calculate ( AI ) and ( A I  ') in the case 

of strong inhomogeneity, when lP/a] (1. In this case all the 
particles are untrapped, and passage through resonance cor- 
responds to their reflection from the effective potential U. 
According to (2.20) the phase f in the vicinity of the reso- 
nance can be represented at I,B /a 1 ( l as 

Substituting (3.10) in theequationdl / d ~  = f l  cos f thatfol- 
lows from (2.16) and integrating over to d ~ ,  we obtain 

where f, is the value of the phase at the reflection point. 
Since gR depends on the gyrophase q, via the term nq,, it 
follows from (3.11 ) that (A1 ) = 0 and 

We have calculated above the average and mean 
squared changes of the particle momentum on passage 
through an isolated resonance. It follows from (2.7) that a 
transition of a particle between resonances corresponds to a 
change of u, by fl. From the obvious equality 

which follows from (2.18) and (2.21 ) we find that the aver- 
age time (in units of T) of transition of a particle between 
resonances is 67 = I nR/k f,a I .  Account was taken here of the 
relation u = nu,/k between u, and u, as well as of the 
equality ( A 1  ) = 0. The relation obtained yield estimates of 
the particle-diffusion coefficients in phase space, which de- 
termine the rate of particle heating: D -  ( u 2 ) / 6 7 .  These 
questions are discussed in greter detail in the sections that 
follow. 

4. TRANSITION TO POINCARE MAPPING 

The preceding section dealt with the change of the 
transverse adiabatic invariant of a particle on passing 
through an isolated resonance. Our main purpose, however, 
is to investigate the passage of particles through many cyclo- 
tron resonances and the ensuing particle diffusion in phase 
space. In this case, as already noted, we must start from the 
exact equations (2.3 ) . 

Particle-wave interaction described by Eqs. (2.3) is ef- 
fective if the quantity has on the cyclotron circle station- 
ary-phase points defined by the equation 

Obviously, stationary-phase points exist under the condition 
p > Y,  where 

Furthermore, under the condition R)&k :/,dl, which we 
assumed satisfied, the influence of the wave on the particle 
dynamics becomes manifested only over many cyclotron 
periods. In this case we can transform from the differential 
equations (2.3) to the Poincart mapping, which establishes 
the connection between the quantities at the points q, = nn-. 
This procedure was carried out for the case of perpendicular 
wave propagation in the homogeneous and inhomogeneous 
cases in Refs. 19 and 12, respectively. Using a similar ap- 
proach for the case of an arbitrary wave-propagation angle, 
we obtain a model mapping that is described by the following 
system of difference equations: 

prn+i=prnf Ai  sin C pm- (-l)mO,l, 

O,+i=O,+nv,+l+(-l)~Ai sin [p,-(-f)m~O,l, (4.3) 

v ~ + ~ = v ~ - A ~  sin [pm- (-1)"@mI +a, 

where the subscript m denotes the values of the correspond- 
ing quantities at q, = mn-. The dimensionless Larmor radius 
p = k,, (21 /R,) ' I 2  plays here the role of the momentum, 8 is 
the generalized phase, and the quantity v is defined in (4.2). 
The amplitude A, and A, are of the following orders of mag- 
nitude: 

The parameter a, which has the meaning of the phase accel- 
eration, is the dimensionless analog of the quantity a (2.21 ) : 

The subscript n = v in (4.5) means that after differentiating 
with respect to s it is necessary to replace n by v. It follows 
from (4.2) that the resonance conditions coincide with the 
equality v = n, in which case the difference 8, +, - 0, is 
equal to an integer multiple of 2n- (if no account is taken of 
the term -A,). 

We write down now the conditions (2.8) and (2.17) in 
terms of the dimensionless parameters A,, A,, and a. We 
note first that a transition in the case of purely transverse 
propagation is determined by the inequality d2(d t, and the 
criteria of weak and strong inhomogeneity take respectively 
the forms max(A : , A,) > a  and max(A t, A,) <a. Next, in 
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FIG. 1. Diffusion coefficient D vs the amplitude A ,  at A ,  = 0.17, 
a = 0.01 1. 

the case of weak inhomogeneity the isolated-resonances con- 
ditions (2.8) take the form A,(1, A i/2(1, and the possibil- 
ity of transforming to a Hamiltonian in the standard form 
(2.16), (2.19) [i.e., the condition (2.17) ] is set by the ine- 
quality A ,a i/2. In the case of strong inhomogeneity these 
conditions take the respective forms A ,  4 l,lal'12( 1 and 
~ , J a ( " ~ 4 4 , .  Using the definitions (2.4) and (4.4), we can 
easily rewrite these inequalities in terms of physical dimen- 
sional parameters. 

5. PARTICLE DIFFUSION ON PASSAGE THROUGH MANY 
RESONANCES 

To ascertain the character of particle motion over long 
times corresponding to passage through many cyclotron re- 
sonances, we solved the system (4.3) numerically. In each 
variant, the parameters A,, A,, and a were assumed for sim- 
plicity to be constants. The system (4.3) has then the ob- 
vious integral of motion 

whose conservation was monitored in the course of the com- 
putation. We considered 400 particles uniformly distributed 
at the initial instant of time (m = 0)  along a straight line 
p = 6 in an interval 0 < 6 < 2 ~ .  The total number of steps was 
6000 and for every 200 steps we calculated the average and 
mean squared changes of the momentum over all the parti- 
cles. For the mean square we use hereafter the notation 

We note first that in all the variants considered the aver- 
age momentum change (p - p,) is close to zero [in accord 
with (3.8) and (3.12) 1, and the mean squared change A 
increases in proportion to the number m of the steps. This 
linearity of A ( m  ) holds for both strong and weak inhomoge- 
neity. One can speak in this case of particle diffusion in phase 
space, with a diffusion coefficient 

D=A/m. (5.3) 

It follows from the numerical calculations, in particular, 
that at a d 2  the mean squared change of the momentum on 
passage through a cyclotron resonance does not change on a 
[see (3.4) and (3.9)]. 

Note that all the analytic estimates of Sec. 4 pertain to 
the case of isolated resonances, i.e., max (A ,,A :/,,la 1 ' I2)  ( 1, 
whereas the region of applicability of the mapping (4.3) is 
much wider and is determined by the conditions 

We shall therefore study the mapping (4.3) and the diffu- 
sion coefficient D associated with it in the entire range of the 
inhomogneity parameter a ,  confining ourselves at the same 
time to the values of the amplitudes A, and A, below the 
threshold of stochasticity in a homogeneous medium, i.e., 
A,(1  and A ii2<1. 

At (a(< 1 the diffusion coefficient is determined by two 
factors: the mean squared change of the momentum on pas- 
sage through one resonance, and the number of resonance 
passed per unit time, equal to la 1 .  In this case the analysis of 
Sec. 4 yields estimates for the diffusion coefficients in the 
strong and weak inhomogeneity limits: 

D-A, I~zl/Az'~, a<A,<l, A,<Az'", 
(5.5) 

D-Ai2/2,  A 2 < a t l ,  A ,  lal'A<<Az. 

Numerical calculations show that the dependence of the dif- 
fusion coefficient on the amplitudes A, and A, agrees well 
with the analytic formulas (5.5). The nontrivial D(A,) de- 
pendence for the case of weak inhomogeneity is shown in 
Fig. 1. The dotted curve is a plot ofthe relation D = 3.7.1OP3 
A ; that approximates the results of the numerical calcu- 
lations (crosses) by least squares. For the chosen parameter 
values, (5.5) leads to D=. 1.9.10-'A ; 

Proceeding to discuss the dependence of the diffusion 
coefficient on the inhomogeneity parameter a ,  we note first 
that D is a periodic function of a with period 2, as follows 
directly from (4.3). In addition, it can be seen from the re- 
sults of Sec. 3 that at la I ( 1 both the mean squared change of 
the momentum on passage through an isolated resonance 
[ (3.9), (3.12) 1 and the time of motion of the particle 
between resonances (equal to la/-' in dimensionless vari- 
ables) are independent of the sign of a .  The diffusion coeffi- 
cient is therefore an even function of a .  The numerical calcu- 
lation shows that this property of the diffusion coefficient is 

FIG. 2. Diffusion coefficient D vs the inhomogeneity parameter a. 
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not restricted by the condition (a 1x1. The D ( a )  dependence 
in the interval 0 < a  < 1 is shown for A ,  = 0.17, A ,  = 0.11 in 
Fig. 2. Note the approximate symetry of D about a = 0.5, 
which suggests, together with the parity, an approximate 
periodicity of the diffusion coefficient in a with a period 1 
(besides the obvious rigorous period 2) .  

We have thus shown that when particles interact with a 
monochromatic wave in an inhomogeneous plasma, particle 
heating (diffusion in phase space) takes place even at wave 
amplitudes below the stochasticity threshold in a homogen- 
eous plasma, and is due to passage through many cyclotron 
resonances. This interpretation is meaningful at la 14 1. 
With increasing la1 the number of resonances passed per 
unit time increases. At la1 2 1 the foregoing interpretation 
becomes meaningless, whereas the mapping (4.3), as well as 
the general adiabaticity conditions v,, df2/ds4R2, remain in 
force. As shown above, the diffusion coefficient acquires pe- 
riodicity when the inhomogeneity parameter is increased, so 
that the heating rate is determined by mod ( a ,  1 ). At vari- 
able a one can therefore speak of an average diffusion coeffi- 
cient in an inhomogeneous medium. 

The main results of this study, which pertain to diffu- 
sion and heating of the particles, apply if the inequalities 
,u > Y )  1, v, )f2/k ,, are satisfied ( v ,  is the thermal velocity). 
In dimensional variables the first condition is of the form 

which ensures a large number of cyclotron resonances with a 
noticeable interaction amplitude equal to EJ, (p ) .  The sec- 
ond condition ensures the presence of an appreciable num- 
ber of particles that interact effectively with the wave. It 
should be noted that the analysis in Secs. 2 and 3 is not sub- 
ject to these conditions. 

From among the applications of the foregoing results 
we point out, for example, ion heating by lower-hybrid 
waves in tokamaks, proton spilling by VLF waves, interac- 
tion of electrons with upper hybrid waves in the magneto- 
sphere, and others. 

The authors thank A. V. Gurevich and V. Yu. Trakh- 
tengerts for helpful discussions. 
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