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The rate of intramolecular vibrational relaxation of an isolated polyatomic molecule is 
computed for a broad range of energies. The molecule-energy dependence of the relaxation rate 
has a threshold: it is zero below a certain critical energy Ec ,  and nonzero above. This threshold 
behavior is interpreted as being due to the development of dynamical chaos in the system. The 
calculation is carried out by means of the Green function technique with the use of the self- 
consistent quasiharmonic resonance approximation. A closed system of nonlinear algebraic 
equations is obtained for the quasiharmonic frequencies and relaxation rates of the vibrational 
modes of the molecule. The solutions to the system are analyzed numerically in the particular 
cases of molecules with 9 and 18 degrees of freedom. The dependence of the energy Ec on the 
number of degrees of freedom and the strength of the anharmonicity is investigated. The 
numerical values obtained for the relaxation rates are in good agreement with the available 
experimental data. The possibility of the existence of highly excited long-lived 
(nonequilibrium, but nonrelaxing) states in certain systems is demonstrated. 

1. INTRODUCTION 

An isolated polyatomic molecule is an interesting ex- 
ample of those nonlinear vibrational systems with a small 
number of degrees of freedom which exhibit a qualitative 
change in the nature of the motion as the energy is increased. 
In the low-energy region, which is studied in classical vibra- 
tional spectroscopy, the normal-mode picture is used, and 
the motion is, according to the Kolmogorov-Arnold-Moser 
theorem, regular (quasiperiodic) and bounded by the sur- 
face of ans-dimensional torus (s is the number of vibrational 
degrees of freedom). Irreversible relaxation does not occur 
in this energy region. But if the vibrational energy of the 
molecule is high, e.g., if it is comparable to the dissociation 
energy, then we have the opposite picture: the motion be- 
comes chaotic (stochastic), with a characteristic local tra- 
jectory instability. ' In this case the normal modes exchange 
energy so rapidly that a statistical description of the isolated 
molecule, implying an ergodic motion of the molecule on a 
(2s - 1 )-dimensional energy surface, is justified. In particu- 
lar, the unimolecular decay and the photochemical pro- 
cesses are normally well described by the statistical theor- 
i e ~ . ~  It will be interesting to find out the lowest energies at 
which the statistical picture is still correct if it gives reasona- 
ble results at energies of the order of the dissociation energy, 
the intramolecular exchange rate in the statistical region, 
and what becomes at high energies of the motions that are 
normal modes at low energies. These questions are currently 
the subject of extensive discussions in the literature (see, for 
example, Ref. 3).  

In the present paper we investigate the transition to sta- 
tistical behavior of the vibrations of a polyatomic molecule, 
the compute the vibrational relaxation rate with the use of 
the temperature quantum-Green-function t e~hn ique .~ .~  At 
high excitation levels the molecule can be described in the 
self-consistent quasiharmonic approximation as an ensem- 

ble of vibrational quasimodes with molecule-energy depen- 
dent frequencies wk (El  and corresponding relaxation rates 
y, (E l .  Our approximation exhibits the following behavior 
as the energy is varied (see Fig. 2 below). At low energies the 
frequencies wk ( E )  turn into normal-mode frequencies, and 
y, (E) = 0. As the energy of the molecule is raised above a 
certain critical value Ec , the modes begin to undergo damp- 
ing with logarithmic decrements yk , which describes the in- 
cipient process of energy exchange among the modes. Each 
of the quasimodes relaxes to the equilibrium state with its 
own rate y k .  This threshold behavior of the vibrational re- 
laxation has been observed experimentally (see, for exam- 
ple, Refs. 6 and 7) and in numerical m ~ d e l i n g . ~ . ~  The ap- 
pearance of y, $0 corresponds in our model to a transition 
to chaotic intramolecular vibrational dynamics with expo- 
nential damping of the correlations. But over long time per- 
iods of the order of Cjo, where p is the density of states, the 
discreteness of the spectrum of the quantum system should 
certainly tell, and lead to a state free of quantum chaos in the 
strict s e n ~ e . ' ~ - ' ~  We avoid contradicting this well-known re- 
sult, since we assume a smoothed-out spectrum of the sys- 
tem,13 which automatically limits the applicability of our 
theory to time periods t, -@. For a chaotic regime with 
y#O, the time period t, usually turns out to be very long; 
therefore, such a regime should, in accordance with the ter- 
minology used in Refs. 11 and 12, be called "transition cha- 
os." 

2. HAMlLTONlAN OF THE MOLECULE AND THE GREEN 
FUNCTIONS 

1. We consider a system with the Hamiltonian 

where the q, are the normal coordinates and the pi are the 
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corresponding momenta. Thes value of interest to us is, gen- 
erally speaking, of the order of 10, but we do not intend to fix 
this number. We shall assume w,,>lX,, 1, which corre- 
sponds to the real situation in molecules, where the wOi are of 
the order of 1000 cm-' and the anharmonicity constants X 
lie in the range from 1 to 10 cm- '. Thus, we are considering a 
system with weak anharmonicity (according to the termin- 
ology use'd in Ref. 14, a degenerate system). If the zero wOi 
frequencies satisfy some exact resonance relations, then the 
randomization of the vibrations occurs even at zero mole- 
cule energy.? For real large and intermediate-size mole- 
cules, such as CF31 and SF,, a more typical situation is the 
one in which the various Fermi resonances satisfy not exact 
relations connecting the w,,, but approximate ones with 
characteristic detunings of the order of 10-100 c m  ', in ac- 
cordance with which the randomization begins at some fin- 
ite energies E,. The mechanism leading to the randomiza- 
tion of the vibrations-the overlap of the resonances1-is 
realized in polyatomic molecules under conditions when 
many degrees of freedom participate in it, and the various 
Fermi resonances successively overlap, thereby drawing in 
all the new degrees of freedom qi of the molecule. This spe- 
cific mechanism is sometimes called mixing along a chain.', 
The existence of close resonances for several degrees of free- 
dom leads to a situation in which the critical energy Ec is 
much lower than the dissociation energy D, in contrast to the 
case of small systems, such as the Henon-Heiles system' (see 
also Ref. 17), where the resonances overlap with respect to 
one coordinate, and this usually occurs only at Ec close to D. 

Of greatest interest in the invkstigation of intramolecu- 
lar dynamics are such quantities as the correlation functions, 
the absorption spectrum, and the relaxation characteristics. 
All this information is contained in the system's response 
function (the retarded Green f ~ n c t i o n ) , ~  which is used in 
the present paper to compute the vibrational relaxation rate. 

2. We shall compute the function representing the re- 
sponse of an ensemble of systems (2.1 ) to an infinitely weak 
external monochromatic field, and follow how this function 
varies as the energy of the molecule is increased. We shall 
neglect the molecular collisions in the ensemble, so that the 
only role that the ensemble will play will be that of effecting 
the appropriate averaging (in the classical problem this will 
simply be averaging over the initial values qi (0)  andp, (0)  ). 
As is well known, the linear response of the system is deter- 
mined by the correlation properties of the unperturbed mo- 
tion4; therefore, what we shall be studying here is actually 
the motion of an isolated system, (2.1 ), with averaged initial 
data. This formulation of the problem is the one closest to 
real experimental conditions. 

It would be ideal to consider the monoenergetic ensem- 
ble of molecules with the density matrix S ( E  - H ) ,  but for 
reasons of computational convenience let us consider an en- 
semble with a thermal distribution. We choose the ensemble 
temperature T = l /p  so that the average energy per mole- 
cule is equal to the E value of interest to us. In our case there 
is some energy spread SEabout the average value E, but ifs is 
large, then this spread is not very large: SE/E(l.  On the 
other hand, when s not large, we shall speak only of the 
temperature of a molecule, since SE-E. 

The response of the ensemble with the Hamiltonian 
(2.1) to an external perturbation is given by the retarded 
Green function (GF ) 4  

GlhR(t)  =iO ( t )  ( [ q i ( t ) ,  qk(O)] ), (2.2) 
where the q, ( t )  are the operators in the Heisenberg repre- 
sentation, B(t) is tthe Heaviside theta function, and the aver- 
aging is over the thermal distribution with the exact Hamil- 
tonian (2.1 ) : 

(. . .> =Tr (e -PH . . .) /Tr e-BH. (2.3) 
The imaginary part of the Fourier transform GR ((I) gives 
the absorption spectrum of the system. Let us consider the 
form of GR (a) in the simplest cases. For a molecule in the 
harmonic approximation, i.e., when Xu, = 0, the frequency- 
dependent G F  is 

The absorption spectrum consists of a single line at the fre- 
quency wok (the same frequency with the opposite sign gives 
the stimulated-emission spectrum). If each of the harmonic 
modes were attenuated with logarithmic decrement y, as a 
result of, for example, contact with an infinite energy reser- 
voir, then we should have 

The relaxation in energy terms of each of the modes to the 
equilibrium state then occurs at the rate y, . In the case (2.5) 
the contribution of the k th mode to the total absorption is 
given by the expression 

The absorption spectrum of such a system is, as can be seen 
from (2.6), continuous, and has the Lorentz shape. 

Our problem is to determine the G :  for the Hamilto- 
nian (2.1 ) . The exact expression for G contains a huge 
number of close lines lying in the absorption spectrum at 
distances - ( $ ) - I  apart, but we shall be interested only in 
the smoothed-out spectrum of the system, or the envelope of 
the spectrum. To do this, we must consider the G F  for the 
complex w valuesI3 in the upper part of the complex plane, 
where GR ( w )  is analytic. 

3. The diagrammatic perturbation theory series is con- 
structed for the temperature GF, and the GR ( w )  function of 
interest to us is found through the analytic continuation of 
the first of the discrete-frequency points to the entire upper 
half-plane of the w ~a r i ab l e .~  The rules of the diagrammatic 
technique are easily obtained from those of the diagrammat- 
ic technique for phonons by setting the phonon momentum 
equal to zero. The difference between our problem and the 
standard situation in a solid lies in the absence of a space 
variable and the finiteness of the system. The latter is, in the 
case of a thermal distribution, not an obstacle to the con- 
struction of the diagrammatic technique. 

Let us introduce the connected temperature G F  3,  : 
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where 3 ,  denotes the disconnected part: 

In (2.7) and (2.8) the arguments 71.2 = it have been re- 
placed by the corresponding indices and the operator Tor- 
ders the q, in 7. Let us also introduce a diagrammatic nota- 
tion. Let us write (2.7) in the form 

We represent the outer points by crosses; the exact GF, by 
double lines. The function 3 denotes the set of all possible 
connected diagrams. The set of all diagrams that break up 
into two disconnected parts is evidently given by the product 
(qik ) (qk ), which does not vanish when the anharmonicity 
is taken into account. For the quantities 9, and (q, ) enter- 
ing into (2.9) we can write down the corresponding Dyson 
equations: 

A single line in (2.10) and (2.1 1 ) denotes the function 9, 
in the harmonic (zeroth) approximation, i.e., the function 
9 2'. The points in the diagrams (2.10) denote the corre- 
sponding anharmonicity constants Xuk . For the self-energy 
part B we have the following diagrammatic representation: 

where V is the vertex function. It is not difficult to give a 
definite physical meaning to each of the diagrams: they de- 
scribe the processes of intermode energy exchange resulting 
from the fusion and breakup of the vibrational quanta of the 
corresponding modes. Each elementary act consists of the 
interaction of a group of three modes, but the high orders of 
the perturbation theory describe quite a complicated step- 
by-step mixing of a large number of modes in the molecule. 
Such high-order perturbation theory processes are phenom- 
enologically described in Ref. 16, and are called mixing 
along a chain. The successive processes of frequency break- 
up and fusion are the cause of the randomization of the vi- 
brations in the mole~ule. '~  

Next, we shall show the certain diagrams are resonance 
diagrams, i.e., that they contain in their denominators fre- 
quency combinations that are nearly equal to zero (Fermi 
resonances). Such diagrams can occur in any order of per- 
turbation theory, and therefore we cannot limit ourselves to 
any finite perturbation-theory order in the expansion 
(2.12). The lowest approximation that includes the effect of 

interest to us, namely, the occurrence of relaxation in the 
finite system (in a time period not exceeding t, (see the 
Introduction) ), is contained in the expansion of the vertex 
function V, which can be represented by the diagrams 

For us to be able to limit ourselves to a definite finite approx- 
imation in the V expansion, specific molecule-frequency 
combinations must be absent. For example, in a system of 
five frequencies with two Fermi resonances w lzw2  + w, 
and w, -a4 + w,, for us to be able to limit ourselves to the 
first term in the expansion (2.13 ), none of the frequencies 
should be close to any one of the combinations (1/2) 
Iw2+w5-wj-w4I and (1/2)Iw2+w4-w3-w5l (the 
detuning should be of the order of the frequency itself). This 
approximation can also be used when there are resonances, 
but the corresponding anharmonicity constants are equal to 
zero; for example, when 

These conditions lead to a situation when the mode 1 breaks 
up into the renormalized modes 2 and 3, which, without the 
participation of the mode 1, no longer interact with each 
other. And similarly for the modes 4 and 5. This approxima- 
tion is analogous to the Hartree-Fock approximation for a 
solid. 

The rules for the analytic representation of the dia- 
grams are obtained, using the conventional procedure.4 For 
example, the equality (2.12) has the form 

The equalities (2.10) and (2.14) express the Ehrenfest 
theorem for the equilibrium vibrations of the system (2.1). 
The first approximation for the 8, can, in the Fourier repre- 
sentation, be written in the form 

( 0 )  
21:' (izv) = 7 fi2 ~ x ~ ~ ~ x ~ ~ ~  gA)'(v-a)gmv, (c) 

( - o 2  1 + -- p x~,,x,.,-- g::' ( a ) .  (2.15) 
l ,rn=l  m o m  a=-, 

Here a and Y are whole numbers, z = 27~/P, and g"' is the 
first-approximation GF, which can be obtained from (2.4) 
by taking account of the fact that4 

3. THE PRINCIPAL APPROXIMATIONS FOR THE GF 

1. If we use a specific approximation for the vertex V, 
then we have for the quantities 9, 9, 8, and (q) the closed 
system of equations (2.9)-(2.12). In this paper we take the 
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first approximation for the vertex V, in which case Vreduces 
simply to the unrenormalized anharmonicity constant Xu, 
(see the first term in (2.13) ) . The conditions necessary for 
this approximation to be valid are discussed in the preceding 
section. 

2. We shall seek the function 9 in the quasiharmonic 
approximation: the mode vibrations are assumed to be har- 
monic with frequency w, (E )  that depends on the energy 
(temperature) of the The intermode interac- 
tion can, in the simplest case, be taken into account by as- 
signing a relaxation constant y, (E)(w, to each of the 
modes (more precisely, quasimodes, by analogy with quasi- 
particles). The constant y, gives the rate at which the ener- 
gy of the k th mode will relax to its equilibrium value if ini- 
tially it deviates from the equilibrium value by a small 
amount SE. The quantity SE clearly should be small com- 
pared to the total energy E of the molecule. Thus, we shall 
seek the Fourier transform of the function 9, in the form 

where wk and yk are unknown functions of the molecule 
energy. In the case (3.1) theGF G z  (w) has the form (2.5). 
As can be seen from (2.5), we replace the exact GFwith a set 
of poles located on the real axis at distances (h) - ' apart by 
a trial function with a single pole in the lower part of the half- 
plane Rew > 0. This approximation clearly can be consid- 
ered to be good enough when the envelope of the spectrum in 
the region of the active-vibration frequency has one princi- 
pal peak. 

3. We assume that the GF  is diagonal in the indices i and 
k. Let us show that this is true in the so-called resonance 
approximation when there are no degenerate modes, or 
when certain anharmonicity constants are equal to zero. 

Let the exact GF  gik ( Y )  have the form (3.1 ); then, the 
self-energy part Zik ( Y )  has the form (2.15) with go on the 
right-hand side replaced by g. The second line in the equality 
(2.15) (the second term in (2.12) ) can be approximated by 

-. 

where n, is the mean occupation number for the mode m. It 
can be seen that the terms 2'"'' contain a characteristic mol- 
ecule frequency in their denominators. On the other hand, 
for the first term in (2.12) (the first line in (2.15) ) we have 

where 

The quantity izv should be replaced in the analytic continu- 
ation by a continuous variable w, the most important values 
of which lie in the vicinities of the molecule's vibrational- 
mode frequencies. It can be seen that (3.3), in contrast to 

(3.2), may contain small detunings in its denominators. 
Therefore, it makes sense in the case when Fermi resonances 
are present to retain only the terms arising from 2'" . Fur- 
thermore, of the 8'') terms we shall retain only the reso- 
nance terms proportional to l/Aw, where Aw is the charac- 
teristic detuning of the Fermi resonance. Since, as can be 
seen from (3.3), the effect of the resonance is important 
when Aw -X(2n + 1 ) ' I 2 ,  wherexand n are the characteris- 
tic values of the corresponding variables, the ratio of the 
resonance to the nonresonance terms is equal to 
X(2n + 1 ) 112fi, where Z5 is the characteristic frequency in 
the molecule. Practically, the smallness parameter is -0.01. 
We call the approximation in which the small terms are dis- 
carded in the computation of GR ( 0 )  the resonance approxi- 
mation. Since 2:;' contains resonance denominators, it is 
clear that Zik will be large only for those indices i and k for 
which we have the resonances: ai ZW,  + w, and 
w, + w, = a k ,  i.e., when wi ~ w , .  If there are no degenerate 
modes in the molecule, then, evidently, 2, is diagonal in the 
resonance approximation. The matrix H,, is also diagonal 
when there is degeneracy, but X,, or Xk, = 0. Such a situa- 
tion can be made possible by the symmetry of the molecule. 
For example, we can very easily verify that this is true for 
molecules with the C,, symmetry. 

With allowance for the foregoing, we can recapitulate 
by saying that we are using the self-consistent quasihar- 
monic resonance approximation. 

4. EQUATIONS FOR THE FREQUENCIES w, AND THE 
RATES y, 

We seek the Green function in the model form (2.5), 
(3.1), where wk ( E )  and yk (E) are unknown functions of 
the molecule energy. The problem is to determine these func- 
tions. At very low energies we must have w, =wok and 
yk = 0. 

As follows from the preceding section, we are using the 
equation for the G F  in the form (2.11 ), where Z is 8"' : 

The diagonal part of the Dyson equation, continued analyti- 
cally into thew plane, has the form 

The right-hand side of (4.2) is computed, using (2.4) and 
(3.3). If gik, in terms of which we compute 8''' , were the 
exact function, then we should obtain on the right-hand side 
a function that coincides with G fk (w) at all points of thew 
plane. But since gik is only an approximation, we can only 
hope for an approximate satisfaction of Eq. (4.2), and not in 
the entire plane, but only in the region where G fk(w) is 
analytic, i.e., in the Imw > 0 region. Indeed, the right-hand 
side of (4.2) has a set of poles and zeros in the lower part of 
thew plane (see (3.3) ) , while the left-hand side has only one 
pole (more precisely, two poles located symmetrically about 
Rew = 0).  On the other hand, the function GR , by its mean- 
ing, is required by us precisely in the region Imw > 0, and not 
at all points, but only in the vicinities of the poles, which are 
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themselves located below the real axis. We obtain this corre- 
spondence in Eq. (4.2) by choosing the parameters wk and 
y, in the best way. The equations for these quantities are 
obtained from the requirement that the equality (4.2) be 
satisfied at the points + wk + iyk/2. Also, let us require 
that the derivatives of the right- and left-hand sides be equal 
at these points, a requirement which guarantees the satisfac- 
tion of the equality (4.2) not only at one point, but also in 
some vicinity of this point. As the numerical investigation of 
the equations obtained shows, the final results, i.e., the w, 
and y,, are very insensitive to the specific choice of the 
matching point in the vicinity of the pole. The first condition 
is equivalent to the requirement that the poles of the trial and 
required functions coincide; the second condition, to the re- 
quirement that the corresponding residues be equal. Substi- 
tuting the function (2.5) into (4.2) with allowance made for 
(2.4) and (3.3), and discarding the nonresonance terms of 
theorderofx 2(2n + l)/w at thepointsw = + w, + iyk /2, 
we obtain 

where the ni are the Boltzmann populations of the ith mode. 
In computing the ni we can use the unrenormalized frequen- 
cy, since Awfig  1 (but Aw is usually comparable to the reso- 
nance detunings 1. The dependence ofw, and y, on the ener- 
gy arises from the corresponding dependence of then ,  j .  The 
criterion used in choosing the required root of the nonlinear 
system (4.3) and (4.4) is that the residue of the function 
(4.2) at the pole found should be close to that of the trial 
function (2.5). Notice that this requirement has a direct 
physical meaning, since the magnitude of the residue is pro- 
portional to the integrated cross section for absorption in the 
mode in question. We can, by controlling the integrated 
cross section, obtain a convenient intrinsic condition of ap- 

plicability of our single-pole approximation. 
The system (4.3), (4.4) solves the problem formulated 

in this section. 

5. QUALITATIVE INVESTIGATION OF THE SOLUTIONS TO 
THE SYSTEM (4.3), (4.4) 

If the vibrations of the molecule are harmonic, i.e., if 
X,,, = 0, the the only solution to the system (4.3 ), (4.4) is 
wk = wok, yk = 0. NOW let X,,, #O, but T = 0. Then only 
the transitions from the ground state remain in the spec- 
trum, and the w, are the energies of the first excited levels. 
The subsystem (4.4) possesses the solution y, = 0, and the 
subsystem (4.3) reduces to the vector equation of the secular 
perturbation theory for the first excited levels. 

The subset of equations (4.4) possesses the trivial solu- 
tion y, = 0 also in the case of nonzero anharmonicities. But 
at large values of the anharmonicity constants, or, equiv- 
alently, at high energies (only combinations of the type 
X 2(2n + 1 ) occur in the equations), there also exists a solu- 
tion with yk > 0, and what is more, it becomes, in accordance 
with the criterion for choosing the required solution, the 
principal solution immediately after its appearance. It is not 
difficult to verify the existence of such a solution in the case 
of a high Fermi-resonance density. Indeed, the sum on the 
right-hand side of (4.4) is a sum of Lorentz contours with 
noncoincident peaks and different widths. If the contour 
widths y, + y, + y, are greater than the distance between 
neighboring resonances, then this sum can be replaced by the 
Fermi-resonance density, so that at high temperatures, when 
n a T, we obtain 

Y A C " ~ T ~ : "  ( o h ) ,  (5.1) 

wherep;'" is the density of the three-frequency resonances.'9 
The expression (5.1 ) is a generalization of the Fermi rule for 
the disintegration of a level into a band. In order to follow 
what happens to this solution as the energy decreases, let us 
make the following assumption: let us assume that all the yk 
are equal, and that the resonances are equally spaced, with 
detunings A = (p?) -' (see Fig. 1 ). Then for y, = y we 
obtain the equation 

Here X ( T )  = X (2n + 1 ) , Xand n being the characteristic 
values of the corresponding variables, and r, = (277~5"") - I .  

Assuming a priori that y)~, ' ,  we find from (5.2) that 
y = 277p;'"X2( T), i.e., we obtain the old result (5.1 ). But if 
YgT, I, then 

It is clear that, for y#O, we must haveX2(T) > A;, i.e., it is 
necessary that the effective interaction span the smallest de- 
tuning. Let us note an interesting characteristic of (5.3) in 
the high-temperature limit, where n a T: The expression 
('5.3) assumes the form 
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FIG. 1. The frequency o, is connected with a large number of resonances. 
The distance between neighboring resonances is A, and the smallest de- 
tuning is A,. In this case Eq. (5.2) possesses an analytic solution. 

ym (T-T,) '". (5.4) 

In the region T <  Tc we have only the solution y = 0. The 
characteristic square-root dependence (5.4) is a conse- 
quence of the approximations made above, approximations 
which are similar to the mean-field approximations made in 
the theory of phase  transition^.^' The analogy between the 
onset of irreversibility in a finite system and phase transi- 
tions has also been noted by BenettinS2' In our model this 
analogy does not stem solely from the dependence (5.4). As 
the numerical investigations of the energy dependence of the 
residue at the pole found above showed (see Table I ) ,  our 
model becomes less and less applicable as we approach the 
transition point, something which is also characteristic of 
the mean-field method. 

Thus, the solution to the system (4.3)-(4.4) has the 
following general character: the trivial solution with y = 0 is 
unique at low molecule energies (i.e., in the temperature 
region T <  Tc ) . This solution survives at high energies, but 
there arises at T > Tc a solution with y # 0 that becomes the 
principal solution. It is worth noting that, in the region 
T >  T c ,  the solution (ak ) to (4.3) with y = 0 becomes un- 
stable when used in iterations of this equation, which corre- 
sponds to the divergence of the perturbation theory series for 
this solution. 

6. NUMERICAL SOLUTIONS 

Figure 2 shows the numerical solution of Eqs. (4.3 ) and 
(4.4) for a system of nine oscillators. Equal anharmonicity 
constants were chosen. The frequencies wok correspond to 
the normal-mode frequencies of the molecule CFC1,Br. The 
dependence of the residue Ri on the energy is shown in Table 

I. The numerical solution corroborates the results of the 
qualitative analysis carried out in the preceding section. The 
values of the exchange rates y, , as well as those of the thresh- 
old energy E, , are in good accord with the experimentally 
ebserved 

The nonmonotonic behavior of y, in Fig. 2 is due to the 
fact that the relaxation rate is determined by the presence of 
resonances in the system, but since the frequencies wk are 
themselves energy dependent, the corresponding resonance 
detunings can either decrease or increase as the molecule 
energy increases. The latter circumstance leads to the de- 
crease of y. In particular, we can have a situation, as, for 
example, the one depicted in Fig. 3, in which y vanishes at 
E > Ec . Depicted here is the dependence on the anharmoni- 
city constant X at a fixed energy, and not the energy depen- 
dence. In the regionXC2 < X < XC, the frequencies in the mol- 
ecule are such that there are no resonances favorable for the 
appearance of y#O. This plot of y as a function of E for 
X = const has a similar form, with y = 0 in the regions 
E < Ec, and Ec2 < E < Ec, . Figure 3 also shows the scale of 
detuning of the nearest resonance. In order for y to be non- 
zero, at least two resonances must overlap. 

That the appearance of y $0 is tied with the overlap of 
the resonances is demonstrated in Fig. 4, which shows the 
dependence of y ,  for CFC1,Br on the normal-mode frequen- 
cy a,,. We can clearly see the resonance structure of the 
dependence y ,  (wo, ) for small anharmonicity constants. For 
large anharmonicity constants X the effective interaction 
leads to the immediate overlapping of several resonances. 
Thus, the situation in which y vanishes at E > Ec (Fig. 3 )  
can arise only in the case of not very large anharmonicity 
constants. 

It is of particular interest to investigate the dependence 
on the system's parameters of the limit Ec above which the 
modes cease to be independent of each other. Figure 5 shows 
the dependence of the quantity Ec on the anharmonicity 
constant X = X,,, . At large values of Ec , i.e., in the classical 
region, we have the dependence X 'EC = const (see the re- 
mark at the beginning of Sec. 5 ). At sufficiently large values 
of the constant X, the limit Ec = 0. This means that even the 
zero-point vibrations cannot be considered to be indepen- 
dent in the case of such anharmonicities (see the Discus- 
sion). The dependence of E, on the number s of degrees of 
freedom can be determined from the relation (5.3). In the 
high-temperature region, where n a T, we find from (5.3) 
that 

TABLE I. Energy dependence of the residues at the pole found. 

E, cm-' I ?RI  I 2.9 

Footnote. The theory is exact when 2R,  = 1. The frequencies in the model corre- 
spond to the CFC1,Br molecule; X,,, = 0.06 cm-'  and E, = 8.1 X lo6 cm- ' 
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FIG. 2. Dependence of the intramolecular intermode relaxation rate on olO, cm- 

the molecule energy for the modes 1, 3, and 5 of the CFC1,Br molecule; 
T,, is the relaxation time in psec. The constants Xu, = 2.4 cm-' and FIG. 4. Dependence of the intramolecular relaxation rate for the mode 1 
E, = 4629 cm-'. on the normal-mode frequency o,,. The system is the same as for Fig. 3; 

the energy E  = 4677 cm-I. 

y l ,  cm-1 

Sincep;'" a s2 in the case of three-frequency interaction,I9 we 
have E, a (X 2s3) -'. We verified this relation through the 
numerical computation of E, for systems with 9 and 18 de- 
grees of freedom and different anharmonicities (see Table 
11). The predicted dependence is accurate to within 25%. 

I2 

8 

4 

7. DISCUSSION 

- 

- 

- 

- 

- 

- 

We have computed the GF  for the vibrationally excited 
molecule in the approximation that describes only two prin- 
cipal details of the actual absorption spectrum: the location 
of the absorption line center w, and the line width y,. The 
envelope of the spectrum always turns out to be Lorentzian, 
which only approximately corresponds to the actual shape 
of the line near the threshold energy. It is shown that the 
extremely complicated sequential interaction between the 
Fermi resonances can be taken into account by considering 
the interaction of the renormalized frequencies of the mole- 
cule. The appearance of relaxation in our model has a thresh- 
old character, which is a propery of our single-pole approxi- 

65'00 15800 24700 
E, cm- 

mation. The quality of this approximation deteriorates as 
the transition point E, is approached. But since the region 
where our approximation is not sufficiently accurate is 
usually small, our model gives a good estimate for the experi- 
mentally observed6.' randomization "threshold." It is also 
important to emphasize that, outside this transition region, 
our approximation guarantees a high degree of accuracy, 
allowing, in particular, the computation of the quasimode- 
relaxation rate y, in a molecule. 

The physical cause of the irreversible relaxation is the 
chaotic nature, due to the nonintegrability of the system, of 
the intramolecular dynamics at high molecule energies. '9'.'O 

It is worth noting that we can show analytically that our 
model yields the exact result y = 0 in two examples of the 
integrable system. The first one is the system of harmonic 
oscillators with bilinear coupling. In this case the total Ham- 
iltonian is a quadratic function of the coordinates, and there- 
fore the system is integrable. The second example is the syst- 
tem with the Hamiltonian (2.1 ) in the case when s = 3 and 
there occurs one Fermi resonance wo, z w , ,  +ao,. In this 
case we have exactly three integrals of the motion: the total 
energy, the sum of the harmonic energies, and the differ- 

FIG. 3. Dependence of the intramolecular relaxation rate for the mode 1 
on the anharmonicity constant X = X;,, . The system is one of nine oscilla- 
tors with frequencies 1012, 945, 844, 777, 558, 527, 461, 446, and 380 
cm-I. The energy of the system is constant, and equal to 4677 cm-I. The 
dependence y ( E )  has a similar form: y = 0 in the regions E < E c  and 
EC2 < E < E , , .  

FIG. 5. Dependence of the critical energy E, for the CFC1,Br molecule on 
the magnitude of the anharmonicity constant X. 
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TABLE 11. Dependence of the critical energy E, on the magnitude of 
the system's anharmonicity constant X and the number of degrees of 
freedoms. 

I 9 I 18 

X,cmP1 1 0.06 1 1.8 I 006 1 0.42 
Ec,cm-l 8.1.106 6.9. lo3 1.2.108 1.9.103 

Footnote. o ,,, [cm-'1 = 1000, 945, 844, 777, 558, 527, 461, 446, 
and 380; o ,,,_,, [cm-'1 = 1044,923, 897,723, 633, 502,488,400, 
and 355. The frequencies 1-9 correspond to the CFC1,Br molecule. 

ences, n, - n,, between the numbers of quanta in the second 
and third modes. This system is also integrable in the reso- 
nance approximation.' 

The regime with y(E)  # O  corresponds to the appear- 
ance of chaos in a system with a given energy. But we must 
note that, at low energies and, in particular, at E = 0, the 
quantum correlation function ( E  lai (t)a: IE ) depends not 
only on the properties of the molecular state IE ) with energy 
E, but also on the corresponding state having the energy 
E + hk , and coupled to lE ) by the operator a+ .  Only in the 
classical limit tiw, (E do these states merge, and does such a 
correlator directly carry information about the molecule 
with energy E. In particular, in the averaging over the 
ground state 10) (at T = 0)  we encounter the opposite situa- 
tion, when 10) and a +  10) are essentially different states, and 
"chaos in the ground statew-the exponential damping of 
the corresponding correlation function-should be inter- 
preted as the absence of nonrelaxing one-quantum excita- 
tions. 

We have seen (see Fig. 4) that, under suitable condi- 
tions, there can exist for the highly vibrationally-excited 
molecule energy regions where intermode relaxation does 
not occur. The exact equality to zero of y in the region 
EC2 < E  < Ec3 is, perhaps, a characteristic of our model (ap- 
proximation), but this example clearly indicates that the fre- 
quencies of the molecule may be different at high energies, so 
that the resonance exchange between them may be anoma- 
lously small. The existence of such energies, i.e., energies at 
which the modes again "decouple," is of practical interest. 
Indeed, if such a region lies so high that the dissociation 
energy falls within it, then the dissociation of the molecule 
will no longer be governed by statistical laws (i.e., the 
RRKM theory2 will break down), which reveals the possi- 
bility of a mode-selectrive dissociation of molecules. l 6  Simi- 

lar highly-excited states were recently discussed by Hose and 
Taylor.', 
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