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If one constructs the theory of quantum strings on the basis of the path group by analogy with 
the previously proposed theory of gauge-charged particles, the carrier of the interaction of the 
strings must be a nonlocal field which is itself a string. I '  

1. INTRODUCTION 

Over the last few years the theory of quantum strings 
has aroused great interest. This theory is closely related to 
the loop approach to gauge theory, in particular to quantum 
chrom~d~namics. '- '~ In a number of papers it was assumed 
that the strings are extended elementary objects which mani- 
fest themselves phenomenologically like ordinary localized 
fields and particles. In the majority of cases one considers 
strings which appear as singular configurations of ordinary 
matter, for example, as narrow bundles of flux lines of the 
gauge field (gluon field). For the description of the interac- 
tion of quantum strings one usually considers processes in 
which they undergo a topological restructuring4: fusion, di- 
vision, closing up of open strings, etc. Sometimes it is as- 
sumed that the interaction of the strings is carried by fields, 
for example by the field of a second-rank antisymmetric ten- 
sor.' 

In order to study the behavior of quantum strings and 
having in mind the development of the loop approach to 
quantum chromodynamics, geometric methods have been 
proposed"11 based on the concept of a connection in the 
space of loops. Here, however, the loops appear as a method 
of description of an ordinary gauge field, as a result of which 
the connections on the loop space have vanishing curva- 
t~re.~-'O 

In previous papers of the a ~ t h o r ' ~ - ' ~  an algebraic meth- 
od was used for the description of the gauge field, a method 
which made use of induced representations of the so-called 
path group.12 In Refs. 14 and 15 it was proposed to make 
sure of the path group on the space of paths for the descrip- 
tion of strings. In order to distinguish the latter from the 
ordinary path group (for instance, the path group of Min- 
kowski space), the path group in the space of paths was 
called the group of 2-paths. Its elements are surfaces in the 
original space (e.g., Minkowski space), parametrized in a 
special way. The group of 2-paths allow one to construct the 
theory of strings in complete analogy with the theory of 
gauge-charged particles. The theory predicts that the inter- 
action of strings is transmitted by a nonlocal field described 
by a functional of the path, and is therefore itself some kind 
of string. This nonlocal field was named the 2-gauge 
field.I4,l5 It was shown15 that there can exist 2-gauge fields of 
topological origin which should lead to interference effects 
for the strings of the type of the Aharonov-Bohm effect for 
ordinary particles. 

In the present paper we shall describe some details of 
this approach to the theory of strings. In particular, we shall 
introduce the notion of generalized gauge transformations 
(2-gauge transformations) and generalized covariant de- 
rivatives. The algebraic approach based on the path group is 
closely related to the geometric approach, so that the geo- 
metric methods are a working tool and adequate language 
for the former. In particular, the 2-gauge field introduced as 
a representation of the group of 2-loops can be considered as 
a connection in the space of paths. However, in distinction 
from the case when this connection is generated by a gauge 
field7-'', the curvature for a nonlocal2-gauge field does not 
vanish. Its vanishing would be a sign that the 2-gauge field 
effectively reduces to a gauge field. Another radical distinc- 
tion of the proposed algebraic approach is the presence of a 
group (the path group or the group of 2-paths), which al- 
lows one to be guided at every step by invariance require- 
ments. 

The paper is organized as follows: Section 2 contains a 
brief exposition of the algebraic approach to gauge theory 
based on the path group. The group of 2-paths is defined in 
Section 3 and the basic principles for the description of 
strings in terms of representations of this group are formu- 
lated. Sections 4 and 5 contain more detailed characteriza- 
tions of the corresponding representations, which means a 
more detailed description of the 2-gauge field and its action 
on the string. Section 6 is devoted to an investigation of the 
generalized gauge transformations and Section 7 considers 
the special case of a 2-gauge field which reduces to a local 
field. Section 8 contains a brief summary of the obtained 
results. 

2. AN ALTERNATIVE APPROACH TO GAUGE THEORY 

An alternative approach to gauge theory is based on the 
path groupI2 P = P(M) in Minkowski space. An element of 
this group is a path p = [XI@, defined as an equivalence 
class of continuous curves {x(r)dM ~ O < T <  1 ) in Minkowski 
space. Two curves belong to the same class if they differ by 
parametrizationx' (7) = X (  f (7) ), by an overall translation 
x (T), by attachment to one of the curves of an "appendix" (a  
segment traversed first in one direction and then back), and 
finally, by any combination of these operations. The inverse 
pathp- ' = [x] - '  is defined by the same curve but traversed 
in the opposite direction: x- ' (T) = x (  1 - T). The identity 
element is defined as the constant path x ( r )  = const. For 
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each path one defines the 4-vector 

called the shift vector along the given path. The mapping 
A:P-+M is a homomorphism of the path group into the 
group of vectors (or the translation group) of Minkowski 
space. In this sense the path group generalizes the transla- 
tion group. This generalization allows one to consider not 
only free particles, but also particles in an external field. The 
kernel of the homomorphism is the subgroup of closed paths 
or the group of loops, L = L (M) = { I d '  I A1 = 0). This sub- 
group plays a key role for gauge theories over Minkowski 
space. 

A gauge theory arises when one requires that an ele- 
mentary particle should exhibit two properties: it should be 
local (with localization in Minkowski space M) ,  and covar- 
iant with respect to the path group P = P(M).  The first re- 
quirement means that the states of a particle can be de- 
scribed by functions defined on Minkowski space, $(x), 
xEM. The second means that these functions transform ac- 
cording to a representation of the group P. It  follow^'^ from 
the general theory of local properties of covariant sys- 
tems'"" that the localized properties of particles form a 
vector space Za which carries a representation induced 
from the subgroup of loops, U, (P) = a ( L )  rP. The repre- 
sentation a ( L )  of the subgroup of loops L which is the 
source of the induction, may be arbitrary. This is the only 
element remaining arbitrary in the theory of particle local- 
ization. We note that the states which make up the space Za 
are virtual states. They are states which are created and anni- 
hilated in the process of local particle interactions. Real 
states of particles which one can observe form a space of 
generalized vectors in Za. We shall have no explicit need 
for these states. 

It turns out that the representation a ( L )  of the loop 
group is adequate for the description of some configuration 
of a classical gauge field. This representation is determined 
by the vector potential of a gauge field by means of the path- 
ordered exponential 

a ( I )  =P exp{ i j A. (2) dxp} , 
10 

(1)  

where the integration is along a loop I which starts at the 
origin 0 of Minkowski space (one could have chosen any 
other point as well). The representation U, (P) which de- 
scribes a particle is generated by the covariant derivative 
V, =a, -iA, (x),  i.e., 

U= ( p )  =P erp { - j axV 8.1. ( 2 )  
P 

Thus, the main ingredients of a gauge theory-the vector 
potential and the covariant derivative-arise naturally within 
the group-theoretic method based on the loop group. It is not 
necessary to introduce requirement of gauge invariance. If 
the representation a (L )  has dimension n one effectively ob- 
tains a gauge theory with gauge group U(n ). It is important 
for the sequel that the group-theoretic considerations based 
on the loop group determine the form of the covariant deri- 
vative V, , i.e., the interaction between the particle and the 

gauge field. In the construction of a complete theory of parti- 
cles this has the consequence that the gauge field will me- 
diate the interaction between the particles. The purpose of 
the present paper is to derive in an analogous manner, from 
group-theory considerations, the form of the interaction 
between strings and the field which mediates the interaction 
among the strings (the 2-gauge field). 

The representation a ( L )  describes the gauge field as a 
physical object, i.e., is gauge-independent. At the same time, 
in its description in terms of Eq. ( 1 ) there appears the vector 
potential, which is known to depend on the gauge choice. In 
order to explain the meaning of this we also int!oduce, in 
addition to the path group P, the path groupoid P and con- 
sider its representations. An element of the groupoid is a 
path with fixed ends, $ =p: = [XI:, defined as the equiv- 
alence class of curves CX(T)& ~ O < T <  11, differing by para- 
metrization and the attachment of appendices, but not by 
shifts (translations). The beginning and the end of such a 
curve is fixed x (0 )  = x, x (  1 ) = x'. Each path as a class of 
curves is subdivided into subclasses which are paths with 
fixed ends$. Therefore, prescribing a pathpd'and the point 
x uniquely defines a fixed pathp, = p:, where x' = x + Ap; 
conversely, the prescription of a fixed path$ uniquely deter- , 
mines the (free) pathp to which it belongs as a subclass. The 
set of fixed paths forms a groupoid in the sense that not all 
fixed paths can be multiplied (composed). The elements $ 
and B' of the groupoid can be multiplied and one obtains 
$if =$" only if$ =p," and$' =p':, i.e., if the end ofthsfirst 
path coincides with the beginning of the second. In this case 
$" =pH:. The multiplication in the groupoid k i s  associative 
(when defined). To each point xEM corresponds a unit 
1, d', such that l,p," = p,", p," 1, = p,". In the same manner, 
to each point xEM corresponds its own subgroup of loops 
L, = L, (M).  It consists of paths starting and ending at the 
same point. All groups L, , xEM are isomorphic to each oth- 
er and to the "free" loop group L. 

The vector potential A, (x)  (i.e., a vector field whose 
values are operators i;? a space 2 ) determines a representa- 
tion of the groupoid P according to the formula 

This means that the following identity holds 

~ ( P P ' )  = ^ a ( P ) k ( P 1 ) .  (4) 

We select an arbitrary point in Minkowski space, for exam- 
ple the origin OEM, and consider the subgroup of loops 
based on that point, Lo. A restriction of the representation of 
the groupoid to this subgroup yields a representation &(Lo) 
of this subgroup. But on account of the isomorphism Lo = L, 
this also determines a representation of the group of free 
loops and yields the formula a(l) = &(Io), in agreement 
with the pre?ous definition ( 1 ). Thus, prescribing a repre- 
sentation 6 (PI defines a representation a (L ) , i.e., a gauge 
field. The converse is obviously not true. One can s h o ~ ' ~ , ' ~  
that in the case of a simply connected space M the represen- 
tation a (L)  is completely determined by the field strength 
tensor (curvature) 
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In a multiply connected space the representation a (L )  can 
describe also gauge fields of topological origin14 correspond- 
ing to vanishing field strength, but leading to physical effects 
of the type of the Aharonov-Bohm effect. In terms of the 
representation a (?) of the groupoid one can rewrite the for- 
mula (2)  for the induced representations of the path group 
in the form: 

In this equation we have used the notation x' = x - Ap. 
Thus, in the group-theory approach, to the vector po- 

tential A, corresponds the representation ti of the groupoid 
of fixed paths ?, whereas to the field strength F,, (x)  corre- 
sponds the representation of the ioop group a(L). A change 
of the vector potential A,  -+A always changes the represen- 
tation & (?). But in some cases the new representation ti'(?) 
may engender the same representation of the loop group 
(gauge field) a l ( L )  = a ( L ) .  Here the equality sign is to be 
understood in the sense of equivalence of representations: 
a ' ( / )  = Qa(I) Q - I .  Ifthis occurs, the transformation A-A ' 
of the potential is called a gauge transformation. One must 
subject at the same time the wave function $ describing the 
state of a particle to the transformation 

where the "phase function" V has the expression 

in terms of an arbitrary pathp, leading from the origin to the 
point x, i.e., a path such that x = Ap + 0. The transforma- 
tion of the potential can be expressed in terms of the phase 
function in the following manner: 

Under a gauge transformation the description of the 
field and of the state of the particles in terms of functions 
depending on the point (local functions) are changed. How- 
ever, the fundamental objects of the theory, i.e., the repre- 
sentations a (L )  and U, (P) ,  remain invariant. If one de- 
sires, one may use an invariant language from the beginning 
to the end, without introducing gauge-dependent quantities. 
For this the states of the particles are no longer described by 
the local function $: M + Y ,  but by a function(a1) of the 
path Y: P-2 ,  subject to the supplementary condition, the 
so-called structural condition, 

Y (pl) =a(l- ')  Y (p ) .  (10) 

Under the action of a representation such functions trans- 
form by a left translation: 

Thus, the group-theory approach leads to the path-depen- 
dent Mandelstam f o r m a l i ~ m . ' ~ ~ ~ ~  If one uses the latter 
neither gauge-dependent quantities nor gauge transforma- 
tions ever appear in a gauge theory within the framework of 
the alternative algebraic approach. In practice it is, of 

course, convenient to introduce such quantities in order to 
simplify the formalism (a  point is simpler than a path). In a 
certain sense they are even necessary, but from a standpoint 
of principle they are secondary. 

Now it is our problem to carry through the same reason- 
ing but starting from a different path group, and as a result to 
obtain a description of strings and fields acting on them. 

3. THE GROUP OF 2-PATHS AND THE QUANTUM STRING 

The key moment allowing one to construct a theory of 
strings by analogy with gauge theory is the circumstance 
that a path group can be constructed not only in Minkowski 
space or in general in a Euclidean space, but also on an arbi- 
trary group. The author has proposed to make use of the 
path group P(P(M)  ) on the group of paths in order to for- 
mulate requirements to be imposed on a theory of extended 
objects of the type of strings. 

A path [g] on a group G is defined as an equivalence 
class &(r) EG 1 O<T< 1) of continuous curves on the group. 
A class contains curves differing by reparametrization 
g ' ( r )  = g(  f ( r )  ) (with f a monotonically increasing con- 
tinuous map of [O, 1 ] onto itself), a common right transla- 
tion g' (r) = g ( r ) g  or the attachment of appendices (seg- 
ments which are traversed forward and backward). As is 
easily seen, such equivalence classes form a group which is 
naturally denoted by P(G) .  For each path [g]Q(G) one 
defines a group element in G denoted by A[g] 
= g (  1 ) (g(0)  ) - ' and called the shift along the given path. 

The mapping A:P(G)-+G is a group homomorphism. The 
kernel of this homomorphism L ( G )  = A-' ( 1) consists of 
those paths for which the beginning and the end coincide, 
i.e., it is the subgroup of loops in G. The group G can there- 
fore be characterized as the quotient of the path group with 
respect to the loop group: G = P(G)/L ( G) . If one considers 
the result of this quotienting as a homogeneous space, one is 
defining an action of the path group on the original group G. 
Under this action the path [g] maps the point g' into the 
point [gig' = (A [g] )gf. We express this by saying that "the 
path [g] leads to the point g' " (without specifying the point 
from which it starts out), but it is understood that the start- 
ing point is the identity element of G, i.e., g' = A [g] . This is, 
of course, related to the selection of the group identity as the 
origin of the homogeneous space G. 

If one proceeds in a manner analogous to the preceding 
section, then the group P(G)  allows one to construct the 
theory of an object for which the configuration space is the 
group G. In other words, it is an object localized in G. In 
particular, if G = P(M)  is the path group of another space 
(e.g., Minkowski space, or three-dimensional Euclidean 
space), then one can obtain the theory of an object localized 
in path space. Such an object could be called a 2-particle or a 
string. The group P'*' = P ( P ( M ) )  in this case could be 
called the group of 2-paths on the space M. Thus, a 2-path on 
M is a path on P (M)  . 

If one chooses G = L (M) then the position of an ex- 
tended object is characterized by a loop in the space M, so 
that this object can be interpreted as a closed string. 

For simplicity we shall denote the group of 2-paths by 
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S = P ' 2 ' = P ( P ( M ) ) ,  and its loop subgroup by 
K = L '2' = L(P(M) ). Then by analogy with the theory of 
particles one should assume that a 2-particle or a string must 
be described by an induced representation Ux (S) 
= x ( K )  tS, and the representation~(S) from which the in- 
duction starts must describe a generalized gauge field acting 
on the string. There remains only the task to describe in more 
detail these mathematical objects, in order to obtain a de- 
tailed description of the 2-gauge field and its action on the 
string. 

4. DESCRIPTION OF THE 2-GAUGE FIELD 

We have seen in Section 2 that before constructing a 
representation of the loop group it is convenient to construct 
first a representation of the groupoid of paths with fixed 
ends. We shall proceed in the same manner here also. Our 
first task will be to construct a representation x ( K )  of the 
gro!p of 2-loops. But first we construct a ~epresentation 
x(S) of the groupoid of fixed-end 2-paths, S = ~ ( P ( M )  ). 
By analogy with Eq. ( 3 ) we write this representation in the 
form 

where h must be a 1-form in the space P(M)  similar to the 
way in which the 1-form A = A ,  dxp in M appears in Eq. 
(3) .  Here 3 denotes a fixed-end path which is uniquely deter- 
mined if one defines a family of paths 3 = b ( r ) E P ( M )  10 
<T< 1). If we construct the representation ( 12) then the 
representation of 2-loops we are looking for can be con- 
structed according to the formula 

where k is a closed 2-path and k ,  is the fixed closed 2-path 
determined by it and starting out from the point lEP(M). 
Making use of the expression ( 12) one can rewrite the for- 
mula which represents 2-loops in the form 

~ ( k ) = ~ e r p { i j  h}. (14) 
kt 

In order to define the 1-form in path space we introduce 
a parametrization (coordinates) for it. Each path will be 
defined by a curve in the space M so that the 
p = ( x ( a ) ~ M I O < a ( l ) .  In order to remove partially the 
ambiguity inherent in the parametrization we fix the begin- 
ning of these curves, say, by requiring that x (0 )  = 0. This 
still leaves some arbitrariness, but we construct the 1 -form in 
such a manner that it does not depend on this arbitrariness. 
In the adopted coordinatization, a path p is determined by 
the set of numbers xv ( a ) ,  O ( a <  1. Consequently, the pair 
a = ( v , ~ )  consisting of the discrete index v and the contin- 
uous index a can be considered as the multi-index labeling 
the coordinates in the space of paths. Therefore a I-form in 
the space of paths has the form 

1 

h ( p )  -- do hv ( p ,  o )  Sxv ( 0 ) .  (15) 
0 

This expression is the long-hand version of the short-hand 
expression h (p) = h, Spa. In order that the quantity h (p) 

should not change under a reparametrization of the path, 
a+ f ( a ) ,  it is necessary that 

so that Eq. ( 15) can be replaced by 

In going from ( 15) to ( 15') we have partially taken into 
account the arbitariness of the coordinatization of the space 
of paths. It is easy to show that this arbitrariness leads to the 
antisymmetry of the quantity h,, (p,x) with respect to its 
indices. Indeed, the increment Sxv (a) describes in general a 
transformation from the pathp to a neighboring pathp + 6p. 
But in the case if this increment is proportional to the tan- 
gent vector xv ( a ) ,  the shifted curve {x(o) + Sx(a ) )  de- 
scribes in effect the same path (the curve "slides along it- 
self ') . Since in this case Sp = 0, the form h (p) must vanish 
for such an increment. But this is guaranteed by antisym- 
metry in the indices p,v. 

Thus a 1-form in the space of paths is determined ac- 
cording to Eq. ( 15) by the functional h,, (p,x) which de- 
pends ?n !he pathp and a point x on that path. The represen- 
tationx(S) is determined by such a 1-form according to Eq. 
( 12). If the 2-path is defined by a curve in the space of paths, 
3 = (p(r) l O < r <  11, and each path entering into this family 
is in turn determined by a curve in the space M, so that 

then Eq. ( 12) yields 
i i 

dxv (0, T )  axv (o,  z) 
X -  do dz (16) 

According to Eq. (13) this yields a representation of the 
group K. Formally that expression also has the form ( 16), 
but in place of the 2-path 3 one must substitute k,-the 2- 
loop which begins and ends at the point 1EP (the origin in 
path space). This determines a 2-gauge field for which the 
functional h,, (p,x) plays the role of vector potential. Con- 
sequently, this is a nonlocal field, i.e., is in itself some kind of 
a string (more precisely, a string with a distinguished point). 
Ifwe replace the functional h,, by another one h ;, such that 
the representation x ( K )  remains unchanged, then from a 
physical point of view nothing should have changed. Such a 
replacement represents a generalized gauge transformation 
which will be discussed in Section 6. 

5. THE ACTION OF A 2-GAUGE FIELD ON A STRING 

The string on which a 2-gauge fieldx(K) acts must be 
described by an induced representation of the group of 2- 
paths, Ux (S) = x ( K )  tS. This follows from the general the- 
ory of local  system^'^-'^ by requiring that the string should 
be covariant with respect to the group S and local in the 
space of paths. Indeed, covariance signifies that the space of 
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states of the string is subject to transformations according to 
a representation of the group S. Locality means that this 
representation is imprimitive and has the space P of paths as 
a basis of imprimitivity. Finally, the imprimitivity theorem 
asserts that an imprimitive representation with an imprimi- 
tivity basis P = S /K is equivalent to the representation in- 
duced from the subgroup K. This leads to the assertion we 
have made about the form of the representation. As far as the 
representation x ( K )  is concerned, the locality requirement 
does not impose any restrictions on its form. But in the pre- 
ceding section it has been shown that the most general form 
of such a representation is determined by a functional 
h,, (p,x) according to Eq. (16). By analogy with gauge the- 
ory we have called such a representation a 2-gauge field. It 
remains to construct the representationx(K) TS, in order to 
describe its action on the string. 

We assume that for each choice of (p,x) the quantity 
h,, (p,x) is an operator (matrix) in some linear space 9. 
Then x (K) is a representation by means of operators on 2. 
In this case the carrier space of the induced representa- 
t i o n ~ 8 , 2 ~  consists of functions Y defined on the group S, tak- 

ing values in the space 2, and subjected to the additional 
structural condition 

Y ( ~ k )  =X (k-11 Y (s) , (17) 

which must be satisfied for any s d ,  k d .  The induced repre- 
sentation U, ( S )  acts on such functions by left translations 

(Ux(s) Y )  (s') = Y  (s-kt) . (18) 

Thus, we have obtained a covariant method of descrip- 
tion for the string. Since the representation x ( K )  is not 
changed by a change of gauge (see the end of the preceding 
section), the elements of the induced representation appear- 
ing in Eqs. ( 17) and ( 18) will also not be subject to change. 
More precisely speaking, the representation x may be re- 
placed by an equivalent one. Then the operators ~ ( k )  are 
replaced by ~ ' ( k )  = Qx(k)Q -I, and the function Y goes 
into Y1(s) = QY(s). However, such transformations by an 
operator Q, which does not depend on the argument of the 
function, are trivial. In essence (as far as its functional de- 
pendence is concerned), the function Y which describes the 
state of the particle does not change. Therefore in a formal- 
ism which uses such functions there is no gauge leeway left. 
It is a.gauge-invariant formalism. It is however convenient 
to go over to another description of the states, a description 
which is gauge-dependent. The advantage of this approach is 
that the states in it are described not by functions of 2-paths, 
but by functions of paths. With such a description the local- 
ization property in path space becomes explicit. 

In order to go over to path-dependent functions we set 

where s d  is an arbitrary 2-path leading to the point p d '  
(starting from the group identity), i.e., a path satisfying the 
condition As =p.  On account of the structure condition 
( 17) and the properties of representations of the path grou- 
poid 

x( (sk)ip) =X(~lp)x(k) 

the right-hand side of the equation ( 19) does not depend on 
the choice of 2-path s within the indicated equivalence class. 
Therefore the definition of the function $ given by Eq. ( 19) 
is correct. Making use of Eq. ( la) ,  and as the necessity 
arises, of the structural condition (17), and the groupoid 
representation property i ( % ' )  = X(3)i(2') ,  it is easy to de- 
rive the transformation law for the function $: 

wherep' = (As) -'p. Here we have denoted (not quite cor- 
rectly from a mathematical point of view) the new realiza- 
tion of the induced representation by the same letter as the 
preceding realization ( 18). This does not lead to misunder- 
standings, since the choice of realization is obvious from 
which function the operator acts on. 

We derive yet another form of the representation U, 
which makes use of the analog of the covariant derivative. 
For this we substitute into Eq. (20) in place of s a "short" 
smooth 2-path leading from the pointp' = { ~ ( c T )  - Sx(a) )  
to the point p = {x(a)).  Then from ( 16) we obtain for 
i($ ) the approximate expression 

i 

i ( ~ , ~ ~ ) ~ l + i  j do~(o)h , (p ,z (o) )6z~(o) .  
0 

Substituting this into Eq. (20) and retaining only first-order 
terms we obtain 

* 

where we have introduced the "2-gauge derivative" 

The corresponding equation for a finite 2-path is easily ob- 
tained if one represents it as a product of a large number of 
"short" 2-paths, makes use for each of these of the expres- 
sion for the 2-covariant derivative, and takes into account 
the properties of the representation. This yields 

1 i 

This expression is completely analogous to Eq. (2 )  which 
figured in gauge theory. 

We have thus obtained for string theory a covariant der- 
ivative and have thus in effect figured out how the 2-gauge 
field acts on the string. In all the preceding reasonings use 
was made only of local properties of the string and its dy- 
namics was completely ignored. If one now describes the 
dynamics in some manner, and then replaces all the usual 
(functional) derivatives by covariant ones, one obtains the 
dynamics of a string in an external 2-gauge field. We are 
consciously avoiding this, in order not to be tied down by any 
concrete model of the dynamics. It would be desirable to 
derive the dynamics of the string from group-theory consid- 
erations too. This could probably be done within the frame- 
work of the approach developed in Refs. 22,23. But this is a 
separate problem. 
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6. THE GENERALIZED GAUGE TRANSFORMATION 

We now return to the problem of generalized gauge 
transformations, already touched upon at the end of Sectio? 
4. Let 2 and 2' be two representations of the groupoid S 
defined respectively by the functionals h,, and h ;,. We as- 
sume that these representations lead to the same representa- 
tion of the group of 2-loops,x(K). This means that for any 2- 
loop k d  

In this case we are dealing with two different methods of 
describing the same configuration of the 2-gauge field. The 
transition from one method of description of the other is 
naturally called a generalized gauge transformation or a 2- 
gauge>ranstormation. We now make use of the representa- 
t i o n s ~  andx' in Eq. ( 17). It is easy to see that the transition 
from x to i' (a 2-gauge transformation) must be accompa- 
nied by a transition from Y to Y', with 

The functions Y and Y' describe the same state of the string 
in two different gauges. In order to find the transformation 
law of the functions $ which des$ribe the same state in the 
local form, we substitute i and X' into Eq. ( 19). We then 
obtain 

4'(p) =X' (SIP) Y (s) . 

Substituting the expression for \V' from Eq. (24) and taking 
into account Eq. ( 19) we obtain the transformation law of 
the function $ in the form 

where we have used the notation 

V(P)  =Xi ( s ip )~ [X(s tP)  I-'. 

The transformation from the potential h,, to the poten- 
tial h : can be expressed in terms of the phase function V(p). 
For this we replace in Eq. (26) the pathp by a nearby pathp'. 
Assume that the 2-path S takesp intop'. Then the 2-path Ss 
will take the origin 1Q intop'. Making use of this path in Eq. 
(26) we obtain 

Making use of the representation property exhibited both by 
x and X' and factorizing by means of this property we find 
the relation 

Since the paths p and p' are near to each other and $' is a 
"short" 2-path between them, one can apply Eq. ( 16) to the 
latter retaining only first-order terms. This yields 

1 

i ( i p p r )  =l+i j do l ( 0 ) h w ( p ,  x (o )  ) ~ ( 0 )  
0 

and a similar expression for the primed quantities. Here we 
have used the notationp = (x(o)}, p' = {x(a)  + Sx(a)). 
Substituting the expressions so obtained into the preceding 

formula and taking into account the arbitrariness of the in- 
crement axv ( a ) ,  we obtain 

-= B V ( p )  i t ~ ( o )  [ h , ' ( p , ~ ( o j ) V ( p ) - V ( ~ ) h ~ ( $ , ~ ( ~ ) ) I ,  
sxv (a) 

which can be rewritten in the form 

3 (0 )  hPV'(P, 2 (0) 1 

The analogy between this formula and the transformation 
law (9)  of the potential of a gauge field is obvious. 

7. THE LOCAL 2-GAUGE FIELD 

We have seen that in the general case the 2-gauge field is 
described by an arbitrary functional h,, (p,x) which de- 
pends on the pathp and on the point x on that path, xcp,. In 
general one cannot express such a field in terms of a function 
of apoint, e.g., in terms of a tensor H,, ( x ) .  Thus, in general, 
the 2-gauge field is nonlocal. However, in terms of the anti- 
symmetric field H,, (x)  and the vector field A, (x)  (gauge 
potential), one can construct a 2-gauge field of a special 
form which could be called a local 2-gauge field. 

According to Eq. (3),  the gayge potential A =A, dxF 
determines a representation a, (PI of the path groupoid. 
From it we construct the path-dependent second-rank ten- 
sor 

Here Ap is in fact the point to which the pathp leads from the 
coordinate origin 0. By p, we denote, as always, the fixed- 
end path beginning at the point 0 and belonging to the equiv- 
alence class p. We now define the functional h,, (p,x) by 
setting 

h,, (p, X) =ZPV (PO ( X I  ) 7 (29) 

wherep,(x) denotes the initial section of the pathp, leading 
from 0 to the point x. Substituting the functional (29) into 
the general formula ( 16), we obtain the 2-gauge field of the 
special form: 

I I 

(30) 
In this equationp, (r) denotes the initial portion of the path 
p ( r ) ,  defined by the curve {x(cal,r) (O<a'<l}. 

The 2-gauge field i,,, defined by the 1 -form A and the 
2-form H in the original space M plays a special role in the 
theory of particles and strings. From a mathematical point 
of view this manifests itself through the fact that it appears in 
the formulation of the nonabelian Stokes This 
theorem allows one to interrelate 1-dimensional and 2-di- 
mensional integrals (more precisely, ordered exponentials 
of integrals) involving nonabelian differential forms. If k& 
is a 2-loop parametrized ask  = (p(r)Q / 0 < r <  I), then it is 
natural to define as its boundary the loop swept out by the 
e,nds of the pathp(r) with their beginnings fixed. This means 
that dK = {Ap(r) /O<T<  1). With these definitions the non- 
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abelian Stokes theorem is formulated as the relation 

In this equation DA denotes the covariant differential of the 
I-form 

i.e.. the 2-form 

where the field-strength tensor F,, is defined by Eq. (5) .  
This means, in effect, that the left-hand side of Eq. (31) 
contains the representation x,,~ for H,, = ( 1/2)F,,. In 
other formulations the nonabelian Stokes theorem is dis- 
cussed in Refs. 24, 25. 

The forms A and DA define according to Eqs. (29) and 
(15') a 1-form in path space, i.e., a connection, relative to 
which the representation x,,, plays the role of holonomy 
group. If we restrict our attention to the subspace of closed 
paths (loops), then in it any 2-loop will have a trivial bound- 
ary. Indeed, if 

then on account of A ~ ( T )  = 0 we obtain dk = 1. In this case 
Stokes' theorem (31) yields x,,, ( k )  = 1. The holonomy 
group turns out to be trivial, i.e., the curvature of the corre- 
sponding connection vanishes. This special case was consid- 
ered in Refs. 7-10. 

8. CONCLUDING REMARKS 

Let us summarize the results obtained. Introducing the 
group of 2-paths and constructing its representations by ana- 
logy with the path group of gauge theories we have obtained 
2-dimensional analogues of concepts which were character- 
istic for a gauge theory: the string (or 2-particle) takes the 
place of the usual local particle and the 2-gauge field takes 
the place of the ordinary gauge field. We convinced our- 
selves that the interaction between the strings is carried by 
the 2-gauge field. By defining the 2-dimensional analogue of 
the covariant derivative we derived a rule according to 
which, knowing the dynamics of the free string one can find 
the form of its interaction with the 2-gauge field. 

The state of a string is described by a path-dependent 
wave function +(p) and the state of the 2-gauge field by a 
function h,, (p,x) depending on a path and a point. In this 
case the 2-gauge field is a nonlocal object of the type of a 
string. The description of the string and of the field by means 
of the functions + and h,, contains some arbitrariness. Go- 
ing over to other functions +', h ,',, which describe the same 
physical situation is a generalization of the concept of gauge 
transformation. Such a transformation leaves invariant the 

representationx (K) of the group of 2-loops (representation 
which gives an adequate description of the 2-gauge field) as 
well as the representation U, ( S )  of the group of 2-paths, 
which describes the action of this field on the string. 

Prescribing in the original space a 1-form A and a 2- 
form H allows one to define a 2-gauge field x,, of a special 
type. In the particular case when H = DA this 2-gauge field 
effectively reduces to the gauge field with the vector poten- 
tial A. In the case when the 2-form H does not depend on A 
the 2-gauge fieldx,, may possibly correspond to the gener- 
alized gauge field having a tensor potential H,, which was 
postulated by Nambu5 as the field mediating the interaction 
of strings. However, in our opinion, the interaction of the 
strings is mediated by a 2-gauge field which is nonlocal and 
cannot be described in terms of a finite number of local 
fields. 
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