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The production of an electron-positron pair by two circularly polarized photons in an external 
crossed field is investigated. It is shown that in a weak field the total cross section is determined 
not only by the perturbation-theory series but also by the oscillating terms. The dependence of the 
cross section on the photon energy is found. The conditions under which the effect of an external 
field can be observed are indicated. 

Two-photon formation of an electron-positron pair in a 
constant uniform crossed field was considered by many 
workers.14 They have established that the differerential 
cross section of the reaction oscillates when the external- 
field strength and the interacting-phonon energies are var- 
ied. It was shown in a recent paper5 that the presence of a 
constant crossed field leads also to oscillations of the total 
cross section. The nonrelativistic approximations used in 
Ref. 5, however, prevented an investigation of the depen- 
dence of the oscillation amplitudes on the photon energies. 
This question is the subject of the present paper. 

In contrast to Refs. 1-4, in which one of the photons is 
assumed to be linearly polarized, we consider pair produc- 
tion by two circularly polarized photons, for it is in just this 
case that the dependence on the polarizations is most strong- 
ly pronounced. We assume that photons with momenta k p  
and k Ip propagate counter to one another with the photon 
k p  moving along the Poynting vector of the crossed field. 
Using the standard technique of quantum electrodynamics 
with an external field,6 we can obtain in the lowest order of 
perturbation theory in the quantized field, the following in- 
tegral representation of the cross section for pair production: 

1 - 

In these equations m and e are the mass and charge of the 
electron, r, = e2/4am its classical radius, w and w' the pho- 
ton frequencies, H the crossed-field strength, f = m2/m ' ,  
{ = eH/mw. Note that the probability of the process de- 
pends only on the product of the helicities of the initial pho- 
tons, so that a distinction need be made only between the 
cases of coinciding (plus) and opposing (minus) polariza- 
tions of the photons." 

The integrand in ( 1) is the representation in the spec- 
tral variable P = ( p - q, k ) / ( ~  + q, k) ,  where p and q p  
are the 4-momenta of the electron and positron. On integrat- 
ing with respect top, the result ( 1 ) can be represented in the 
form 

1 m 

(2 )  
where we have introduced the Airy function 

m 

This expression, when averaged over the photon polari- 
zations, agrees with that given in Ref. 2. 

We consider the case of relatively weak external fields, 
i.e., we assume that the conditions 6 ' I 3 (  1 - f ( f  < 1 ) are sat- 
isfied. Note that the order of integration cannot be changed 
in ( I ) ,  since the integrand has a singularity at the point 
p = + 1. It is known, however, that the Airy function and 
its derivatives decrease exponentially as x- + w . The con- 
tribution from the vicinities of the points p = + 1 is there- 
fore exponentially small and can be disregarded when the 
asymptotic expansion is calculated. This permits the use of 
the two-dimensional standard-phase method.' 

The change of variable y = p{ allows us to rewrite the 
argument of the exponential in ( 1 ) in the form 

It can be shown that, apart from exponentially small terms, 
the integral in ( 1) is equal to the sum of the contributions of 
the stationary-phase points and of the contribution of the 
region where the factor in front of the exponential has a 
singularity in the variable y. In the integration region we 
have four stationary points: 

(see Fig. 1 ), where v = ( 1 - t)'I2 can be intepreted as the 
initial velocity of the produced fermions in the photon c.m.s. 

Let us clarify the introduced constraint on the field in- 
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tensity. We make for this purpose the substitutions y = (u/  
t "2)y',p = up '. AS a result, the argument of the exponential 
takes the form 

8 - 

The location of the stationary points becomes now indepen- 

0 C - FIG. 1. - 
Y 

dent of the parameter t and it can be seen that the stationary- 
phase method can be used only if u3/{) 1. 

We obtain now the contribution made to the integral in 
( 1 ) by the region DE in which the pre-exponential factor has 
a singularity, and which contains in addition two stationary 
points A and A ' (see Fig. 1 ) . We integrate in (2) by parts and 
return to a notation similar to that of ( 1). The singularity in 
y is thus eliminated. Using the fundamental theorem of the 
stationary-phase method (see [7] ) we get 

where 
it d 2  L = - - -  
2v a y d p  ' 

and the remainder term is 

It can be easily shown that this expressions, with the 
terms rearranged, conicides with the perturbation-theory se- 
ries that can be obtained by formally expanding the inte- 
grand of ( 1 ) in terms of the parameter 5. 

It remains to consider the contributions of the station- 
ary points C and B. Clearly, these contributions are com- 
plex-conjugates, so that it suffices to consider the point C. 
The function S(y$)  has at this point a maximum and can be 
expanded in its vicinity in the series 

4 vS vt'" 
S(Y.  B ) = 3 F - l ( Y  -$)2 

Here W(y,/?) is the remainder of the series. Applying again 
the fundamental theorem of the stationary-phase method, 
we get 

where 

and the remainder term is 
~ k m ~ f + b - l a / r k l  

We can thus represent the cross section for electron- 
positron pair photoproduction as a sum of a monotonic part 
and an oscillating one: 

b* =Of,,,+O:%, 

It is important that to calculate the oscillating part it 
sufficies to know the differential cross section of the process 
at (pk) =: (qk), i.e., PzO (in the absence of a field this corre- 
sponds to production of electrons and positrons emitted per- 
pendicular to the propagation direction of the initial photons 
in the c.m.s. ). To calculate the monotonic part, on the other 
hand, it is not enough to know the differential cross section 
at (pk)/(qk) z (1 + v )  (1 - v), i.e.,P=:v. In fact, let us cal- 
culate the monotonic part of the cross section, after exclud- 
ing the vicinities of the points A and A '. We introduce for this 
purpose a functionx ( y  ) with the following properties: ~ ( y )  
is infinitely differentiable, is identically equal to unity in the 
vicinity of the point 0, and is equal to zero near the points B 
and C. The contribution sought for is then 

t m  

where& > 0 is some small quantity. Regarding the integral as 
iterated and recognizing that laS/dyl > G ( E )  > 0, in the inte- 
gration region, it can be easily calculated by using the known 
relation 

m 

Taking next the limit as E-+O we get 

ta I f v  
~.~*=nr,'t { ( l r l f t  - -) ~ n -  - ( t + l ~ 3 )  v 

2 I-v 

t2 1+u 
( -~~ -+ ( t*2 )~ )+o(a - )  2 1-v ). ( 5 )  

It can be seen from (5 )  that the contribution of the region 
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with the singularity differ from the known Breit-Wheeler 
cross section (see [8]  in that it contains terms that depend 
on the external field, and to calculate a,,, it is necessary to 
know the differential cross section at all possible momentum 
values. A similar situation is observed in solid-state physics. 
For example, the monotonic part of the magnetization de- 
pends on all the electrons in the metal, whereas the oscillat- 
ing part is determined only by the conduction electrons in 
the vicinity of the Fermi surface. 

We present the final result of the calculations. We trans- 
form for convenience from 6 to the parameter x = 6 /t. As 
already mentioned, the expansion of the monotonic part in 
powers of x2  coincides with the perturbation theory series. 
Its first two terms are 

(05 denotes the Breit-Wheeler cross section). When the 
photons have different polarizations, the coefficient of x2 is 
always negative; otherwise it becomes positive at tZ0.9. 
With decreasing photon energy the correction increases, and 
for v( 1 we have 

( 7 )  
The separation parameter at v( 1 is thus ( x / ~ ~ ) ~ .  

We proceed now to the oscillating part of the cross sec- 
tion. It is expanded in powers of x. The principal part of the 
series is 

It can be seen from (8)  that the amplitude of the oscillations 
vanishes at t = 1/3 for a- and t = 2/3 for a + ,  leading to a 
change of the oscillations by a .  

At v( 1, the cross section averaged over the photon po- 
larizations is 

processes in a crossed field, viz., charged-pion decay,9 a0 and 
KO decays, lo and allowed nuclear B decay. ' ' A similar be- 
havior was observed also in the investigation of the analytic 
properties of the photon scattering amplitude in a crossed 
field. l2  

In view of the imposed constraint 1 - t)( 213, Eqs. ( 6 )  
and (8)  are not valid near the value t = 1 that corresponds to 
the threshold of pair production in the absence of an external 
field. It is easy to obtain for the behavior of the cross section 
near the threshold ( ~ ( x " ~ )  

The asymptotic form of the cross section in the below- 
threshold region, i.e., at t > 1, can be calculated by the sad- 
dle-point method: 

Naturally, it is exponentially small (see Ref. 2).  A plot of the 
cross section vs the parameter t at < = 0.1, obtained by nu- 
merical calculations, is shown in Fig. 2. 

Note that in the region v 5 a, where a is the fine-struc- 
ture constant, our analysis is generally speaking only quali- 
tative, since no account has been taken of the Coulomb cor- 
rections. 

Let us determine more accurately the region where the 
foregoing equations are valid. The results ( 6 ) - (  11 ) are ex- 
act for a reaction in a crossed field but, as shown in Ref. 1, 
they can be used to describe the pair production process in 
any constant field, if one considers photons in whose c.m.s. 
the external field differs little from the crossed field. 

In conclusion, we examine the experimental conditions 
needed to observe the influence of the external field. We in- 
troduce for this purpose the parameter 

and, following (13), assume that it is not specified exactly, 
but has a distribution characterized by a probability density 
functionp (a,, D )  where a, and D  are respectively the mean 
value and the variance of a. Assume that the phonon fre- 
quencies, the angle 8 between their propagation directions, 
and the parameter x are all known together with their mean 
squared deviations Am, Am', AO, Ax. The variance of the 

Equation (9) coincides with the result of [ 5 ] .  
It should be noted that the oscillating part of the cross 

section is odd in x. This typical of all previously investigated 

FIG. 2. Pair-production cross section vs the parameter t 
for like (a)  and unlike (b) photon polarizations, G * 
= u */nd. The solid and dashed curves are for 8 = 0.1 

and { = 0, respectively. 
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parameter a  is then given by 

Ao'  4 AX +(a) +94T) 1 - 
where AR = P ( A O ) ~ .  Let, for the sake of argument, a  have a 
Gaussian distribution and let D(ai .  Averaging the oscillat- 
ing part, it can be easily shown that if D )  1  the oscillation 
amplitude becomes exponentially small. It follows hence 
that cross-section oscillations can be observed only when 
D 5; 1. At the same time, an upper bound on D is necessary 
also for measurement of the monotonic correction to the 
cross section. This bound can be easily obtained from the 
condition A a  < 1 amon - a. 1, where A a  is the cross-section 
measurement error; if D )  1, we have 

The influence of the external field increases as the pair- 
production cross section threshold t  = 1 is approached. It is 
therefore natural to attempt to observe this influence just 
there. The resolution of the cross section into monotonic and 
oscillating components is meaningless in this region. It can 
be shown that to observe the influence of the field near the 
threshold, it is necessary to have 

Ao' = 4 +(T) + F x ~ l ~ ( ~ ) 2 }  G i .  

The cross section at t z  1 becomes comparable already at 
x - l o p 2  with the maximum Breit-Wheeler cross section. If 
the external-field strength is H z 3 x  lo5  G, the required 
photon energies are w ' z 7 3 0  GeV and w  z 0 . 4  eV. From the 
condition D ' <, 1 we obtain then Aw1/w' 5; 

In conclusion, the authors are deeply grateful to I. M. 
Ternov, V. Ch. Zhukovskii, and 0. S. Pavlova for interest in 
the work and for helpful discussions, as well as to M. K. 
Trubetskov for help with the computer calculations. 

"We use here a system of units with c = f i  = 1. 

'V. Ch. Zhukovskii and I. Herrmann, Yad. Fiz. 14,1014 (1971) [Sov. J. 
Nucl. Phys. 14, 569 (1971)]. 

'V. Ch. Zhukovskii and N. S. Nikitina, ibid. 19, 148 (1974) [19, 77 
(1974)l. 

3V. N. Rodionov, I. M. Ternov, and V. R. Khalilov, Zh. Eksp. Teor. Fiz. 
69, 1148 (1975) [Sov. Phys. JETP 42,585 (1975)l. 
4V. N. Rodionov, ibid. 78, 105 ( 1980) [51,52 ( 1980)l. 
'A. I. Nikishovand V. I. Ritus, ibid. 85,1544 (1983) [58,1076 (1983)l. 
6A. A. Sokolov and I. M. Ternov, The Relativistic Electron [in Russian], 
Nuaka, 1974. 

'M. V. Fedoryuk, The Saddle-Point Method [in Russian], Nuaka, 1977. 
'V. K. Kerimov and S. Sadykhov, Zh. Eksp. Teor. Fiz. 36, 1324 ( 1959) 
[Sov. Phys. JETP 9,938 (1959)]. 

'V. I. Ritus, ibid. 56,986 (1969) [29, 532 (1969)l. 
''1. K. Litskevich, Yad. Fiz. 30, 184 (1979) [Sov. J. Nucl. Phys. 30, 96 

(1979)l. 
"I. M. Ternov, V. G. Zhulego, V. N. Rodionov, et al., Vestnik MGU, Fiz. 

i Astron., 24, 79 ( 1983). 
'*A. E. Lobanov, Deposited paper No. 1574-80, VINITI, 1980. 
"A. E. Lobanov and A. R. Muratov, Zh. Eksp. Teor. Fiz. 87,1140 ( 1984) 

[Sov. Phys. JETP, 60,651 ( 1984) 1. 

Translated by J. G. Adashko 

238 Sov. Phys. JETP 63 (2), February 1986 A. E. Lobanov and A. R. Muratov 238 


