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It is shown that the well-known equations obtained by Papapetrou for a dipole particle are not 
equivalent to the initial equations of the original paper and that this explains the existence of 
unphysical solutions of these equations. The evolution equations obtained by Dixon and Madore 
are satisfactory. They are used here to study as an example the precession of a Weyl top. It is found 
that in the case of a multipole particle Dixon's equations using reduced moments are inconsistent 
with the solution to the evolution problem. 

1. INTRODUCTION. MULTIPOLE DESCRIPTION OF AN 
EXTENDED BODY 

The motion of a free material particle in an external 
determined by means of the principle of least action and is 
described by a goedesic world line. By its definition (Ref. 1, 
59), the particle's 4-momentum is tangent to this world line. 

This simple solution is valid, however, for a structure- 
less particle when its size is ignored. For an extended body, 
represented by a timelike world tube in a given space-time, 
there does not exist a world line that "represents" it, in con- 
trast to the case of a particle. Another difference is that in 
order to characterize the extended body it is necessary to use 
a complete set of integral quantities (the first of which is 
usually the 4-momentum of the body). Such quantities are 
defined along some arbitrarily fixed world line, and the mo- 
tion of the extended body is described in terms of the vari- 
ation of these quantities along it. It is important that the 
equations which the integral quantities satisfy are based 
solely on the local conservation law for the energy-momen- 
tum tensor of the matter of the body: 

To form the integral quantities, one can employ very 
general integral transformations of the tensor T "" .2,3 HOW- 
ever, in this paper we shall consider the widely used ap- 
proach"'* in which the role of the integral quantities is 
played by multipole moments of the body of two different 
types; briefly, they are calledp and 7 moments: 

The multipole moments (2)  and ( 3 )  are determined at the 
points of the world line xv (s),  which can be conveniently 
called the world line of the "observer." They are calculated 
by means of spacelike hypersurfaces of a single-parameter 
family S(s)  parametrized by the same parameter s as the 
observer world line x(s) .  The points of the hypersurface 
S(s) of integration are identified by a prime: x'. We use the 
notation system employed in the books of Refs. 13-15, in 
accordance with which primes distinguishing distinct points 
are transferred to the coordinate index, i.e., we write x" 

instead of x'" or Tat"' instead of Ta"(x'). The vector field 
& in formula ( 3 ) satisfies the condition 

1, s,=d,s (x) , 

in whichs(x) is the function that parametrizes the hypersur- 
face: s (x )  = const, if xcS(s). 

In order to make the multipole moments tensors at the 
point x(s) ,  the definitions ( 2 )  and (3)  contain the tensor 
two-point (path-independent) functions 

which transport the tensors Ta'"'dSV and Ta'"'&'dSP' 
from the points x' to the general point x, i.e., associate with 
them the tensors 

@iaarTa'v'.dS,r, @zaa~@3vvrTa'v '  wU'dS,.. 

These functions satisfy the natural condition @;,+S; as 
xf+x and are called translators. The papers of various auth- 
o r ~ ~ - ~ , ~ , ~ ~  differ in the type of translators employed." For 
example, Oliver16 uses the translator of parallel transport 
along geodesics. It is denoted in Ref. 16 by g:, . The same 
translator was used by Dixon in Ref. 5. However, in the 
series of his papers of Refs. 6-8 the role of @,, @,, @, is 
played by Dixon's translators K and H (see also Ref. 10). 
The simplest translator was used by Papape t r~u .~  His trans- 
lator is simply equal to the Kronecker delta in the employed 
coordinate system. The general theory of two-ponit func- 
tions is presented in Ref. 17, where they are determined by 
means of Taylor-type expansion series. For example, the 
parallel-transport translator from the point x' = x + Ax to 
the point x with allowance for the first two terms of the 
expansion has the form 

The two-point vector a" (xl,x) in Eqs. (2)  and (3 )  is 
usually constructed by differentiating Synge's world func- 
tion IR(xl,x) (Ref. 18, Chap. 2):  

ov (xf, x) =-gPallQ (XI, 2). 

The difference between the p and 7 moments is due to 
the fact that information about the tensor field TQ"(x)  is 
lost because of the scalar multiplication T ""dSv employed 
in the formation of the p moments. In contrast, the 7 mo- 
ments contain all information about the field Fv. More- 
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over, they are independent of each other unless restrictions 
are imposed on the tensor T Use of the conservation law 
( 1) leads to a countable set of relations between thep and T 

moments, regarded as functions of s, and the derivatives of 
the p moments along the observer's world These 
relations are the dynamic equations of the extended body. In 
the present paper, they are given for the Newtonian case (see 
Sec. 5). 

2. EQUATIONS OF MOTION OF A DIPOLE PARTICLE 

A body for which the multipole moments of order 
greater than N are ignored is called a multipole particle of 
Nth  order. Allowance for only a finite number of moments is 
equivalent to the energy-momentum tensor of the body be- 
ing regarded as a singular function whose support is the ob- 
server's world line xv (s), since any body with a world tube 
of extended cross section possesses an infinite number of 
nonvanishing moments. 

The multipole particle of first order has often been con- 
sidered in the literature. It is, in particular, the subject of 
Ref. 4. An important property of such a particle is the possi- 
bility of eliminating for it all the r moments and the symmet- 
ric part p'""' of the momentum moment from the dynamic 
equations given above, so that these equations are expressed 
solely in terms of the momentum pa and the "spin" p[""] . 
The particle is therefore called a dipole particle. However, 
two different systems of equations (dipole particle dynam- 
ics) obtained as the result of such elimination are known. 

1 ) Papapetrou's equations 

These equations were obtained in Ref. 4. are given in Ref. 19 
($20.6, problem 40.8), and are widely used in the literature. 
Here, ua = dxa /ds, and v, is an arbitrary vector defined on 
the observer's line and satisfying the single condition 
vvuv = 1. 

2) The equations obtained by Dixon5 and Madore9: 

These equations are simple and, very importantly, evolu- 
tionary equations in the sense that they enable one, given the 
momentum pa and the spin b"""] , to calculate the deriva- 
tives of these quantities. 

Comparing the systems of Eqs. (4)-(5) and (6)-(7), 
we readily see that Papapetrou's equations are a conse- 
quence of Eqs. (6 )  and (7).  Indeed, contracting Eq. (7)  
with the covariant vector ua , we find for the momentum the 
expression 

and then, substituting (8 )  in (6) ,  we obtain (4) .  With re- 
gard to Eq. (5 ), it simply reflects the fact that Dp["al in Eq. 

(7) is a simple bivector, i.e., u[pDp'va'l = 0. Contraction of 
this equation with v, gives Eq. (5) .  

The here-indicated transition from the system (6)-(7) 
to the system (4)-(5) shows that these systems are inequi- 
valent. Indeed, the system (4)-(5) is much weaker than the 
system (6)-(7). Dixon pointed out5 that the system (4)- 
(5) necessarily includes the second derivative of ua orp["] 
and, therefore, admits a specification of the position, veloc- 
ity, spin, and acceleration of the particle, whereas physically 
the acceleration cannot be specified independently. 

3. CRITICISM OF THE DERIVATION OF PAPAPETROU'S 
EQUATIONS 

It is of interest to see how Eqs. (4)  and (5)  were ob- 
tained in Ref. 4. 

A distinctive feature of Papapetrou's approach in this 
paper is the use of the simplest translator, having 6-function 
form in the employed coordinate system, as @;h,, @;a,, @gv, 
in (2) ,  (3). The momentum moments pa ,  pva and the 
expression for the second-order moment, which is equal to 
zero for a dipole parti~le,p"~"~" = 0, that correspond to such 
a choice of the translators are covariantly differentiated in 
Ref. 4 along the observer world line, again with respect to the, 
6 translator. After this, in agreement with the standard 
method for obtaining evolution equations in the dynamics of 
an extended Green's theorem and the conserva- 
tion law ( 1 ) are used. 

The resulting equations 

are given in Ref. 4 under the numbers (3.2), (3.3), (3.4). 
They are indisputable and serve there as the initial equations 
for the procedure for eliminating the r moments and p'") . 
However, the elimination of these moments from the system 
(9)-( 1 1 ) and its transformation into the system (4)-(5) is 
made in Ref. 4 by a long chain of inequivalent transforma- 
tions, and we shall not reproduce them here, since this elimi- 
nation can be readily done by using a coordinate system lo- 
cally geodesic at the points of the observer's world line (the 
generality of the results is not restricted by doing so). In 
such coordinates, 

and antisymmetrization of Eq. ( 10) immediately leads to 
Eq. (7),  and not (5) .  Further, using the symmetry 
rv,va - - rvl (%'a) , we can express rvlav from ( 11 ) as follows: 

After this, substitution of the expression (12) in (9)  with 
allowance for the fact that the coordinates are locally geo- 
desic gives Eq. (6)  and not (4) .  

Thus, the initial equations of the paper Ref. 4 lead to the 
system of equations (6)-(7), whereas Eqs. (4)-(5) are 
weaker consequences of them and do not describe the behav- 
ior of the particle. 
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4. EXAMPLE OF THE USE OF THE SYSTEM OF EQUATIONS 
(6x7) 

It should be noted that Eqs. (6)-(7), like the system 
(4)-(5), are not by themselves equations of motion of the 
particle, since they do not impose any restrictions on the 
"observer" world line representing the particle. Instead, 
they make it possible to calculate pa (s) andp'"' from ini- 
tial valuespa (0)  andp["' (0)  for arbitrary specification of 
this line. The moments p'"' (s),  rav (s), rV1"" (s) ,  that en- 
sure such "motion" can be determined after a calculation on 
the basis of the initial equations (9)-( 11 ). 

A simple three-dimensional analogy of such a situation 
is a stressed fiber of arbitrary shape in equilibrium in a 
curved space under the influence of a mechanical load con- 
sisting of a set of forces and couples applied at the end. This 
set is equivalent to the momentum and spin specified at the 
end of the world line. 

This arbitrariness for a real particle in space-time is eli- 
minated by the condition of the mass-energy being positive 
definite. It can be shown that if this condition is to hold in the 
case of a dipole particle it is necessary to satisfy the natural 
requirement that the momentumpa be tangent to the parti- 
cle's world line, as is the case for a monopole (structureless) 
particle. If this condition is adopted, pa a ua , the system of 
equations (6)-(7) makes it possible, given initial data, to 
calculate the complete world line of the particle, which is not 
a geodesic when R &, #O. However, for such a particle we 
always have DP["~] = 0, i.e., there is parallel transport of the 
spin of the particle along its world line. 

It is such behavior of the spin that leads to Weyl preces- 
sion of an orbiting top (Ref. 1, $106, problem 4) which we 
calculate as an example, ignoring the deviations of the world 
line from a geodesic. 

In Schwarzschild coordinates, the equation of a geodes- 
ic for r = const, 8 = 90" leads to the relation 

The components of the parallel-transported vector A" ac- 
quire the increments 

Eliminating dt, A O, A from these four equations, we substi- 
tute the well-known expressions for the connection coeffi- 
cients in the Schwarzschild coordinates: 

We then obtain the equation 

which shows that after one revolution the vector initially 
directed tangentially to the orbit is turned through the angle 
37rrg /2r, in agreement with the result obtained in Ref. 1 in a 
different manner. 

5. USE OF DIXON'S REDUCED MOMENTS 

For the study of a multipole particle of high order or an 
extended body of general type, the problem of extended- 
body dynamics is understood differently in the present paper 
and in Dixon's well-known series of For a clear 
comparison of the two approaches, we consider a static 
space-time with Euclidean hypersurfaces S(s)  in which 
S(X) = x0 in the chosen coordinate system and of all the 
Christoffel symbols TEv the only nonvanishing ones are T&, 
which play the part of the components of the gravitational 
force2': 

with do f a = 0. This situation in fact corresponds to the 
Newtonian case chosen by Dixon to illustrate his method.' 
The dynamic equations mentioned at the end of the Intro- 
duction decouple in this case into time and space parts. They 
are given in Ref. 8, and we reproduce them without deriva- 
tion: 

+ aam +lppa~a-o .  ( 14) 
n! (m-n) ! m,n 

Here, "l..."""b are the moments of the momentum flux den- 
sity obtained from the third-rank part of the energy-momen- 
tum tensor: 

' J a'b' p ~ . . . ~ n ~ ~  = - ( x ' - X ) a l  . . ( ~ ' - ~ ) ~ n 6 ~ ~ ~ 6 ~ b ~ T ~  dSo.. 
n! , 

Here, (x' - x)" = xu'St, - x u ,  and TPb denotes the tensor 
density of weight + 1 and replaces T Ob G, a, b = 1,2,3. 
Equations ( 13 ,and ( 14) make it possible to calculate all 
derivatives of the momentum moments of the body (p mo- 
ments) along the observer's world line at a certain time3' if 
thep and t moments are given at this time. 

On the other hand, complete information about the 
body is contained in the set of (independent) p and t mo- 
ments, so that the field of the energy-momentum tensor T "' 
can be recovered from these moments. Therefore, for com- 
plete calculation of the behavior of the body in time it is 
necessary to specify the initial values of thep moments and 
the values of the t moments along the complete observer 
world line, since the variations of these last moments, which 
describe, in particular, the mechanical stresses in the body, 
cannot be predicted on the basis of the conservation law ( 1 ). 

In contrast to this evolutionary description of the ex- 
tended body by a system to equations of the type (13)-( 14), 
Dixon's idea is that to describe the behavior of the body fully 
one should use, not the independent moments 
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which make it possible to solve the evolution problem by 
means of Eqs. ( 13)-( 14), but the so-called reduced mo- 
ments, all specified along the line xv (s). In the case consid- 
ered, these moments are 

Among them, 

are related by exactly four equations, while the remainder 
are completely arbitrary. The reduced moments together 
with their derivatives make it possible to determine all the 
remaining moments on the basis of the relations ( 13) and 
( 14) as follows. The quantities pa'"'anO(xO) and pa (xO), 
specified arbitrarily subject to the conditions 

d 
p0 (so) = const, - p"O=-uapOf p" , 

dx" 
(15) 

satisfy Eq. (13), determining the symmetrized moments 
p'a'"'an' (xO) but without restricting the freedom of the anti- 
symmetric combinations 'On]  (xO). In their turn, the 
quantities p"'"'""(xO), formed from p'a'"'an(xO) and 
p"'"""" - I"") (xO) and subject to the conditions 

satisfy Eq. ( 14), determining the symmetric combinations 
(a, ... an)" (xO) but leaving the combinations t"'"'[an-'["nalbl 

(xO) free. The relations ( 15) and ( 16) are equations that 
connect the reduced  moment^.^' 

Our analysis shows the inconsistency of describing the 
body by reduced moments with specification of the initial 
state of the body, as foreseen by the formulation of the evolu- 
tion problem. As functions of xO, the reduced moments, in 
contrast to the moments t a '" 'anab(~O),  determine the sym- 
metric combination~~'~'~~~""'(x~), in particular on the initial 
hypersurface, and prevent arbitrary specification of the ini- 
tial state. This circumstance remains fully valid for a curved 
space too, for which the analogs of Eqs. ( 15 ) and ( 16) are 
Dixon's well-known "equations of motion" (4.9) and 
(4.10) of Ref. 8: 

body in the future. When Dixon's method of describing the 
body is used, one would need for such calculation the deriva- 
tives of all the reduced moments at the initial point, but Dix- 
on's approach does not give them. 

At the same time, Dixon's approach to the dynamics of 
an extended body makes it possible to calculate the internal 
stresses of the body that give rise to its preassigned motion. 
Indeed, the incompletely determined system of equations 
( 15)-( 16) allows in general a freedom in the specification of 
the functionspO = const,pa ( x O ) , ~ [ " ~ ]  (xO) compatible with 
the existence of the solutionp"'~~~anO(xO) of this system. Addi- 
tion to such a solution of the remaining arbitrary reduced 
moments 

leads to a complete description of the body. In the case of 
curved space, this program is even made easier in view of the 
dynamical influence of the correlations of the stresses of the 
body with inhomogeneities of the space.*' 

"Of course, this has no essential influence on the results of the studies. 
"In such an approach, the metric of space is not considered. 
3'The geometrical image of the moment of time is the hypersurface S(s) ,  

so that specification of the moment of time is equivalent to specifying 
s = xO. 

4'From the set of reduced moments one can eliminatepa, reducing thereby 
the number of equations relating them to three. 
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