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The transition from periodic to random redistributions of the magnon density during the 
parametric excitation of magnons in antiferromagnetic CsMnF, has been studied. This redis- 
tribution sets in at high magnon density, as the result of an instability of the uniform distribution 
driven by the mutual attraction of magnons. The regions of cyclic and random changes in the 
plane of the magnetic field and the pump power are determined. At high power levels there is a 
region in which the onset of chaos is consistent with the Feigenbaum scenario, and the chaos has 
several of the properties predicted by that scenario. At a low pump power, a transition to chaos 
takes place as a function of the magnetic field. This transition conforms to the Pomeau-Manne- 
ville scenario and involves intermittency of coherent trains. 

1. INTRODUCTION 

Experiments on the parametric excitation of spin waves 
in antiferromagnetic CsMnF, at a high pump power' have 
revealed that at high magnon density the uniform steady- 
state distribution of magnons over the sample becomes un- 
stable. The density of parametrically excited magnons starts 
to undergo periodic redistributions. Short-lived condensa- 
tions far from the boundaries of the sample alternate with 
comparatively prolonged stages of a uniform distribution. 
These redistributions are accompanied by changes in the 
high-frequency susceptibility, which had been discovered 
earlier.' 

The physical reason for the disruption of the uniform 
distribution of parametrically excited magnons may be a 
nonlinear spectral shift of the magnons, specifically a de- 
crease in the natural frequency of a magnon with a certain 
wave-vector magnitude when other magnons are excited in 
the sample. A negative and nonlinear spectral shift has in 
fact been detected., Such a change in the spectrum is equiva- 
lent to the existence of an attraction between magnons. A 
qualitative theory demonstrating the possibility of a redis- 
tribution of parametrically excited magnons as the result of 
an attraction between magnons under actual experimental 
conditions and certain predictions were offered in Ref. 1. 
The present paper supplements that earlier study. 

We consider a region G in a sample in which the mag- 
non density n is, for some reason, higher than elsewhere in 
the sample. This nucleating nonuniformity in the distribu- 
tion of n might be caused by, for example, damping of mag- 
nons at the boundaries of the sample. The attraction between 
magnons has the consequence that all the magnons which 
intersect the boundary of G undergo a change in group veloc- 
ity. This change is directed into G and sets up a flux of mag- 
nons into this region; the flux density is proportional to n2. 
The rate at which magnons are excited by the pump and the 
rate at which the magnons are damped are both proportional 
to n. Consequently, when n becomes high enough the total 
flux will exceed the dissipation, and an instability will set in. 
The density increase within G in turn causes the inward flux 
density to grow, and the region with the relatively high value 
of n should contract in an avalanche fashion. Rough esti- 

mates show that at the magnon density reached in Ref. 1 the 
flux density caused by the attraction exceeds the dissipation 
for a region z 0.1 mm in size. The dimensions of the samples 
are - 1 mm; i.e., condensations of parametrically excited 
magnons can occupy a substantial part of the sample. The 
wavelength of the magnons excited in Ref. 1 was - cm, 
and their frequency 10 GHz. So far, theory for the nonuni- 
form distribution of parametrically excited magnons has 
been developed only for the case of a packet of parametrical- 
ly excited magnons with wave vectors confined to a narrow 
angular r e g i ~ n . ~  

Periodic repetitions of the condensation of parametri- 
cally excited magnons were observed in Ref. 1. The apparent 
explanation for the cyclic nature of the process is that the 
growth of n in a condensation region is limited by heating 
(the relaxation rate of the spin waves increases in accor- 
dance with a + PT7, where T is the temperature. This heat- 
ing causes an increase in the relaxation rate, which in turn 
increases the energy flux into the lattice and causes a heating 
of the lattice. As a result, the parametrically excited mag- 
nons in the condensation region are rapidly damped, and the 
next condensation process begins after the heated region 
cools down to the temperature at which the pump is capable 
of producing a density n of parametrically excited magnons 
sufficient for the onset of the instability. This picture of 
events gives a qualitative description of the observed behav- 
ior of the period, amplitude, and rise time of the process as 
functions of the magnetic field and the pump power.' 

It was also stated in Ref. 1 that in magnetic fields corre- 
sponding to small wave vectors of the parametrically excited 
magnons the periodic condensation process gives way to a 
random process. The reason for this transition is that in this 
region of magnetic fields the mean free path becomes signifi- 
cantly smaller than the sample, and the positions of the con- 
densations are not determined by the boundaries. The con- 
densations thus occur first in one place and then in another, 
disrupting the periodicity. Clearly, as the power is raised 
there may also be displacements of the regions where the 
condensations occur, when the magnon density becomes suf- 
ficient for a condensation not only in a cold sample but also 
in a sample which has cooled down after a cycle of condensa- 
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tion and "burnup" of magnons. We are interested in the 
present paper in the transitions to chaos both as the power is 
raised and as the magnetic field is varied. At a high pump 
power we can also expect a steady-state absorption of micro- 
wave pump power, when the parametric excitation can oc- 
cur in a region of the sample which has been heated to a great 
extent. 

Substantial progress has recently been achieved in the 
theory for the transition to chaos in dynamic systems de- 
scribed by systems of differential equations.5-7 This progress 
has in turn stimulated interest in experiments on such transi- 
tions in a variety of physical systems, particularly systems of 
large dimensionality and with distributed parameters. The 
theoretical and experimental research shows that for a wide 
range of dynamic systems which are not too complicated the 
transition to chaos occurs in accordance with a few "scenar- 
i o ~ . " ~  We are accordingly interested in the course of the tran- 
sition to chaos in this redistribution of magnons, which 
amounts to a sort of spatial turbulence of spin waves. 

2. GENERAL IDEAS REGARDING THE TRANSITION TO 
CHAOS IN DYNAMIC SYSTEMS 

It has proved possible, for a wide range of dynamic sys- 
tems, to go beyond the analysis of specific differential equa- 
tions to point out general features in the behavior of the solu- 
tion by mean of a PoincarC mapping.576 This mapping 
consists of a set of points at which the phase path of the 
system intersects some hypersurface in phase space. The ini- 
tial system of equations can in principle be used to determine 
the position of each successive intersection from the position 
of the preceding intersection; i.e., there exists a function of x 
such that x, +, = f(x, ). The properties of this function 
largely determine the course of the transition to a chaotic 
motion. If we choose this hypersurface in such a way that the 
points on it are recorded at times which are multiples of the 
fundamental period of motion of the system, then for a peri- 
odic situation the Poincart mapping will consist of a point, 
while for a random motion the mapping will have a more 
complex geometry. For dissipative systems the Poincart 
mapping approximately reduces to a one-dimensional map- 
ping, and the presence of chaos in the motion is determined 
by extrema of f (x) .  Four scenarios for the onset of chaotic 
motion have now been proposed for dissipative ~ ~ s t e m s . ~ . ~  
Two of them are associated with one-dimensional PoincarC 
mappings. According to the Feigenbaum ~cenar io ,~  the tran- 
sition to chaos occurs through successive doublings of the 
period. This behavior is exhibited by systems for which the 
extremum of the function f (x)  is quadratic. The basic fea- 
tures in the evolution of the motion of a system resulting 
from variation of a parameter are described by the mapping 

as the parameter C  is varied. The infinite sequence of those 
values of the parameter at which the period doubles con- 
verges on the value C ,  =: - 0.785. At C  < C ,  , the motion is 
random. The random motion appears first in an infinite 
number of narrow zones. As C is reduced further, these 
zones merge, and the number of zones is halved in each 

merger (inverse doubling bifurcations). At C  < C ,  , there 
exist small regions in the parameter C  which correspond to 
periodic motion with other periods, including odd integer 
periods: 7, 6, 5, 3, etc.' The periods of high multiplicity cor- 
respond to values of C closer to C ,  than the periods of low 
multiplicity. Figure 7.22 in Ref. 5 illustrates the intervals of 
x which are filled by iterative scheme ( 1) for various values 
of C. Each of the periodic cycles which occur at C< C ,  also 
undergoes doubling bifurcations with decreasing C  and a 
transition to chaos. This road to chaos in the Feigenbaum 
scenario7 occurs because the fixed points of mapping ( 1 ) 
lose their stability as Cis  varied, and they are transformed 
into two stable fixed points for motion with a doubled value 
of the period, i.e., fixed points of the mapping fCf(x) ). 

The quadratic mapping 

has yet another type of bifurcation, however: a so-called in- 
verse tangential bifurcation. As E varies from negative to 
positive values, the stable and unstable fixed points of this 
mapping merge and disappear. Typical of this bifurcation is 
another transition to chaos: through intermittency (the Po- 
meau-Manneville scenario9). In this case, intervals of ap- 
proximately periodic motion are interrupted in a random 
fashion by following intervals of an irregular motion. The 
average length of the coherent trains decreases in proportion 
to & - ' I 2 .  Interestingly, the transition to chaos from the in- 
teger cycles corresponding to values C  < Cm occurs in accor- 
dance with the Pomeau-Manneville scenario without a dou- 
bling of the period as the parameter Cis increased, but not as 
it is decreased. The intermittency of cycles 3 as we move out 
of this cyclic regime in the C ,  direction is illustrated by the 
result of a numerical simulation with scheme ( 1 ) in Fig. 15 
in Ref. 6. 

In summary, for many nonlinear systems, including 
systems which are distributed in three dimensions, the tran- 
sition to chaotic motion may be organized in accordance 
with some scenario or other. Individual characteristic fea- 
tures of these transitions have been observed experimentally 
in many experiments in chemical kinet- 
ics,'' the self-excited oscillations of the magnetization dur- 
ing the parametric excitation of spin waves in ferromag- 
nets,I3,l4 etc. 

In the present paper we report a study of the course of 
the transition to chaos in the phenomenon described above: 
the redistribution of magnon density during the parametric 
excitation of magnons by a microwave pump. 

3. EXPERIMENTAL PROCEDURE 

Global characteristics of the overall set of parametrical- 
ly excited magnons are the number N of these magnons and 
the phase 1C, of the oscillations at the pump frequency of the 
magnetic moment of the sample which is associated with the 
parametrically excited magnons. This phase is called the 
"phase of pairs of parametrically excited magnon~."'~ The 
frequency of the parametrically excited magnons is half the 
pump frequency, and the wave vector is determined from the 
condition for a parametric resonance: 
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where w, is the dispersion law for spin waves, and w, is the 
pump frequency (see Refs. 3 and 15 for more details on the 
parametric excitation of spin waves). The number and phase 
of the parametrically excited magnons determine the real 
(XI )  and imaginary (x" ) parts ofthe high-frequency suscep- 
tibility and also some experimentally observable quantities: 
the microwave power transmitted through a resonator and 
that reflected from the resonator. 

To study the excitation of paranietrically excited mag- 
nons, we analyzed the microwave signal transmitted 
through a resonator with the sample directly on an oscillo- 
scope screen or by means of a spectrum analyzer. We also 
studied a (transmitted signal)-(reflected signal) phase 
diagram of the system. The signals transmitted and reflected 
by the resonator are expressed in different ways in terms of 
X' andx", so that this phase diagram is related to  ax',^" (or 
N, $) phase diagram by a single-valued transformation. Fig- 
ure 1 shows a block diagram of the apparatus. We studied a 

FIG. 1. The experimental layout. G-Microwave pump gener- 
ator; 0,--oscilloscope for observing phase diagrams; 0,--oscil- 
loscope for observing the actual signal; S-spectrum analyzer; 
I,--isolator; A-attenuator; R-resonator with sample. 

sample of antiferromagnetic CsMnF, with a diameter of 2 
mm and a height of 1 mm at a temperature of 1.4 K and at a 
pump frequency of 18 GHz. A strip-line resonator is used to 
produce a microwave field up to 15 Oe at the sample, as in 
Ref. 1. 

4. SUMMARY OF RESULTS 

At different values of the pump power and the magnetic 
field, we observe different types of absorption of the micro- 
wave power by the sample. In magnetic fields H < 2.3 kOe, 
an increase in the power is accompanied by a gradual transi- 
tion to random spikes in the absorbed power through dou- 
bling and quadrupling of the period of the spikes in an initial 
cyclic behavior. Figure 2 shows oscilloscope traces of the 
actual signal. As the power is raised, the situation with a 
quadrupled period gives way to chaos. In a power interval 
corresponding to chaotic motion there are smaller intervals 
of values of h which correspond to a periodic motion with 
other periods. We observed cycles with periods which are 

FIG. 2. Oscilloscope traces of the microwave power 
transmitted through a resonator with a sample at in- 
creasing levels of the pump power in a field of 2.0 kOe. 
Traces 1-3 and 6-9 were obtained during repeated 
triggering of the sweep; traces 4 and 5 were obtained in 
a single triggering. The numbers in parentheses specify 
the case in Fig. 5. 
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equal to 7, 5, and 3 times the initial period. The oscillation 
spectrum of the signal in this chaotic situation has a signifi- 
cant intensity over a broad frequency interval, not only near 
the frequency of the initial periodic behavior but also near 
the frequencies f /2 and f /4. We call this situation "chaos 1 ." 
With a further increase in the power, there is a transition to 
chaos through situations with periods of 4 and 2, followed by 
oscillations with the fundamental value of the period. At 
sufficiently high power, there is a return to steady-state ab- 
sorption of microwave power. 

Figure 3 is a diagram of the periodic and chaotic states 
of the signal in the H, h plane, where h is the amplitude of 
the microwave pump field. If the pump power is maintained 
at a level too low for doubling of the fundamental period, the 
transition to chaos occurs when the magnetic field exceeds 
2.3 kOe. No period-doubling processes occur, and the evolu- 
tion of the spectrum consists of a broadening of the funda- 
mental line. This broadening initially occurs only at a level 
not exceeding 0.1 of the amplitude of the fundamental line 
(Fig. 4).  We will call this region of chaos, b in Fig. 3, "chaos 
2." 

The spikes in the susceptibility disappear at a field 
H,, = 2.6 kOe. At H > Ho, a parametric excitation of mag- 
nons at a low pump power becomes impossible because of the 
violation of condition ( 1 ). At a pump power corresponding 
to a redistribution of the density of parametrically excited 
magnons, a slight heating of the sample occurs (0.15 K). 
Accordingly, the temperature dependence of w, causes the 

h2, arb. units 

FIG. 3. Diagram of periodic and chaostic regimes 1-5-Periodic situa- 
tions of the corresponding multiplicity; a--chaos 1 (motion in one and 
two zones); a'--chaos 1 (motion in four zones); &chaos 2. 

FIG. 4. Change in the spectrum of the amplitude of the signal transmitted 
through the resonator during the transition to chaos 2. The spectra corre- 
spond to different magnetic fields: 1-2226 Oe; 2-2228 Oe; 3-2230 Oe; 
4-2233 Oe; 5-2238 Oe. 

boundary of the magnetic-field region in which the excita- 
tion of parametrically excited magnons is observed to shift 
slightly to the right. This shift explains the small interval of 
magnetic fields, about 80 Oe wide, near Ho in which parame- 
tric excitation of magnons occurs, as described in Refs. 2 and 
1, and there are no spikes in the susceptibility or redistribu- 
tion of the magnon density. Parametric excitation actually 
occurs here only in the slightly heated part of the sample, far 
from the boundaries, which are cooled by a bath of super- 
fluid helium. 

5. FINE STRUCTURE IN THE TRANSITIONS BETWEEN 
DIFFERENT TYPES OF REDISTRIBUTION OF THE MAGNON 
DENSITY 

The transition from the periodic regime with condensa- 
tions of parametrically excited magnons to chaos 1 proceeds 
in accordance with the Feigenbaum scenario: through dou- 
bling~ of the period. As we discussed in the Introduction, an 
analysis of the quadratic mapping ( 1 ) explains many other 
details of the change in the regime as a function of the param- 
eter C which were found in the present experiments. 

Figure 5 shows the temporal sequence of the different 
types of microwave absorption observed in a field of 2.0 kOe 
as the pump power was varied; Fig. 6 shows phase diagrams 
of the system in these cases. The Feigenbaum scenario and 
other subtleties of the change in situation which are charac- 
teristic of mapping ( 1 ) can be followed most systematically 
as the power is varied from high values to low values. Phase 
diagrams 1 4  in Fig. 6 correspond to the regimes with per- 
iods which are 1, 2, and 4 times the fundamental period, 
described above. Diagram 5 in Fig. 6 corresponds to chaotic 
motion in four zones; diagram 6 in Fig. 6 to random motion 
in two zones; and diagrams 8 and 11 in Fig. 6 to chaotic 
motion in one zone. We can clearly see the process of inverse 
doubling bifurcations, a merging of the outer zones of the 
diagram. The spectra of the chaotic motion at the values of 
the parameter corresponding to these transitions should 
have a shape common to many systems16 (see 7.23 in Ref. 5). 
The spectrum found for the value C = C:, which corre- 
sponds to the coalescence of four zones into two, has a sharp 
peak at the frequencies f /8 and f 1 2  and rounded, smaller 
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FIG. 5. Sequence of transformations of periodic and chaotic regimes in a field of 2.0 kOe as the power is varied. I-Steady state; 2--cycle of the 
fundamental period; 3-cycle 2; 4--cycle 4; 5--chaos of four zones; C c h a o s  of two zones; 7-cycle 7; 8-chaos of one zone; 9-cycle 3; I&-cycle 
6 = 3 ~ 2 ;  11--chaos of one zone; 12-contraction of zone; 13-chaos of one narrow zone; 14-cycle 4; 15-cycle 2; 16-cycle of the fundamental 
period; 17-steady state. The horizontal arrow shows the value of h at which the intermittency of cycle 3 is observed. 

peaks at these frequencies. At C = C 7 (the coalescence of 
two zones into one), there are rounded and sharp peaks at f / 
2. There is a qualitative correspondence between these spec- 
tra and those observed in the present experiments. Spectrum 
2 in Fig. 7 corresponds to the coalescence of four zones into 
two, while spectrum 3 corresponds to the coalescence of two 
zones into one. 

How do the transitions from cyclic regimes with per- 
iods of 7, 5, and 3 to chaotic regimes occur? Under our ex- 
perimental conditions we were able to observe transitional 
regimes (at transitions from cyclic to very random behav- 

ior) only for the cycle with a period of 3. As the power is 
reduced, the period doubles; i.e., a cycle with a period of 6 
forms. This process is illustrated by the change in phase dia- 
gram between 9 and 10 in Fig. 6 and the change from spec- 
trum 5 to spectrum 6 in Fig. 7. When we go from cycle 3 in 
the other direction (when we increase the power), the tran- 
sition occurs differently. The spectral lines corresponding to 
cycle 3 rapidly become broader, and the actual signal dem- 
onstrates and intermittency of trains of cycles 3 and of ran- 
dom intervals (see the oscilloscope traces in Fig. 8 ) .  Unfor- 
tunately, this intermittency is observed in a very narrow 

FIG. 7. Amplitude spectra of the signal transmitted through the resona- 
FIG. 6 .  Phase diagrams for various values of the pump power. Diagrams tor. I-Situation with a period which is four times the fundamental peri- 
1-17 correspond to the regime of the same number in Fig. 5; diagram 18 is od; 2 , 3 d u r i n g  the coalescence of zones; 4-well-developed chaotic mo- 
the phase diagram for a regime with a period of 5. tion (position 8 in Fig. 5);  5,6-double bifurcation of cycle 3. 
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FIG. 8. Oscilloscope trace of the signal transmitted through a resonator 
during observation of intermittency of cycle 3. 

power interval, so that it is not possible to determine the 
power dependence of the average length of the coherent 
trains. In this case, however, it can confidently be asserted 
that the intermittency sets in because stable and unstable 
cycles coalesce and disappear, since the position for a given 
change of regime is determined by all the other bifurcations. 

Following Lorenz," we construct a particular func- 
tional dependence for the chaotic regime at position 8 in Fig. 
5, for which an oscilloscope trace of the real signal is shown 
by trace 5 in Fig. 2. This function is y, + , (y, ), where y, is 
the absolute value of the nth minimum on the oscilloscope 
trace. This function determines the PoincarC mapping for a 
surface parametrized by the condition that the given coordi- 
nate in phase space be maximized. The result of the con- 
struction is shown in Fig. 9a; we find a curve with a mini- 
mum. According to Feigenbaum's theory, a system with a 
PoincarC mapping of this sort should undergo a cascade of 
doubling bifurcations in the transition to chaos. The deriva- 
tive of the curve is greater than unity in modulus essentially 
everywhere. This result means5 that closely spaced phase 
paths diverge exponentially over time, and the attractor in 
our system (the phase diagram) is a so-called strange attrac- 
tor. 

The construction of the mapping y, + , (y, ) for a chao- 
tic regime near intermittency of cycle 3 and also for chaos 2 
does not lead to anything like a single-valued dependence 
(Fig. 9b). A similar behavior of the mapping is evidently 
also observed in a numerical simulation with mapping ( 1 ) 
and with a value for C close to that at which cycle 3 appears 
when we approach from the side of the point of condensation 
of doubling bifurcations (Ref. 5 and Fig. 15 in Ref. 5). 

The transition from the random motion corresponding 
to position 12 in Fig. 5 to position 13 is accompanied by a 
slight hysteresis ( 1% in terms of the power). Such a hystere- 
sis is usually attributed to the presence of two chaotic attrac- 
tors in the given region of values of the parameter in the 
system. 

A careful examination of the transition from the cyclic 
behavior with the fundamental period to chaos 2 shows that 

FIG. 9. a-Poincark mapping for chaotic regime 8 in Fig. 5; b--for chaos 
2. 

this transition also involves intermittency (see the trace in 
Fig. 10). The shape of the spectrum at each value of the 
mhgnetic field can be used to evaluate the length of the co- 
herent trains, 7: The half-width ofthe spectrum at a low level 
(0.1 of the maximum amplitude) is on the order of 1/r. The 
result found (Fig. 1 1 ) does not, however, follow the behav- 
ior predicted theoretically for the case without external 
noise: Af oo &'I2. 

Chaos 1 is thus more ordered than chaos 2. In chaos 1 
there is an order close in time, as is shown by the observed 
behavior y, + , (y, ) (Fig. 9a) and by the strictly definite 
hierarchy of transformations between regimes as the power 
is varied (Fig. 5). The reason is that under conditions such 
that the mean free path of the parametrically excited mag- 
nons is comparable to the dimensions of the sample (in cha- 
os 1) the position of each condensation of the magnon den- 
sity is well defined, while in the case of a short mean free path 
(chaos 2)  the position of a condensation is random (only the 
heated region of the preceding density spike is an improbable 
position for a condensation). This difference in the physical 
factors which lead to chaos 1 and chaos 2 also explains the 
change in the amplitude of the absorption spikes. At the 
transition to chaos 1, the amplitude of the spikes decreases 
(the condensation occurs in a sample which is not cooled 
down thoroughly), while in the transition to chaos 2 this 
amplitude continues to increase, following the general trend 
of an increase in the intensity of the density redistribution 
upon a decrease in the wave vector and thus in the group 
velocity of the parametrically excited magnons.' 

FIG. 10. Oscilloscope trace of the signal transmitted through the resona- 
tor during the transition to chaos 2. 
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FIG. 11. Width of the spectrum of the signal amplitude at the 0.1 level 
(@)and at the 0.25 level (0) versus the magnetic field during the transi- 
tion to chaos 2. 

6. OTHER SAMPLES AND OTHER TEMPERATURES 

Transitions to chaos were also studied at T = 1.6 Kin a 
smaller sample ( 1.5 mm in diameter and 0.8 mm high). As 
the temperature is varied from 1.4 to 1.6 K, the nature of the 
transition from cyclic behavior to chaos 2 remains entirely 
the same. The picture of the transition to chaos 1 changes. At 
T = 1.6 K, only the regions with periods of 2 and 4 are distin- 
guishable in the initial sample; there is no chaos at fields up 
to 2.3 kOe. This change in the chaos with the temperature 
can be explained qualitatively level by saying that at the low- 
er bath temperature (i.e., with more rapid heat removal 
from the sample) conditions are better for the condensation 
of the magnons in the sample which has not yet cooled, in a 
position which does not coincide with the position of the 
preceding condensation. For this reason, the transition to 
chaos 1 (i.e., with increasing power) should be better de- 
fined at a lower temperature. The transition to chaos 2 in- 
volves a change in the mean free path of the sample, and it 
should not be affected significantly by such a small change in 
temperature. 

In the smaller sample, the general features of the transi- 
tion to chaos 2 remain the same, but the field interval corre- 
sponding to this chaos becomes 15% narrower. This nar- 
rowing should be expected since the mean free path of the 
magnons becomes smaller than the size of the sample at the 
stronger magnetic fields. At T =  1.4 K, the region in the 
parameters H and h corresponding to chaos 1 is substantial- 
ly smaller, and it lies at stronger fields and higher power 
levels than in the initial sample. There is no suppression of 
the susceptibility oscillations at the highest power level at- 
tainable in these experiments. 

7. CONCLUSION 

In summary, the instability of the uniform distribution 
of parametrically excited magnons leads to changes over 
time in the spatial distribution of the spin-wave density. 
These changes are both periodic and random, and they con- 

stitute a specific type of turbulence. The transition to chaos 
occurs in accordance with the Feigenbaum scenario 
(through period-doubling) as the pump power is raised or 
the Pomeau-Manneville scenario (through intermittency of 
coherent trains) as the magnetic field is increased. The ex- 
periments reveal many details of the evolution of the tempo- 
ral, spectral, and amplitude characteristics of the motion of 
the system of parametrically ,excited magnons which are pre- 
dicted on the basis of an analysis of quadratic mapping ( 1 ): 
periodic motion with periods of 3,5, and 7; a doubling bifur- 
cation of a cycle with a period of 3; intermittency of cycle 3; 
and coalescence of random zones. 
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