
Influence of magnetic Landau damping on the skin effect and Doppler-shifted 
cyclotron resonance in a metal plate 

I. F. Voloshin, N. A. Podlevskikh, V. G. Skobov, L. M. Fisher, and A. S. Chernov 

V .  I. Lenin All-Union Electrotechnical Institute 
(Submitted 9 August 1985) 
Zh. Eksp. Teor. Fiz. 90,352-366 (January 1986) 

The penetration of radiowaves into a plate of compensated metal in an oblique magnetic field is 
analyzed. The impedance of cadmium, tungsten, and molybdenum plates oriented with their 
normal parallel to the high-order crystallographic axis is studied experimentally. The rf field 
distribution in a semiinfinite metal is calculated theoretically with allowance for diffuse reflection 
of carriers from the boundary and for magnetic Landau damping, which makes the conductivity 
anisotropic. Expressions are also found for the impedance and the field distribution inside the 
plate. Because of the anisotropic conductivity, there are two inequivalent directions in the plane 
of the plate, and the penetration depths of the corresponding longwave components are found to 
be different. This results in an experimentally observable anisotropy in the smooth impedance of 
the plate which depends strongly on the inclination angle of the field. The oscillating component 
of the impedance also becomes anisotropic because of the interaction between the longwave and 
shortwave field components when the carriers are reflected nonspecularly. Doppleron 
oscillations are observed for both circular polarizations of the excitation fields, although the 
Doppler wave remains circularly polarized. The reasons for the experimentally observed decrease 
of the amplitude of the Gantmakher-Kaner oscillations in an inclined field and the dependence on 
the inclination angle are discussed. The main experimental results can be explained within the 
framework of the theory presented here. 

Lavrova et al.' have studied how magnetic Landau 
damping influences the propagation of dopplerons. The 
damping decreases the amplitude of the doppleron oscilla- 
tions in the impedance of a metal plate, and the theory pre- 
dicts that the damping should be greatest near the lower 
doppleron threshold H,. However, the experimental results 
indicate that the oscillation amplitude actually decreases 
significantly for a wide range of magnetic fields. The tem- 
perature dependence of the oscillations in the impedance of 
cadmium in an oblique magnetic field has been found to be 
nonmon~tonic,~ and this behavior also remains unex- 
plained. The theory in Ref. 1 rests on the assumption that 
carrier reflection from the surface of the plate is perfectly 
specular, although subsequent measurements have demon- 
strated that this is false. Indeed, it was shown in Ref. 3 that 
nonspecular reflection plays a key role and radically alters 
the properties of the Doppler-shifted cyclotron resonance 
(DSCR) in metal plates. For diffuse carrier reflection, the 
amplitudes of the shortwave field components depend on the 
penetration depth of the longwave component. In addition, 
the signal picks up an extra gain because of the skin layer 
that forms when the shortwave components are reflected 
from the opposite surface of the plate. Moreover, according 
to Ref. 4 the same conclusion holds for metals with open 
orbits, for which the conductivity is highly anisotropic in the 
plane of the plate. In this case both the smooth and the oscil- 
lating components of the impedance tensor will differ for the 
two linear polarizations of the long-wave radiation. 

It seems plausible that the unexplained behavior of the 
impedance oscillations in oblique fields might also be asso- 
ciated with diffuse reflection and with the anisotropic con- 
duction caused by the oblique field. In the present work we 
analyze the impedance of a metal plate in an oblique magnet- 

ic field. The experiments were carried out on cadmium, 
tungsten, and molybdenum plates; the theoretical analysis is 
based on the technique developed in Ref. 4, which makes it 
possible to calculate the field distribution in metals with an- 
isotropic conduction and diffuse carrier reflection. The nu- 
merical calculation was carried out using the model Fermi 
surface for cadmium suggested in Ref. 5. The resulting the- 
ory successfully accounts for the experimentally observed 
behavior of the impedance in oblique fields. The experimen- 
tal measurements are discussed in Sec. 1; in Sec. 2 we discuss 
the theory and compare its predictions with the experimen- 
tal results. 

1. EXPERIMENT 

We measured the surface impedance Z = R - iX of Cd, 
W, and Mo single-crystal plates in a constant magnetic field 
H. The crystals were cleaved in an electric arc from single- 
crystal ingots and were then chemically treated. The resis- 
tance ratio p300/p4,2 at 300 and 4.2 K was 50,000 for the 
cadmium and tungsten ingots and 30,000 for the molyb- 
denum ingot. The [0001] crystallographic axis for Cd and 
the [001 ] axis for W and Mo coincided to within lo with the 
normal n to the surface of the plates. The plate thicknesses 
were 1.71, 0.79, and 0.60 mm for cadmium, 2.03 mm for 
tungsten, and 0.48 and 1.38 mm for molybdenum. 

We used an amplitude bridge and autodyne to measure 
Z.  The electromagnetic field was generated by a pair of 
crossed coils into which the plate was inserted. One of the 
coils provided the inductance required in the autodyne or 
bridge circuit. Both coils were wound on a brass form, which 
ensured that their impedance was virtually independent of 
the constant magnetic field when no plate was present. The 
field polarization was continuously selectable from linear to 
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circular; the doppleron signal in a perpendicular magnetic 
field was used to select the circular polarization. The imped- 
ance oscillations were measured by modulating the field H at 
9 Hz and selecting the second-harmonic signal V,. The field 
H was generated either by an electromagnet or by a super- 
conducting solenoid. The field orientation (along [0001] for 
Cd and [001 ] for W and Mo) was chosen from the condition 
that the angular dependence of the amplitude and oscillation 
period be as symmetric as possible; this reduced the error in 
aligning the field H to less than 0.2". 

For a field HI1 [0001] and the "minus" circular polar- 
ization, the electron doppleron causes distinct oscillations in 
Z for cadmium. The measurements revealed that when H 
was oriented away from the [0001] axis, oscillations asso- 
ciated with the electron doppleron also occurred for the 
"plus" polarization. The amplitude ratio A + / A -  for these 
polarizations increased with the field inclination angle 4. 
Figure 1 shows traces for the - (curve 1 ) and + polariza- 
tions (curve 2) for q5 = 4". We found that for the + polar- 
ization, the voltage ratio for the excitation coils could be 
chosen to produce an elliptically polarized field for which 
the doppleron signal was almost absent (curve 3 ) .  Similar 
(but considerably weaker) effects were noted for the tung- 
sten and molybdenum plates. In what follows we will there- 
fore discuss the oblique-field measurements for the case of 
cadmium. 

It was convenient to use linearly polarized fields when 
measuring the slowly varying and the oscillating compo- 
nents 9 = 9 - i Z  and AZ of the impedance, which were 

FIG. 1 .  Oscillations in the surface resistance of a cadmium plate in an 
oblique magnetic field (plate thickness d = 1.71 mrn, frequency f = 146 
kHz,  temperature T = 1.6 K ) .  

found to be quite sensitive to the angle between H and the 
axis of the measuring coil. In what follows we will write 4 for 
the angle between H and a plane containing the axis of the 
receiving coil and use E to denote the angle in the perpendic- 
ular plane; quantities measured in these two planes will be 
denoted by the subscripts 4, E,  respectively, while values for 
a perfectly aligned field HI1 [0001] are denoted by a 0 sub- 
script. The impedance is more sensitive to changes in q5 than 
to changes in E .  Also, there was little change in the observed 
behavior when the plate was rotated in the receiving coil 
about the [0001] axis. 

We first discuss how the smooth component of the im- 
pedance depended on the field inclination. Figure 2 plots the 
surface resistance R (H) (curves 2,2') and reactance X(H)  
(curves 1,l') for Hll[ObOl] (curves 1, 2)  and for 4 = 4" 
(curves l', 2'). (The vertical and horizontal scales for the 
traces R (H) and X(H) were chosen under the assumption 
that the maximum value of the slowly varying component of 
the surface resistance (reached at H = HM ) is equal to the 
smooth component of the reactance: 93' (H, ) = Z(H, ). 

We see that the impedance is sensitive to q5 for nearly all 
fields H. The data in Fig. 2 also imply that 131 decreases 
with the inclination of the field. Thus, for fields HZ 5 kOe 
corresponding to maximum oscillation amplitude, 13, / at 
4 = 4" is just z 66% of the value for HI1 [0001 ] . For small q5 
and fixed H, 13, / decreased as q52 for our sample plates. 

The curves 9,(H) and 93'+ (H) are qualitatively simi- 
lar and can be superposed by a linear change of scale of the 
field variable, namely, H' = k(q5)H. In strong fields, for 
which R ( H )  becomes comparable to 93'(H), the curves 
Zo (H)  and R4 (H) coincide approximately after a change 
of scale by the same factor k(q5). The value of k(q5) can be 
found from the shift in H, for which 9+ (H) is a maximum: 

k ( c p )  = ~ I M  (q) IHM (0). 

FIG. 2. The dependences R ( H )  (2 ,2 ' )  and X ( H )  ( 1 , l ' )  for a cadmium 
plate ( d  = 1.71 mm, f = 146 kHz) for aligned ( 1,2) and oblique ( 1',2') 
fields. 
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H,, kOe 

FIG. 3. Field H ,  versus angle 4 for cadmium plates of various thickness 
( d  = 1.71 mm for curves 1, 2, and d = 0.60 mm for curves 3, 4) for two 
temperatures: T = 1.6 K (1,3) and T = 4.2 K (2,4); f = 146 kHz. 

Figure 3 illustrates how H, (4) depends on &, the field incli- 
nation in the & direction. The measurements were made at 
1.6 and 4.2 K for two plates of widely differing thicknesses d .  
The shift in HM (4) toward higher fields was much greater at 
the lower temperature, particularly for the thick sample. On 
the other hand, the relative change AHM/HM was greater 
for the thin sample at both temperatures. In all cases, a near- 
ly quadratic dependence AH, (&) a H,  (O)C$~  was found for 
4 ~ 4 " .  The coefficient k ( & )  was insensitive to changes in the 
field frequency. 

Deviations of the magnetic field by an angle E 5 15" in 
the perpendicular plane do not significantly alter the slowly 
varying components of the impedance. Thus, under the con- 
ditions indicated in the caption to Fig. 2, 9, (H)  and 
ZE (H) for E = 40 coincide to within the - 1 % error with 
curves 1 and 2 in Fig. 2, which correspond to HI1 [OOOl]. 
Although HM decreases somewhat as E increases, LW, ( E )  

(AH,,, (4) for equal angles & and E. 

Figure 4 illustrates how the oscillations in the surface 
resistance change in an oblique field. We see that for equal 
angles & and E, the oscillations decrease more rapidly for a 
field inclined in the & direction. 

The measurements imply that when the excitation field 
is linearly polarized, the behavior of the oscillation ampli- 
tude depends on the change in the smooth impedance. The 
dark circles in Fig. 5 show the ratio AI/A, for q5 = E = 4". 
Curves 1 and 2 plot (3, 12/13, I 2  and R e ( F ; ) / R e ( F f  ), 
respectively. In weak fields, for which R ( H )  (9 (H) ,  these 
curves nearly coincide; their difference becomes appreciable 
only as H approaches H,. For a wide range of magnetic 
fields, the experimental values A,/AE lie close to curve 2. 
The amplitudes A, and Ad are thus related for inclined fields 
and we need only study one of them. 

We also investigated the oscillation amplitude for fields 
inclined in the E direction; in this case the smooth compo- 
nent of the impedance remained virtually unchanged. Figure 
6 plotsA,/A,(H) for two values of&; AE/A, is smallest for H 
near the lower doppleron threshold, and it increases and sat- 
urates with increasing H.  Comparison of Figs. 6 and 7 shows 
that the limiting value of A,/Ao is independent of tempera- 

FIG. 4. Traces showing oscillations of the surface resistance of cadmium 
in perpendicular (curve 1) and inclined magnetic fields for E = 4" (curve 
2 )and4=4" (cu rve3 ) ;d=  1.71mm,T= 1.6K,f= 146kHz.Curves2 
and 3 were recorded at twice the sensitivity for curve 1. 

ture and frequency and depends only on the field inclination 
angle. 

The same qualitative behavior was observed for tung- 
sten and molybdenum, but the plate impedances were less 
sensitive to the inclination of the field. Unlike the case for 
cadmium, the (small) change AH, (E)  for a field inclined 
by E had the same sign as AH, (4). 

2. THEORY AND DISCUSSION 

1. We use the "lens" model5 to describe the electron 
portion of the Cd Fermi surface, according to which the 
spectrum is of the form 

FIG. 5. Measured values of A,/A, (points) and 1.7, /'/IF, 1' (curve 1 ) 
and R e ( 9 :  ) /Re(F:)  (curve 2) as a function of the magnetic field; 
d = 1.71 mm, T =  1.6 K, f = 270 kHz. 
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nec 
oxZL(q) = P[ ( q Z + ~ 2 ) ' b - ~ l .  ( 6 )  

FIG. 6. Behavior of A,/A, for a cadmium plate of thickness 1.7 mm; 
T = 1.6 K, f = 140 kHz. Curve 1 is for E = 4", curve 2 for E = 6". 

where the constant m has the dimensions of mass. 
The model parametersp,~,, andp, were found in Ref. 5 

to bep = 0 . 2 , ~ ~  = 1 . 5 f i k 1 ,  andp, = 0.23fiA-I, wherefiis 
Planck's constant. We take the z' axis to be normal to the 
plate (parallel to the wave propagation vector k) ,  while thex 
axis is normal to the plane spanned by k and H. We will also 
use an xyz coordinate system with zllH. The angle between 
the z and z' axes will be assumed small. 

One must know how the electrons move in the inclined 
magnetic field in order to calculate the nonlocal conductiv- 
ity tensor. The velocity components of the electrons in the 
central section of the lens determine the element ex (the 
magnetic Landau damping); they are given by 

v, ( p , ,  c D )  =po ( o m )  -' sin x+ u, ( x )  cp sin cD (popi-' cos x - 1 )  , 
~ l ( . )  = (mo) -1r2pop i  (cos x - p )  I ", x=op*lpi ,  (3 )  

where @ is the gyrophase of the orbiting electrons. Using 
these expressions and proceeding as in Ref. 1, we find that 

IF 

nec qz J (cosx-p) '  coa2x 
o m L ( q ) = - p  dx ,  (4) 

H n o ( l - p ) 2 - z F  yf iqo-I  sin x 

y = n q ( I - p )  [ 2 o k ( l + p ) l - ' ,  q=o(polp i )cp2,  (5)  

k = l - p x p / o ,  xp=arcsin 0, 
where q = kcp,/eH is the dimensionless wave vector; 
y = vmc/eH, n and Y are the electron density and the fre- 
quency of electron collisions with scattering particles; e is 
the absolute value of the electron charge, and cis the speed of 
light. For values lql % y e x  has the simple form 

FIG. 7. Dependence of A,/A, for T = 1.6 K (curve 1)  and T = 4.2 K 
(curve 2 )  for a cadmium plate; d = 1.71 mm, f = 260 kHz. 

The Hall conductivity a,, (q) cannot be calculated ana- 
lytically for 4$O.  However, if we neglect multiple reson- 
ances we can approximate it by the electron conductivity 
calculated for a Fermi surface axisymmetric with respectto 
the magnetic field. The primary requirement is that both the 
volume V and the derivative (dS/dp, ),,, at the reference 
point remain constant for this surface; the derivative deter- 
mines the spatial period of the shortwave field components 
[S( p, ) is the area of the cross section of the Fermi surface 
cut by the plane p, = const]. The conductivity has a reso- 
nance singularity which is also important, as it essentially 
determines the doppleron spectrum. It depends on Vand on 
the derivatives dS/dp, and d 2S/dP: at the reference point, 
which are given by 

for the initial lens in the inclined magnetic field. We consider 
a class of model Fermi surfaces whose cross sectional areas 
are given by 

where a, b, and r are free parameters, and A and Z are given 
in terms of r by the same expressions as for A, a in terms ofp. 
For these models, V, (dS/dp, ),,, , and (d  2S /dp: ) ,,, are 
equal to 

Equating V, (dS /dp, ),,, , and (d 2S /ap: ) ,,, to the values 
(7) for the original lens model in an inclined magnetic field, 
we obtain three algebraic equations for a, b, and r. If we 
assume that 4 andp are small, we find 

Equations (5.7)-(5.9) in Ref. 5, with p replaced by r, give 
the nonlocal conductivity for the model Fermi surface: 

where t = q ( l  f iy) -'. In what follows we will refer to for- 
mulas derived in Refs. 4 and 5, which will be indicated by 
appending 4 or 5 as a prefix to the equation number. 

2. A method was developed in Ref. 4 for calculating the 
field distribution in a semiinfinite metal or plate with diffuse- 
ly reflecting surfaces and an anisotropic, nonlocal conduc- 
tivity. The first step is to calculate the field for a semiinfinite 
metal; the distribution is given by Eqs. (4.19) and (4.20). 
One cannot use (4.18) to calculate the surface impedance 
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directly, because even though the tensors 4 and r commute 
with each other approximately (see Ref. 4), the impedance 
calculations require the higher (not just the leading) terms 
in the expansions of r and q5 in l/q as q+ w ; the commutator 
for these terms is negligible only for strong fields 
(6<4awncp?j/eH 3< 1 ), for which thea is nearly equal to the 
identity tensor. This is the situation that was analyzed in 
Ref. 4; here, however, we are interested in the moderate 
fields for which dopplerons can exist in cadmium, and the 
calculations must be carried out to higher order. We rewrite 
Eq. (4.2) as follows: 

(q-iq).rp,-'T,-~&,=- (q -k iq )  -'cp,-'~~-'a-' (&"+iqZ+$) +Q,  

Q= (q-iq)qi-'~l-'[~lcpicpz-'-cplcpz-'~ll T Z - ' ~ ~ ,  

where we adopt throughout the notation introduced in Ref. 
4. Expressing f l (q)  as a difference f l , (q)  - f12(q) of two 
functions regular in the upper and lower halfplanes, respec- 
tively, and moving fl,(q) over to the left-hand side, we ob- 
tain an equation whose right- and left-hand sides are regular 
in the upper and lower half-planes, respectively, and must 
therefore be constant, equal to the vector - ia- 'I2g, say 
(here we use the fact that 4; '7; 1bz112  as 9-03, where 
a = b - 'a-'I2b). The result for the field distribution in a 
semiinfinite metal is 

- i r+m 

Equations ( 12) and (4.15), (4.17) imply that 

8'=i (K+M+A)&, 
where 

i A 8 =  lim a'"qQ ( q )  . 
9'- 

To evaluate this limit we use the explicit formula 

for fl,(q). The expression in square brackets vanishes for 
jz/ g 1, while for lzl 2 1 we can approximate it by the asyrnp- 
totic expression for the tensor r l ;  the result is 

where we have used lK I ( 1. The latter inequality implies that 
/fl,l < 29, so that the term - iR2 on the right can be discard- 
ed. 

The second term in square brackets determines the limit 
of cr'12qf12(q) as q-, w , because the first term has no singu- 
larities in the upper half-plane. Deforming the path of inte- 
gration to pass below the pole z = 0, we obtain 

- ib+-  

Since the last integral is equal to - K, we get the final rela- 
tion 

8 ' - i ( N + M ) b ,  (13) 
N=a%Ka-% . (14) 

between 55" and 8 which determines the impedance. 
Equation (4.23) gives the field distribution E ( f )  for 

the longwave component. Although the complete conduc- 
tivity tensor is antisymmetric, because of the factor a- ' this 
is no longer true of DL (nor of the tensor K,  which relates E 
to its derivative E'  on the surface). However, we will see 
below that the combination a'12Ka-112 is antisymmetric, so 
that the same is of course true for the complete surface im- 
pedance tensor. 

3. The calculation of the tensor M and the distribution 
of the shortwave field components associated with the 
Doppler-shifted cyclotron resonance presents no difficulty 
in principle. According to Eqs. (4.20), (4.7), (4.14), and 
(4.16), the expression for the shortwave field components 
can be written in the form 

e ( b )  = W ( S ) & ,  

where as before the overbars denote quantities for circularly 
polarized radiation. The tensor q2BR is almost diagonal, and 
its elements are equal to 

q 2 f S ~ ( q )  =q2- iE[x*(q ) -x*  ( O ) + ' I z x ~ ( q )  I ,  
x,= (Hlnec )  omL ( q )  . (16) 

We can write ( 15) as the sum of the residue at the doppleron 
pole q = q, plus an integral over the edges of a cut in the q- 
plane [this integral gives the Gantmakher-Kaner compo- 
nent (GKC) 1. The resulting expressions for @ 1 are identi- 
cal to the last two terms in (5.9), except thatp is replaced by 
r and the additional term x, in ( 16) gives rise to a nonlocal 
doppleron decay. We can therefore use the results in Ref. 5, 
where it was noted that except in a small neighborhood of the 
lower doppleron threshold, the coefficients b, and c, in (5.9) 
are given by - 8 [d(q2DR/dq], = , - ' and + 1/2, respec- 
tively. Asymptotic expressions for the GKC were found in 
Ref. 5. For fields well above the upper doppleron threshold, 
(5.25) implies that the GKC amplitude is proportional to 1/ 
r2. It should therefore decrease when the magnetic field is 
oblique. 

To calculate the doppleron amplitude we must numeri- 
cally solve the dispersion equation D, (q) = 0 and calculate 
the coefficient b,. The inclination of the magnetic field has 
two consequences: 1 ) The magnetic Landau damping gives 
rise to an additional doppleron damping, particularly near 
the lower threshold. 2)  The upper doppleron threshold is 
increased whenp is replaced by r, and this also decreases the 
doppleron oscillations. Figure 8 plots the calculated dop- 
pleron amplitude A = D '-'exp(iq,L) at the depth 
z = d =  1 .7mmfor~=Oand4" .  

The tensor M is insensitive to the inclination of the 
field-its relative change is comparable to 17 and may be 
neglected. 
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FIG. 8. Calculated dependence of the doppleron oscillation envelopes in a 
plate ( d  = 1.7 mm) for perpendicular (1) and oblique (2) magnetic 
fields; f = 140 kHz. The carriers were specularly reflected and the mean 
free path was I = 2 mm. 

4. Equation (4.23) for the longwave field component 
takes the form 

(q2-qo2-i tsL)  EqX+iEBq2Eqv 

=- (E,'+iqEX+Fq,) - iEP (E,'+iqE,+ F,,) , 

in Cartesian coordinates, where go = ( 1 + i) (ly) 'IZ and Do 
is the coefficient of q2 in the expansion of xyx ( 9 ) .  

System (17)  can be solved in the same way as (4.26), 
(4.27); the result is 

m 

1 dqeiqL 
E,(S)= - j - t* (u)  

2ni -_ q-zh 

-- iC 
'BOq' t , ( q ) {  Ex - -[Eu'-iE~oE,.  
q-ih Q-  Qo 

C=-iEBoqo[ 2 (1-E2B02) (qo+ih) t ,  ( q , )  I,-' (20)  

We see from the definition oft, ( q ) ,  t2 ( q )  , and C that the pole 
q = go gives no contribution to the distributions ( 18), ( 19). 
The field E ( 6 )  must vanish for 6 < 0, as is automatically the 
case for ( 18). However, the condition for ( 19) to vanish 
requires that the residue of the integrand at q = - go must 
be zero: 

(&'-iEBoExr) -iqo (Eu-iE!30EX) + - EB0q%2 ( - q 0 )  
qo+ih 

Upon evaluating expressions ( 18) and ( 19) for g-0 we ob- 
tain identities, and the same holds for the <-derivative of the 
function in ( 19) as g-0. However, if we take the derivative 
of ( 18) we obtain the equation 

E,'=iQq,E,+C[ (E,'-itPoEd) f'iq, (E,-iEp,E,) 1, (23)  

Equations (22 )  and (23)  determine the tensor K relating the 
longwave field component to its derivative on the surface: 
E ' = iKE. To calculate the elements ofK we use the obvious 
relation t2( - q )  = t , - ' ( 9 )  to express t,( - go) in (22 )  in 
terms of C. The tensor N describing the contribution of the 
long-wave component to the impedance of a semiinfinite 
metal is then given by 

N , = ' / z q o [ Q f l +  (Q-1-2A) G'"] ,  (25 )  

Nvv='12qo[Q+1- (Q-1-2A) G'"] , 

5. The dispersion equation for the longwave component 
is 

Since in general the solution cannot be found in closed form, 
we will examine some limiting cases of experimental interest. 

a) .  We first consider the case of intermediate inclina- 
tion angles 4 and strong fields H satisfying the inequalities 

We will not be interested in the small-angle limit, for which 
p <DolqO1. When (28)  holds, the Hall conductivity plays no 
role and the second term in (27 )  may be neglected. The long- 
wave component then has two components with electric 
fields polarized along the x and y axes, and the dispersion 
equation has the roots 

q T = q 0 + ' / ~ i E ~ ,  Q Y = Q O .  (29 

We see that the magnetic Landau damping due to the incli- 
nation of H has no effect on qy and changes q, only slightly. 

We next calculate the field distribution in a semiinfinite 
metal, which is given by Eq. ( 18). In our case Cis small and 
the function t, is of the form 

t 2 ( q )  = (q- ih)  (q i -q , )  [q2-go2-ipE ( q Z + y ) ' i 2 ] - i .  (30 )  
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If we substitute (30) into ( 18) and evaluate the integral in 
the limit of small and large qoc, we obtain the following in- 
terpolation formula: 

The second term in parentheses represents the nonexponen- 
tial part of the long-wave component of the field caused by 
the magnetic Landau damping. 

Proceeding as in Sec. 4 in Ref. 4 for the case of open 
orbits, we can use (3  1 ) to derive the following expression for 
the smooth component of the plate impedance: 

The terms containingp in (32) cause 3, to depend on 
the field inclination (p oc 42). Calculation shows that the 
peak in the smooth component of the surface resistance 9, 
associated with the Fischer-Kao effect6 shifts toward higher 
H as 4 increases; however, the height of the maximum of 
9, is nearly independent of 4. Figure 9 shows results found 
by calculating the position H, of the maximum as a function 
of 4. The dependence is very pronounced-even a small in- 
clination of a few degrees suffices to shift H,,, substantially. 
This is due to the shape of the electron "lens" in cadmium:~, 
andp, are such that the parameter 17 in (5)  characterizing 
the magnitude of the magnetic Landau damping is not very 
small even for small 4: 7 - 10 42. We see by comparing Figs. 
3 and 9 that the theoretical and experimental results are in 
qualitative agreement. Moreover, the y-component of the 
long-wave component (and hence also FYy ) is independent 
of 4,  again in agreement with experiment. 

b) .  We next consider the case of large angles 4, for 
which 

~t" l4o l ;  (33) 

we will not assume that the field is strong (so that Po{ need 
not be small). The long-wave component is then determined 
by the magnetic Landau damping, and the corresponding 
root of the dispersion equation (27) is 

q,=ipt (I-Po2t2)-I, (34) 

FIG. 9. Dependence H, (4) calculated for I = 2mm, d = 1.7 mm, f = 140 
kHz. 

where Do{ differs appreciably from unity. According to 
(34), the skin layer is much thinner than for case a )  and 
varies as H z  in strong fields. 

As before, Cis  small; however, Q is now large: 

According to (25 ) , the tensor N has the components 

Writing M+ and M- for the elements of the tensor M for the 
two circular polarizations, we find 

DT,(O) EM++ M-+qoQ (1-G") +qo (l+G1") , 
DT,,(O) =M++M-+qoQ (I+ G"') +qo (1-G"), 

(37 
DT,,(O) =-DT,(O) =-i[M+-M--tpoqo (Q-1) 1, 

for the components of the tensor T(0) which determines the 
impedance of a semiinfinite metal [see Eqs. ( 13 ) and (4.12), 
(4.1311. 

To calculate the impedance of a plate, we must find the 
field distribution and derive interpolation formulas like the 
ones for case a) .  These elaborate formulas will not be given 
here. In any case, they are not needed for the moderate fields 
for which the doppleron oscillations exist. Indeed, the plates 
used in experiments are generally quite thick, so that the 
Fischer-Kao effect is not observed for the experimental 
fields, and the continuous component of the plate impedance 
is just twice the impedance for a semiinfinite metal. 

Although T,, (0)  and T,, (0) vary because of the Lan- 
dau damping, they are equal (just as in the absence of damp- 
ing) at the lower doppleron threshold, where goo = 1. In 
order to analyze how Txx (0) and Tyy (0) behave in stronger 
fields for which {Po is small, we use the fact that lQ 1) 1 and 
that M+ and M- are nearly equal for these fields. It is then 
clear from (37) that as in case a ) ,  the magnetic damping 
alters Txx (0) appreciably while leaving Tyy (0)  unchanged. 
These conclusions are in accord with the measured results. 

Let us now consider the oscillating component of the 
plate impedance, which is given by Eq. (4.63). For fields 
well above the upper doppleron limit, for which only Gant- 
makher-Kaner oscillations are observed, the tensor describ- 
ing the smooth component 3 of the impedance is nearly 
diagonal for both cases a )  and b) ,  and the elements W:, (L)  
and W;, (L)  are equal. Therefore, as is found experimental- 
ly, the ratio SR,/SRyy of the oscillation amplitudes is pro- 
portional to R e ( F 2  )/Re(F;y ). Because the smooth com- 
ponent of the element Zyy is independent of the field 
inclination, the amplitude of the oscillations in Zyy divided 
by the corresponding amplitude at zero inclination angle 
must be equal to ( p/r)'. For E = 4", a calculation using our 
model gives 0.56, which is fairly close to the experimental 
value 0.72. If we takep = 0.3 in the lens model, the calculat- 
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ed ratios A,/Ao for strong fields and E 5 8" agree quantita- 
tively with experiment. 

We have already noted that for moderate fields we can 
replace the smooth component of the plate impedance by 
twice the impedance of a semiinfinite metal. Since the dop- 
pleron has the "minus" circular polarization, the doppleron 
oscillations in Zxx and Zyy are given by (4.63) as 

If I Txy (0) I ( I T,, (0) - Tyy (0) 1, the second terms in square 
brackets in (38) can be discarded. This is the case in stronger 
fields where, as for the Gantmakher-Kaner oscillations, the 
oscillation amplitudes for the elements Zxx and Z,,,, are pro- 
portional to the squares of the smooth components. 

Because Tyy (0) is insensitive to the inclination of the 
magnetic field, the change in the oscillation amplitude AZ,, 
is due to the increase in the collisionless damping of the dop- 
pleron and to a change in the doppleron spectrum. On the 
other hand, the amplitude AZxx decreases further due to the 
change in the factor T:, (0).  It is probably not legitimate to 
neglect Txy (0) at the lower doppleron threshold. However, 
since T,, (0) = Tyy (0) here, the oscillation amplitudes must 
become equal as the field approaches the lower threshold. 
All these conclusions are in agreement with the measure- 
ments. 

Our investigations provide an explanation for the non- 
monotonic dependence of the oscillation amplitude in in- 
clined magnetic fields which was observed in Ref. 2. As the 
temperature drops, the oscillation amplitude changes for a 
wide range of magnetic fields because of the reduced colli- 
sional damping of the shortwave components, and also be- 
cause the penetration depth of the longwave component of 
the field is temperature-dependent. The temperature affects 
the penetration depth in two ways. First, there are fewer 
collisions, so that the transverse conductivity drops; second, 
the Landau damping increases the correction to the conduc- 
tivity [see Eq. ( 4 ) ]  for go-y. Because of these competing 
effects, the smooth impedance of the plate varies nonmono- 
tonically, in agreement with Fig. 3, which shows that the 
impedance may either rise or fall as the temperature de- 
creases. In many case, this nonmonotonic behavior is reflect- 
ed in a nonmonotonic T-dependence of the oscillation ampli- 
tudes. We note that near the lower doppleron threshold, 
whereq,/y is not too large, the magnetic Landau damping of 

the doppleron wave may depend on temperature, again in 
agreement with experiment. 

We now briefly discuss the behavior of the impedance 
for a circularly polarized excitation field. The skin-layer 
field is circularly polarized for Hlln11[0001] but becomes 
elliptically polarized in an inclined field. The major axis of 
the ellipse lies in the inclination plane of the field, and the 
major/minor semiaxis ratio is close to 9,/9, for 9$%. 
For example, this ratio is equal to 1.5 (Fig. 2)  for an inclina- 
tion of 4" when H is close to the value H ,  corresponding to 
maximum doppleron oscillation magnitude. A doppleron 
will be excited if the skin-layer field contains a component 
with the appropriate circular polarization. Since the skin- 
layer field is elliptically polarized, it can be represented as a 
sum of two circularly polarized fields having the same direc- 
tion of rotation. The ratio (9, + 9, )/(9, - 9,) of 
these fields is equal to 5 for the curves in Fig. 2; it is nearly 
equal to the ratio of the doppleron oscillation amplitudes for 
the two polarizations (curves 1 and 2 in Fig. 1 ). 

By changing the voltage applied to the crossed coils by a 
factor 9./%'+, one can achieve an elliptical polarization for 
which the skin-layer field is circularly polarized. In this case, 
for one of the incident wave polarizations no doppleron wave 
will be excited and no doppleron oscillations will be ob- 
served (see curve 3 in Fig. 1 ). These results provide an ex- 
perimental demonstration that the doppleron field is circu- 
larly polarized in materials with an anisotropic 
conductivity. 

We note in closing that in an oblique magnetic field, the 
skin-layer field which forms as the doppleron passes through 
the plate is elliptically polarized. Therefore, even if the exci- 
tation is circularly polarized, the signal picked up by the 
measuring coil will depend on the inclination angle of H and 
may differ by as much as a factor of 9,/9,. 
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