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Correlation functions are calculated for a two-dimensional gas of noninteracting charged parti- 
cles in a magnetic field for rational values of the filling factor v = q/p. Using a basis of functions 
with definite angular momentum, we investigate the charge density distribution and calculate the 
excess charge Q which is present near the quantization axis. We note a difference in the magnitude 
of this charge for even and odd values ofp: for evenp, Q is never zero. We also study the operators 
which transform degenerate vacuum states into one another. A geometrical interpretation of the 
Laughlin quasiparticle creation operators is proposed; it is shown that they are the generators of 
infinitesimal complex magnetic translations. 

It is now considered well-established that the fractional while the N-particle wave function with m, < m,... < m, is 
quantization of the Hall conductivity in two-dimensional then 
(20 )  systems1 is a consequence of fundamental properties of N 

the 2 0  electron gas in a strong magnetic field, i.e., the degen- N! ( 2 3 ~ ) ~  2mkmk! 

eracy of the ground-state ("vacuum") system. This asser- k =I 

tion, attributed to Anderson,, received persuasive confirma- N 

I - "' 
tion in the article by Niu, Thouless and W U . ~  The numerical (2)  
calculations of Su4 also argue in favor of such a degeneracy. zYN . . . zFN a=1 

The structure of the vacuum states still remains a mystery; 
meanwhile, an intriguing hypothesis has been proposed: that 
the reason why plateaus are absent for values of the filling 
factor v = q/p with evenp is concealed within the transfor- 
mational properties of the vacuum states. 

A theory was advanced by Anderson,, according to 
which the l/p states, described by determinants built out of 
single-particle functions for noninteracting particles, were 
"parent states," by which he meant that they could be trans- 
formed into exact states of the interacting system by adiaba- 
tically switching on the interaction. This attractive hypothe- 
sis makes it advisable to study the properties of such 
determinants; in section 1, we will calculate correlation 
functions associated with them. 

The Laughlin approach6 plays an important role in the 
theory of the fractional quantum Hall effect; this approach is 
based on the use of trial functions. Apparently, the method 
of introducing elementary excitations is the most delicate 
element of his theory. In section 2 we establish the connec- 
tion between this method and the action of complex magnet- 
ic translations. 

1. CALCULATION OF THE CORRELATION FUNCTIONS 

According to the usual definition, the s-particle correlation 
function is 

(3)  
Expanding the determinant appearing in the functions Y 
and Y*, and performing all the integrations, we obtain after 
a series of algebraic transformations 

In (4),  the summation is over {n,), i.e., every set of s 
numbers which can be chosen from the sequence m ,,... ,m,. 
The set of numbers n; ,... ,n; differs from the set n ,... ,n, only 
in a permutation in the order of appearance of these 
numbers; the sum is taken over these permutations also. The 
symbol P = + 1 is the sign function, whose value is deter- 
mined by the parity of the permutation {n;) relative to {n, ). 
Formula (4)  can be presented in the form of a determinant: 

(I 

In what follows we investigate a 2 0  gas of noninteract- (N-s )  ! 
ing particles with charge e > 0 in a magnetic field B in which p . ( { m j ) I z ,  ... z . )=-exp -- 

( 2 n )  N!  ( : C k= 1 l Z k l 2 )  

all the varticles are in the lowest Landau level. Let us choose 
the axial gauge for the vector potential (5)  

A = 1/2Bxr n 

in which the summation on n in (5)  is taken over n belonging and use I ,  = (cfi/eB) ' I 2  as a unit of length. Then the wave 
to the set {mj). function for a single-particle state with angular momentum 

Formula (5) entirely resolves the question of the corre- projection m is 
lation functions for an arbitrary choice of the set {mi). Pre- 

$m ( 2 )  = (2n2"mI ) -"zm exp {- 1 z 12/4), z=x+iy, ( 1 ) viously, the correlation functions were well-known7 only for 
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the filling factor v = 1, where {m,) = 0,1,2,3 ... , in which 
case the determinant in (2)  reduces to the Vandermonde 
determinant W. 

We now consider special cases: 
a .  Single-particle functionsp, (z). It is convenient to re- 

place p ,  by the filling factor v = 2lrNp, an study v, which 
differs from p, by the dimensionless area S = 2rN: 

For n = 0,1, ... , N - 1' 
rn 

1 
v (z) = - 

(N-I) ! 

In the macroscopic limit N) 1, the integral (7 )  has a saddle 
point for to z N, so 

m 

In the internal region, wherez-0, we have N - (z('2<N, or 
(2N)'I2 - I z I  < 1, SO that the filling factor satisfies v(z) = 1 
with exponential accuracy. If lzl -+ CO,  then v(z) is expon- 
entially small. 

A hole at the origin of the system can be described, 
according to L a ~ g h l i n , ~  by multiplying the function (2) by 

Ao=z,z2 .  . . ZN, ( 9 )  

to which we attach the meaning of a particle annihilation 
operator. This is equivalent to changing the limits of the sum 
in (6) from (0,N - 1) to ( 1,N). It is evident that in the 
entire interior region we now have 

and the total deficit of electron charge [ - Q, see ( 13 ) ] 
equals + e. For N applications of the operator A, with 
N,> 1, formula (7)  is transformed into 

m - 

~0{[2(N+Ni)]"-~z~)0(~z~-(2Ni)"'), (11) 
where 8(x)  = 1 or 0 for x > 0 or x < 0 respectively. Conse- 
quently, there arises a ring of almost constant fill factor 
v z  1. SO, the operator A, acts to repel electrons from the 
origin z = 0. Incidently, it is clear from ( 11 ) that there is no 
universal connection between filling the factor v and the to- 
tal system angular momentum M = Em, : for spatially inho- 
mogeneous filling, these quantities are independent. 

For v = l/p (p odd), it is convenient to choose the set 
{mi) = (p - 1)/2, ( p  - 1)/2 + p  as the vacuum state. Ap- 
plying this to the important case p = 3 gives {m,) 
= 1,4,7, ... . For calculating the sum (6)  with this set it is 

convenient to take advantage of the identity 
m m z&=+z$[i+exp{Fn)+ ... 

k-0 n=O 

For v = 1/3, this leads to 

It is worth noting that the oscillatory part of v(z) decays 
rapidly, and v(z) =:1/3 for )z)*>l.  This occurs despite the 
fact that v (z) is constructed out of the set of functions {m,), 
which corresponds to charged layers with finite thickness. 
The cause of this "flatness" in the density lies in the fact that 
according to ( 1 ) the thickness of every layer is of order 1, 
while the spacing between sequences of layers is of order 
m-'I2, that is small form) 1."' For lzl 5 1, the function v(z) 
is noticeably different from 1/3, but the total excess charge 

One can also convince oneself of this by direct calculation. 
Two other vacuum states orthogonal to the one under 

study here can be obtained by shifting the set {mi> by 1 from 
above and below on the ladder of natural numbers. For the 
first operation we need a supplementary condition that the 
filled state is m = 0. These transformations correspond to 
the TI/, translations of Anderson.' These very states can be 
obtained via the action of the Laughlin operator correspond- 
ing to A, on the determinant function: 

j 

A $ can be interpreted as a particle creation operator. The 
result of this is the filling factor. 

I 

where = 1zI2/2. Here, the indices " - " and " + " corre- 
spond to states obtained by the action of A, and A 2 .  The 
functions v- and v+ can be obtained from ( 12) by changing 
the phase lr/6 to 5 ~ / 6  and - ~ / 6 ,  respectively. For 
I z I  -+ CO, the functions v f (z) = 1/3. However, near z = 0 
there is an uncompensated charge Q + = . e/3. Thus, the 
T I , ,  operators give rise to inter-vacuum-state transforma- 
tions, and simultaneously generate fractional charges which, 
in agreement with the concepts presented in Ref. 2. 

A similar construction for v = 2/3 leads to states with 
Q = 0, if {m,] = 0,2,3,5,6 ,... . With the help ofthe T,/, op- 
erator, we can obtain two other states with Q = f e/3 re- 
spectively for {m,) = O,1,3,4 ,... and {m,) = 1,2,4,5 ,... . Ap- 
plication of the A, operator generates the state {mi) 
= 1,3,4,6,7 ,... with Q = - 2e/3, which differs from the 

state with Q = e/3 only in its behavior in the vicinity of 
z = 0. Thus, for )z1) 1 we again obtain three vacuum states 
which are mutually orthogonal and spatially homogeneous. 

Analogous constructions can also be implemented for 
evenp. An important difference arises here, however, in that 
in this case all the defects which arise at z = 0 are charged 
(Q  = 0).  For example, forp = 1/2 the smallest charged de- 
fect has Q = + e/4. If we assume that in the interacting 
system the generation and aggregation of such defects is ad- 
vantageous as a consequence of their Coulomb interactions, 
then this could lead to the destruction of the homogeneous 
correlated liquid phase, and could explain the absence of 
plateaus in a,,, for evenp. For the argument presented here 
to hold, we must make an important assumption: that by 
virtue of the incompressibility of the liquid, the charge Q 
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which is present in the noninteracting system is conserved 
when the interactions are switched on, and therefore that the 
charges Q/e connected with the defects are topological 
charges. 

b. Two-particle correlation function p, (z,,z2) . Accord- 
ing to ( 5 ) ,  this is determined by a second-rank determinant. 
The sums, which consist of various terms from the determi- 
nant, were already evaluated above in determining p,. For 
example, for v = 1/3 (in the case Iz, 1, 1z21, 1) we can take 
advantage of formula (12), retaining only the first term 
which equals v.  Then 

Y 1 
pz (z1,zz) = --- 

(2nN) e x P [ - Z - ( ~ ~ l ~ 2 + ~ ~ 2 ~ ' ) ]  

x I exp ( 1 zi 1 '/2) exp (zlz2'/2) 
exp (zj02,/2) exp ( Iz2\ '/2) I 

In the approximation under discussion here, v enters intop, 
only as a multiplying factor. For small lz, - z21 < 1, formula 
( 16) implies that p, - (z,  - z, 1 2. This behavior is the same as 
in the case of the interacting electron gas (in the limit 
B -+ co treated here), because it coincides with the exact 
solution to the two-dimensional problem corresponding to 
the smallest angular m ~ m e n t u m . ~  If for v = 1/3 we include 
terms of order W 3  in the dominant contribution to the wave 
f~nc t i on ,~  then we can anticipate the appearance an interme- 
diate asymptotic form p2 - lz, - z, 1 .6 Because of this, we 
also expect to find a difference between the exactp, and ( 16) 
for v > 1/3. It is interesting to note, however, that for v = 1/ 
p formula ( 16) gives rise, when the interaction is turned on, 
to the samep-dependence A, -e2/p21B~ of the gaps A, in the 
energy spectrum as for the Laughlin theory (for p odd)? 
here, E is the dielectric constant. It is clear that for finite B 
the behavior ofp, as Iz, - z,I -+ 0 is controlled by the Cou- 
lomb interactions. Therefore, the asymptotic behavior ofp, 
must be determined by the well-known Sommerfeld factor 
which appears in the wave function for the problem of Cou- 
lomb repulsion. 

Two numerical calculations of the correlation function 
are known to us for interacting  electron^.'^^" Judging from 
the conclusions of Ref. 11, these results are still preliminary 
in character. 

2. COMPLEX MAGNETIC TRANSLATIONS 

In certain cases, it was demonstrated above that the 
action of the Laughlin operators A,  and A ,+ on the determi- 
nant function (2)  causes a shift in the sets {m, } ,  which has as 
a consequence a change (increase or decrease) in the density 
Y near z = 0. Such a change occurs, because the correlated 
liquid is displaced towards or away from its center z = 0. We 
show in this section that with the operators A ,  and A ,+ we 
can associate other operators which have a rigorous geomet- 
rical meaning (independent of the determinantal function). 
However, to what extent and precision these operators can 
be described as quasiparticle creation operators remains 
open. 

The magnetic translation operator, in analogy with the 

vector-potential axial gauge, is given by the formula 

~ . $ ( r )  =$(.+a) exp ($dab1 ) , (17) 

where b is a unit vector parallel to B. For an infinitesimal 
translation, 

Therefore, the complex operators for infinitesimal transla- 
tions are equal to 

Applying these operators to the functions $, gives 

t^+{zm exp[-lz12/4])=-exp[-(~12/4]zm+i, 

Comparing (20) with (9) and ( 14) shows that A,  and A 2 
have the significance of generators of infinitesimal magnetic 
translations. 

The energies of states which are obtainable from each 
other by symmetry transformations must coincide. In parti- 
cular, this must hold for the three states with p = 3 and 
q = 1, which were derived in section 1. The energy densities 
near z = 0 in these states differ because of the noncoinci- 
dence of the charges: Q /e = 0, + 1/3, but this difference for 
finite N is compensated by the change in boundary energy 
for lzl z (2N)'I2. In every intermediate region, the three 
vacuum states have identical energy density. Therefore, the 
contradiction between the work of Anderson2 and Laughlin6 
discussed in Ref. 13, from our point of view, amounts to pure 
terminology, if we understand the variational function of 
Laughlin as a wave function of one of three vacuum states. 

We are grateful to S. V. Iordanskii and D. E. Khmel- 
'nitski for discussing the results in this work. 

'"These arguments show that, using determinants, we can construct states 
not only with rational v but with arbitrary v. To accomplish this, we 
need a set of random numbers which function as the set {m,) and which 
have an average density v-I on the numerical axis. 
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