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A microscopic theory is developed for relaxation of the composition of high-polymer melts. A 
method due to I. M. Lifshitz is used to derive explicit expressions for the kinetic coefficients and 
generalized susceptibilities in terms of the corresponding parameters for a broken bond system 
and the dynamic characteristics of the individual macromolecules (the latter are explicitly calcu- 
lated using the Doi-Edwards model). The nonexponential relaxation which is specific to high- 
polymer melts (as opposed to low-molecular mixtures) is caused by the frequency dispersion of 
the kinetic coefficients and is analyzed in detail. Various limiting expressions for the dynamic 
form-factors are also considered. 

1. INTRODUCTION 

Polymer mixtures and melts occupy a unique place in 
condensed-state physics because they can be regarded as 
model systems in which the critical phenomena are "frozen- 
in." Indeed, because the polymers consist of macromole- 
cules, two characteristic space-time scales can be distin- 
guished. Rearrangement processes involving only a few 
polmer units or small molecules present in the system occur 
during a characteristic time to over a characteristic distance 
ro. Although the specific mechanism responsible for the 
rearrangement may differ from the corresponding restruc- 
turing ("elementary jump" process) in low-molecular li- 
quids, it is clear that the characteristic scales in both cases 
are of the same order of magnitude. They are therefore small 
compared to the characteristic scales TM and R, for global 
rearrangements of the individual macromolecules (equiv- 
alently, the characteristic space-time correlation scales for 
bond density fluctuations in the macromolecules) : 

TarBta, RMBro. (1.1) 

These inequalities, which are specific to polymers, give rise 
to similar inequalities 

for the scales t, and r, characterizing the collective fluctu- 
ation-dissipation behavior. For t>to and r)ro, this behavior 
is dominated by the simple fact that the monomer units are 
linked ("linear memory" in the terminology of I. M. Lif- 
shitz') and is therefore quite general. On the other hand, it is 
also by no means simple to analyze, because inequalities 
( 1.2) imply that even for these times and distances, the ki- 
netic coefficients that govern the diffusion relaxation of the 
system should be subject to considerable spatial and tempo- 
ral dispersion.' The purpose of the present paper is to devel- 
op a systematic macroscopic relaxation theory for a general 
multicomponent polymer system with n different kinds of 
bonds. We will use the theory to analyze some characteristic 
features of the fluctuation-dissipation behavior of high-poly- 
mer systems for the case of binary polymer melts. 

As ~ s u a l , ~ . ~  such a theory reduces to calculating the 

generalized susceptibility matrix a (q,p) for the response of 
the system to an external field E~ (r,t) applied to bonds of 
type i: 

Here Ai (r,t) =p i  (r,t) -pi ,  where pi (r,t) is the density of 
the bonds of type i at point rand time t, and pi is the corre- 
sponding average value for a system in thermodynamic equi- 
librium. According to the fluctuation-dissipation theorem, 
the matrix a (q,p) is related to 

s,, (q, t )  = J d V ( h ,  (0,O) A, (r, t) )exp (iqr) (1.5) 
the time-correlation function matrix of the bond densities; 
this relation can conveniently be expressed in the form 

Ta (q, P) =G (q) -PS (q9 P) 9 (1.6) 
where 

m 

s (9, P )  = J d t ~  (q, t) ex* (-pt) 
0 

and the elements of the matrix G(q)  = S(q;t = 0) are the 
static correlation functions of the densities of the structural 
units (bonds) in the polymer. (Here and below, functions in 
the (r,t) -and (q,p) -representations will be distinguished 
only by the choice of the letters used to denote their argu- 
ments; the summations convention will also be in force for 
repeated indices, so that ai  bi denotes a sum over i from 1 to 
n 1. 

Equation ( 1.3) is equivalent to the relaxation equation 
m 

d 
- &(q, t)=-y2j driiij(q, r) [ 6 ~ ( q ,  t-~)+e,(q, t-T)/T, 
at  

0 

(1.7) 
where in the linear theory the thermodynamic forces 
Spj (q,t) can be expressed as 
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in terms of the conjugate density fluctuations Ai (q,t) and 
the matrix a(q,p) is related to G(q)  and the kinetic coeffi- 
cient matrix A(q,p) by 

It seems hopeless to attempt to calculate the generalized 
susceptibility directly for a system with a specified linear 
memory and volume interaction (by volume interaction, we 
mean the interaction that remains after all the polymer 
bonds have been broken). However, considerable progress 
can be made if we adopt the following formulation, which 
exploits the inequalities ( 1.1 ) and was first proposed by Lif- 
shits.' In this approach, one assumes that the properties are 
already known for a system of small molecules which models 
the volume interaction for the polymer (regarded as a 
broken-bond system); the problem is then to find how the 
polymer differs from the model system when the linear mem- 
ory is specified. (Volume interaction and broken-bond sys- 
tem are reviewed in Ref. 5.) 

We use the Lifshitz approach in Sec. 2 to derive expres- 
sions relating the collective behavicr of a polymer system to 
the corresponding behavior for a broken-bond system and to 
the structural properties that describe the behavior of indi- 
vidual molecules with a specified structure. This approach 
yields the dispersion of the kinetic coefficients automatical- 
ly, which is an advantage over the methods employed in 
Refs. 6-8, where arbitrary assumptions had to be imposed on 
the form of the dynamic form-factor of the polymer melts. In 
particular, the frequency dispersion of the kinetic coeffi- 
cients was not considered, even though it is responsible for 
linear memory in polymer melts. We analyze the frequency 
dispersion in Sec. 3 for the reptation regime,9 which corre- 
sponds to the limiting case of strong topological interac- 
t i ~ n . ' ~ . "  In Sec. 4 we derive expressions for the dynamic 
form-factor of polymer melts of various structure, and the 
(generally nonexponential) time relaxation for the diffusion 
modes of these systems is analyzed in Sec. 5. In addition to 
correcting and refining several results derived in Refs. 6-8 
for mixtures of homopolymers AN and BN, we also succeed 
in analyzing for the first time the behavior of melts com- 
posed of block copolymers ANBM . (Because in block copo- 
lymers the thermodynamically incompatible units A, and 
BM are joined by an A-B chemical bond, the usual separa- 
tion into two macroscopic phases is not observed-instead, a 
superstructure of period d forms where d is large compared 
to the interatomic distance r,, and this accounts for the in- 
creased interest in these s y ~ t e m s . l ~ - ~ ~ )  Finally, in Sec. 6 we 
consider possible experimental confirmation of our results 
and explore what happens if the system has a small (but 
finite) compressibility, or if traces of highly mobile low-mo- 
lecular impurities are present. 

2. THE LlFSHlTZ METHOD AND THE MOLECULAR FIELD 
APPROXIMATION IN THE MICROSCOPIC THEORY OF 
LINEAR RELAXATION FOR POLYMERS 

We take the collective response ( 1.3) of the polymer 
material to an external field to be the sum of the responses of 
the individual macromolecules: 

where the summation is over all the macromolecules in the 
system. The form of (2.1 ) indicates that the mean partial 
contribution A!M' from macromolecule M is a functional 
that depends on an effective field E, (T) ,  where r is a point 
in the configuration space of M. In general, E, depends on 
the structure of M and is not equal to the sum of the external 
fields acting on the structural units of M. This is because the 
external fields drive the systems away from thermodynamic 
equilibrium, so that the average interaction energy among 
the linked monomers in the macromolecule and between 
them and the rest of the system changes accordingly. How- 
ever, it seems reasonable to suppose that the contribution of 
the intramolecular interaction to the effective field E, can be 
neglected to a first approximation. We then have 

j ,  E ( ~ ~ , ) + E ( ~ , ) ,  (2.2) 

where the sum includes all the linked monomer units in the 
macromolecule M, and the molecular field &:(raj , t )  is ob- 
tained by suitably averaging the volume interaction between 
the a th  monomer unit of type j and all the other monomer 
units belonging to other macromolecules M ' # M .  Since this 
averaging is carried out over times t - to and distances r - r, 
comparable to the "low-molecular" characteristic scales, 
the result should be insensitive to the polymer structure of 
the material and in our linear theory can be expressed in the 
form 

m 

Here the matrix d ( q , ~ )  depends only on the volume interac- 
tion of the linked units and on their low-molecular rearran- 
gements; it therefore has the same form as for the corre- 
sponding broken-bond system. 

With the approximation (2.2) we can write the partial 
contribution from molecular M to the collective response of 
the system as - 

where V is the volume of the system, and by analogy with 
( 1.6) the molecular susceptibility a'M' of M is given by 

rn 

dM) (q, p) =J?, (q) - p  So(") (q, t) exp (-pt) dt. (2.5 
0 

Here 

( M )  
o, (q, t )  = (0,  0) A : ~ '  (r, i) )erp (iqr) 

= Z(exp{iq[raj  (t)-roi(0) I})  (2.6) 

is the structure factor of macromolecule M, and 
rM (q) = u(q;t = 0) .  The summation in (2.6) is over all 
units of types i and j belonging to M, and (...) denotes the 
usual statistical average taken over all states of M and the 
surrounding polymer material. 

Recalling Eqs. (2.2)-(2.4), comparing Eqs. ( 1.3) and 
(2.1 ), and writing 
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where nM is the number of macromolecules of structure M 
per unit volume and the sum is over all types of structures 
(e.g., over all degrees of polymerization for linear chains), 
we obtain the desired relation 

a-' (4, P )  = T [ I - '  ( q ,  p)  -d ( q ,  p) I .  (2.7) 

Forp = 0 this reduces to the expression derived by one of us 
in Refs. 15, 16 for the static polymer-density correlation 
functions: 

where the structure matrix 

g ( 4 )  = I: n M r M  ( q )  

describes the structure-entropy effects (including linear 
memory), while the volume interaction is described by the 
direct correlation function matrix c(q) ,  which is familiar 
from the theory of liquids. " It is therefore natural to refer to 
their generalizations y (q,p) and d(q,p) to the time-depen- 
dent case as the structural and direct susceptibilities, respec- 
tively. 

According to (2.7), the matrix a-' ( q q )  is a sum of a 
structure-entropy and an energy contribution associated 
with the volume interaction. The physical significance of 
this additivity becomes clear if we note that according to 
( 1.8), Eq. (2.8) implies that the respective contributions to 
the thermodynamic forces Sp, /T  are additive. On the other 
hand, we see using standard properties of the generalized 
susceptibility3 that Eq. (2.7) expresses the fact that these 
contributions to the random forces {E, ) in Eq. ( 1.3) or ( 1.7) 
are statistically independent; the effect of these forces { E ~ )  

can be described in terms of equivalent spontaneous fluctu- 
ations {A,). Both of these properties follow natually from 
inequalities ( 1.1 ), which in our appoximation permit us to 
"decouple" the large- and the small-scale fluctuations. We 
will not discuss the generality of this approximation here (it 
corresponds to the random phase approximation) but mere- 
ly note that it applies quite generally in the static case5.l6 
[i.e., for Eq. (2.8) and the special cases derived previously 
by Edwards" and de Gennes"]. 

We now examine the structural and direct susceptibili- 
ties in more detail. I t  is easiest to derive the expression 

for the structural susceptibility in the macroscopic limit 
(qR, (1, pTM ( I ) ,  where N,'M' is the number of units of 
type i belonging to macromolecule M; according to Ein- 
stein's law, the corresponding diffusion coefficient DM de- 
termines the mean-square displacement of the radius vector 
R( t )  from the center of mass for large times: 
( [R( t )  - R(0) I2)  = 6DMt. To derive (2.9) we must see 
r, ( t )  z R ( t )  in (2.5) and (2.6), neglect themacromolecular 
dimensions in comparison with the displacement of the ma- 
cromolecule as a whole for t+ cc , and recall that for a Gaus- 
sian random variable R ( t )  we have 

(exp [iqK ( t ) ]  )=esp ( - q 2 ( R Z ( t )  ) /6) .  

Compared with low-molecular systems, the values of N, ap- 
pearing in (2.9) are exceptionally large, and the small self- 
diffusion coefficients DM explicitly reflect the polymer na- 
ture of the system. 

In the Lifshits approach the direct susceptibility is cal- 
culated by applying Eq. (2.7) to a broken-bond system: 

In general, a, and y,, the generalized and structural suscep- 
tibilities of the broken-bond system, are complicated func- 
tions of q and p; however, for relaxation processes in high 
polymers with qro(l, pto( 1, it seems reasonable to neglect 
the dispersion to lowest order and set 

The last equality here is an exact thermodynamic relation; 
pg = piSu and pi is the chemical potential of the ith compo- 
nent of the broken-bond system (pi depends on the tempera- 
ture and on the densities { 3,) of all the components). In 
particular, for a multicomponent lattice gas with the equa- 
tion of state 

n 

--ln cp-i /2v2kijpipj ,  cp= 1 - vpi. 
T i = t  

where v and k,. are parameters, we have 
d .  = v  ( k . . - c p - t ) .  (2.1 l a )  

the last term becomes infinite as p-+O and ensures that the 
entire system is incompressible in the limit p-0, i.e., p /  
T+w.  In this limit the theory for two-component systems 
becomes particularly simple; if we substitute (2.1 l a )  into 
Eq. (2.7) and let p+O, we get 

where the Flory-Higgins ~arameter' 2x = k, ,  + k,, - 2k12 
characterizes the interaction of the broken monomer units, 
and p-' = (y - I ) , ,  + (Y-'),, - 2(y-I),,. If we use 
expression (2.12) for the generalized susceptibility, the defi- 
nitions ( 1.6)-( 1.8) yield the linear relaxation equation 

m 

and the expression 

for the dynamic form-factor. Here the bond density fluctu- 
ations A(r,t) is the same for all the components of the sys- 
tem, 

G ( q )  = T a  (q, p=O) =[g-' (q)  - 2 ~ ~ 1 - ' ,  
2-l= (g- ' )  t i +  ( b 7 - ' ) 2 2 - 2  (g- ' )  '2, 

and the kinetics coefficient is given by 

We see from (2.15) that even in the diffusion (macro- 
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scopic) region for which the structural susceptibility is de- 
scribed by the limiting expression (2.9), the frequency dis- 
persion of the kinetic coefficients can vanish only if at most 
two types of macromolecules are present in the system. In 
this case Eq. (2.13) reduces to the Fick equation 

where 

is the cooperative diffusion coefficient. Here pi = vniNi 
= upi is the volume fraction of all the linked units belonging 

to macromolecules of type i with self-diffusion coefficient Di 
and degree of polymerization Ni ; xi = N :/Ni is the fraction 
of typed units contained in macromolecules of type i. 
Expression (2.16) generalizes the result derived in Refs. 8 
and 20 for binary homopolymer mixtures with 
11 -k,I = 1. 

However, for systems containing three or more differ- 
ent types of macromolecules the kinetic coefficient (2.15) is 
subject to considerable dispersion; we analyzed some of the 
consequences of this in Ref. 21 for the diffusion-dominated 
case. In what follows we will consider some characteristic 
effects for the fluctuation-dominated case qR, 2 1, 
pTM k 1. 

3. MOLECULAR SUSCEPTIBILITY OF A REPTATING 
POLYMER CHAIN AND THE FREQUENCY DISPERSION OF 
THE KINETIC COEFFICIENT 

The short-range repulsion between the polymer chains 
has two consequences. First, there is a maximum packing 
densityp,,, = v- ', which we have allowed for by introduc- 
ing the phenomenological parameter v in (2.1 la )  and in the 
equation of state for the broken-bond system. The second 
consequence, which cannot be treated in this way, is that the 
polymer chains cannot cross one another; this "topological 
interaction" shows up most certainly as conservation of the 
topological invariants of the closed polymer chains. '03" The 
topological interaction has no influence on the equilibrium 
properties of a system of linear (unclosed) chains, for which 
all points in configuration space are topologically equiva- 
lent; however, it can greatly alter the dynamic behavior of 
such a system at finite times. For example, if the topological 
interaction is strong enough, each chain will be so tightly 
"squeezed" by its neighbors that it can move only by "rep- 
tating," i.e., by creeping along its edges.9 

According to Doi and Edward~, '~ polymer chains rep- 
tation can be regarded as a random walk of an incompress- 
ible nondetachable flexible chain inside an empty cage in a 
crystal lattice with a large coordination number. The Lange- 
vin equation is simplest if we take the random walk to be 
discrete: 

Here p, ( t )  = R(na,t) - R((n  - l)a,t) ,  wherea is the dis- 
tance between the nearest-neighbor lattice sites, and R (s , t )  
is the radius vector of a point on the chain lying a distance s 

(measured along the chain) from the end of the chain at time 
t; the random variable {(t) takes the values f 1 with equal 
probability and gives the direction of movement of the chain; 
At is the time required for one reptation step, during which 
each point moves a distance a and occupies the site formerly 
filled by one of its two neighbors. For a chain of length 
L = ( N -  l )a ,  Eq. (3.1) must be solved subject to the 
boundary conditions 

po ( t )  =avo (t) , p~ (t) = a v ~  ( t )  , (3.2) 

where the random unit vector v, (a = 0,N) points with 
equal probability to either of the two unoccupied sites near- 
est the corresponding end (a) of the chain. 

The mathematical model of reptation given by Eqs. 
(3.1) and (3.2) yields fairly simple expressions for the mo- 
lecular characteristics (2.5) and (2.6). To derive them we 
must use (3.1) and (3.2) to obtain the analogous dynamic 
equation and boundary conditions for the quantity exp{iq 
[ri ( t )  - rj (0)  1) and then average over all chain configura- 
tions and values of the random variables. Passing from dif- 
ference to differential equations, we obtain22 

Here 

g(s, s'; q, t ) = ( e s p  {iq[R(s, t) -R(sl, 0)] )>, x=q2a/6, 

is the diffusion coefficient of the chain as a whole inside an 
unbounded tube, and we can write D = a2/At as D = Do/N, 
where the phenomenological parameter Do is comparable in 
order of magnitude to the self-diffusion coefficient of the 
broken bonds. ~ ~ u a t i o n s  ( 3.3 ) with the initial 

g(s, s'; q, t=O) =exp(-xis-s'l) (3.4) 
can be solved by the standard method22; the result can be 
expressed most simply in terms of the Laplace transform: 

m 

g (s, s t ;  I ,  p) = S dtg (8, st;  I, t) ~ X P  
0 

0-0' 1 ) - exp (-PI 8-0' 1 ) 
pz-P CL 

- p exp (-PI") 
P" (p+P1") 

Here we have introduced the dimensionless variables 

8= (2s-L) /L,  p=qZR2/2, P=p~/2 ,  

where R = aL /6 = Na2/6 is the mean-square inertial radi- 
us and 7 = N 2a2/2D = N3a2/2D0 is the characteristic time 
for the center of mass of the macromolecule to move by an 
average distance comparable to the molecular dimension R. 
On the other hand, this time is just T = R '/D,, where D, is 
the self-diffusion coefficient of a chain reptating in space, so 
that we find the expression 

DN=D/3N=Do/3Nz. (3.6) 

The self-diffusion coefficient D in (3.6) for a chain in an 
unbounded tube contains an extra factor of 1/N(1; this re- 
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FIG. 1. Frequency dispersion_characteristic of the kinetic coefficient. Nu- 
merically calculated values A - '  (P) = A, @)/A (,u,P) are plotted for 
,u = 1 (curves 1) and ,u = 10 (curves 2) as a function of the variable 
P = p ~ / 2  for an AN + BN mixture (a)  and for a diblock copolymer 
A,B,w (b).  

flects the important fact that it is only the random walk 
along the tube that is Gaussian-the random walk of the 
chain in space is statistically more complicated because of 
the additional averaging over the different trajectories of the 
tube. 

The expressions for the static and dynamic molecular 
factors follow by substituting (3.4) and (3.5) respectively 
into the definition 

where the function 6,  (s) is equal to 1 if the point s corre- 
sponds to a bond of type i and is zero otherwise. For the 
special case of a homopolymer AN with 6, (s) = 1 and 
a,,, (s )  = 0, we can evaluate the integrals and substitute 
them into (2.5) to get the molecular susceptibility 

- 1 
cth (P'") p2(l  + cth p) }* (3.8) 

where pN is the volume fraction of the polymer AN. For a 
mixture of two homopolymers AN, and BN2 with volume 
fractions p, and p, = 1 - p, ,  this leads to the following ex- 
pressions for the static correlation function G, and the ki- 

netic coefficient (2.15) : 
2 

i - L  

Here 

p,=q2RtZ/2, P i=p~ /2 ,  f (p) =p-'-p-'(I+~th p)-', 

Di=Do/3Ni', A,-'(p)=p ( I fc th  p),  

Expression (3.9) is familiar from the theory of polymers,9~'5 
but (3.10) differs from Pincus's result7 and more closely 
resembles Binder's last expres~ion,~ in that both expressions 
contain functions F(p,P) which explicitly describe the fre- 
quency dispersion of the kinetic coefficient in the fluctuation 
region. According to (3.1 1 ), F(p,P) vanishes as p-+w, so 
that our result agrees with Pincus's in this limit. This has a 
simple physical explanation-the analyses in Refs. 6-8 all 
assumed that the effective field 2 was equal to the external 
field E, which as shown in Sec. 2 is not true in general. Never- 
theless, the molecular fields (2.3) which determine the dif- 
ference between t and E are still small immediately after the 
external fields have been turned on, so that at sufficiently 
high frequencies the responses of the macromolecules are 
mutually independent and depend solely on the external 
fields. (We note that the Pincus result7 is the only one that 
gives the correct asymptotic behavior of the kinetic coeffi- 
cient in the limit p-+ w ) . 

Wecan also use Eqs. (3.4), (3.5), and (3.7) to find the 
molecular characteristics for heteropolymer chains, i.e., for 
linear macromolecules containing several different types of 
bonds. Because these results are cumbersome to write out, 
we will consider only the simplest case of a symmetric di- 
block copolymer consisting of macromolecules A,, B,, in 
which two homopolymer chains (blocks) A,, and B,, are 
joined by a chemical bond A-B: 

where 
p= (2N) qaa'/12, P=p(2N) 'a2/12DO. 

We see from (3.12) that the static correlation function 

for a symmetric diblock copolymer has a maximum at the 
finite va luepz  1.9 (Refs. 12, 13). The spinodal of this sys- 
tem (reached for x = X ,  -- 5.25/N) therefore corresponds 
to a loss of thermodynamic equilibrium which does not in- 
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volve stratification into two unbounded phases but instead is 
accompanied by the formation of a spatially nonuniform 
phase for which the "order parameter" A ( r )  possesses a 
crystal lattice ~ ~ m m e t r y . ' ~ . ~ ~  Stratification does not occur 
because the thermodynamically incompatible blocks are 
held together by chemical bonds. Although in this respect 
the correlation function (3.13) for the heteropolymer differs 
radically from G, in (3.9) for a homopolymer mixture 
(melt), which peaks a t p  = 0, the qualitative behavior of the 
kinetic coefficients is the same for both systems (Fig. 1). 
According to Eqs. (3.10)-(3.12), the behavior of the re- 
duced kinetic coefficient 

shown in Fig. 1 is described forp, 1 and P>O by the asymp- 
totic expressions 

1 lf2 th (p/2) 
h- (p) = 

p ( I  + cth p) 
' 

2p(1 +'cth p)" 

where the first column on the right gives the result for a 
symmetric melt consisting of homopolymers AN and BN, 
while the second column refers to a symmetric block copo- 
lymer ANBN . As might have been expected, the kinetic coef- 
ficient becomes less sensitive to P as p becomes smaller, and 
for a homopolymer p is virtually independent of P when 
p 5 1 and P>O. However, for the block copolymer a small 
but finite frequency dispersion persists even in the limit 
p+O: 

A(0, P) /A (0, m) = { [I- (th (P'") /P'") 1-'-3/P}-'. (3.16) 

This residual dispersion in the diffusion-dominated regime is 
present because the different blocks are chemically linked 
into a single macromolecule. An even more important prop- 
erty may be noted-for both systems the analytic function 
R (q,P) of the complex variable P has infinitely many zeros 
and poles which lie on the negative axis P < 0 at a finite dis- 
tance from the origin P = 0. We will see below that this 
structure of A (q,P) reflects the fact that when the topologi- 
cal interaction among the chains is strong, no relaxation pro- 
cess can occur faster than the chains can "untangle". 

4. FREQUENCY DEPENDENCE OF THE DYNAMIC FORM- 
FACTOR 

In this section we derive asymptotic expressions for the 
dynamic form-factor a(q,w) for polymer melts (a can be 
measured in x-ray and neutron scattering experiments). The 
derivation is simplest for symmetric systems (for a diblock 
copolymer A,B, or a mixture of homopolymers AN and 
B, ). In this case we have 

6=-= '(" a) Re {iR+pA (p, iQ) (f-'(p) -P)}-', (4.1 ) 
G ( q ) r  

where 52= wr/2, and 2 = 2,yN@,@, for a homopolymer 
mixture and2 = 2xN for a heteropolymer. The results in the 
previous section lead to the asymptotic expressions 

which are valid for p>max ( I, 12 I ) ; here and below we use 
the same double-column notation as in Eqs. (3.14), and 

(x2) = (sh x-sin x) /2z3 (ch x+cos 2 ) .  

The qualitative behavior is the same for both systems, 
because the presence or absence of bonds between the units 
plays virtually no role over distances small compared to the 
dimensions of the units. On the other hand, the behavior is 
completely different for long wavelengths ,u < 1. The homo- 
polymer is described by the ordinary Lorenz expression for 
the dynamic form-factor: 

whose halfwidth T ( p )  as a function o fp  corresponds to or- 
dinary diffusion (corrected for the thermodynamic retarda- 
tion near the spinodal, where E = 1 - X-+O). On the other 
hand, in the long-wavelength limit the block copolymer is 
described by the form-factor 

which is independent ofp. This unorthodox behavior is due 
in part to the reptation dynamics of the chains and in part to 
the assumption that the system is incompressible and all the 
macromolecules have identical structures, so that any mac- 
roscopic inhomogeneity in the composition relaxes over 
times comparable to the untangling time of the chains. An- 
other interesting type of behavior occurs when the units A 
and B are thermodynamically highly compatible and - 

~ ( 0 ,  I<p<<l"X. (4.5) 

In this case, three regimes occur when p2) 12 I : 
(plliil )q2(2Q), (~141  ii.1 )g2(Q/2),  Q K X ~ I ~ ~ ,  (4.6a) 

I zllp(2R3)'", lii1/p(R3/2)'", p2WQBXZ/p2, (4.6b) 
l21/[2R2+(j12/2)], 3 ( ~ 1 / [ 4 5 2 ~ + ( 3 ~ / 2 ) ~ ] ,  RBp2. 

( 4 . 6 ~ )  

If p 2 g J 2 / ,  the regimes (4.6a) and ( 4 . 6 ~ )  coalesce near 
52-p2 at the expense of (4.6b), which disappears. In Eq. 
(4.6a) 

$z (x2) = (sh x-sin x) /x (ch x-cos x) . 
The behavior of u for an asymmetric mixture of homo- 

polymer chains A,, and BN2 with N,#N2 is much more 
complicated. First of all, the molecular characteristics of 
both mixture components must be suitably averaged in order 
to obtain the natural scaling parameters R and r in this case, 
and the method of averaging depends on the regime consid- 
ered. For example, expression (4.3) with 
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describes the behavior in the long-wave (diffusion) case, 
where the diffusion coefficient D,, is given by (2.16). On the 
other hand, in the short-wave (high-frequency) limit (4.2), 
D,, in (4.7) is given by the formula 

D  .a=DiD,l (~cpiDi+~~zDz) .  (4.8) 

A second complication arises from the fact that the param- 
eters N2/N, may be small, so that additional regimes may 
occur (e.g.,pz( 1, p,) 1 ). We will not pause here to analyze 
this further; the corresponding expressions can be derived in 
exactly the same way as Eqs. (4.2)-(4.8). 

5. TIME RELAXATION IN POLYMER MELTS 

In many experiments one does not measure the frequen- 
cy dependence of the dynamic form-factor but rather studies 
the time-evolution directly, where the time is measured from 
the instant when an inhomogeneous composition distribu- 
tion Ao(r) has been achieved by some artificial means. Let us 
assume for definiteness that the distribution Ao(r) has re- 
laxed due to the effects of an external field ~ ( r )  which is 
turned off at time t = 0 after having acted for arbitrarily long 
times - co < t < 0. Then the relaxation equation ( 1.7) im- 
plies that 

A  ( P ,  q )=Ao(q)  [p+q2A(q,  P ) G - ' ( Q ) I - ' ,  (5.2) 

where (5.1) is the definition of the inverse Fourier-Laplace 
transform, and 

A0 ( q )  = j d v A 0  (r) eeqr. 

As in Sec. 4, we begin with symmetric systems, for 
which (5.2) reduces to the expression 

A ( P ,  p ) = ' l ~ A ~ ( ~ ) z { P + f i ( p ,  P )  [ ~ ' ( ~ ) - i i l ) - '  (5.3) 

analogous to (4.1 ). Using standard properties of the Laplace 
transformz4 and recalling the properties of the function 
A(p,P) in Sec. 3, we get the asymptotic expressions 

for the relaxation function w ( t ) ,  where 

f Z 2 t / z ,  ro=@- ( p )  [ r l ( p )  - X I ,  r , = - p o ,  

and Po is the largest of the (real negative) roots of the equa- 
tion 

P + @ ( p ,  P )  [ r i ( p ) - X I  =o. (5.5) 

The graphical solution of (5.5) is shown in Fig. 2 for two 
different cases; we see that the inequalities 

( p , ) < r o ( u ) ,  and r - ( p ) < I ' ( p ) .  (5.6) 

are satisfied. According to the first inequality, the frequency 
dispersion retards the time relaxation. This is because the 
molecular field E* has a nonzero relaxation time; we recall 
from our discussion of Eqs. (3.10), (3.1 1) that this field 
ensures that the independent random motions of the various 
macromolecules, which initially are statistically indepen- 
dent, become highly correlated as required by the high den- 
sity of the system. Although this observation holds quite 

generally, the consequences for polymers may be particular- 
ly important because the reptation dynamics of the chains 
differs from the case of a Gaussian random walk. In particu- 
lar, the second inequality in (5.6) shows that regardless of 
the initial value w (0),  for very large times the relaxation rate 
w ( t )  is limited by the rate at which the reptating chains can 
untangle. We note the F, defined as the (negative real) zero 
of /Z(,u,P) lying closest to the origin, lies in the interval 
~ ~ < i = ( p )  < r 2 ( 1  + a ) ,  whereSzO.1, asfollowsfromanu- 
merical analysis of Eq. (3.1 1 ) . 

In the diffusion limit (p( 1 ) A, and A(0) are nearly 
equal (A, - A (0)  -p2A, ) for mixtures of homopolymers, 
and unless the thermodynamic interaction parameter 2 is 
very large, the usual diffusion relaxation occurs: 

zu ( t )  =exp (-ref), ro (11) = p  ( 1 - z )  +2pZ/3+ . . . . (5.7) 
Even here, however, the initial relaxation rate r, may be 
much greater than ?; if 

I > ~ B  (-2) -', (5.8) 

as may occur for mixture components with a high degree of 
thermodynamic compatibility. In this case the relaxation 
function can be written as 

w ( t )  =exp ( - I ' , f )  + f l  ( f )  , (5.9) 
where the Laplace transform of the function f,(i) and its 
limiting behavior are given by 

- 6 ( n ) " + .  . . , I',-'<T<<l, (5.1 la)  
( 6 / n 2 )  exp ( - f i z z ) ,  2 ~  1 .  (5.11b) 

The reptation dynamics of the polymers shows up here as a 
small residual relaxation (of order -p/IxI) which is de- 
scribed by f , ( t )  and has the characteristic time T. 

Whenp) 1, the behavior of w(t) for homopolymer mix- 
tures also depends on the ratiop/f, but in a more complicat- 
ed way. Three situations can occur: A)  ItI4p; B )  
p<l214p2; C )  p2<121. 

In case A 

FIG. 2. Graphical derivation of inequalities (5.6). Curves 1 ( p  5 1 ) and 2 
(p, 1 ) and their asymptotes (dashed) show p/Z (P)/G and p/Z, (P)/G, 
respectively. These curves intersect the line f = - P a t  P = r_ ( p )  and 
P=  r , (p) ,  respectively, and their positive intercepts with the line 
f = + P determine how rapidly the composition becomes nonuniform 
when G - ' ( p )  <O, i.e., during the initial stage of spinodal decay of the 
system"' (which we do not consider in this paper). 
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- 

I I- (pE12) +. . . , t < (5.12a) 
w ( t )  = 1-2 (?/n) p'2+ . . . , p-'<f<l, (5.12b) 

(21n) exp (--nZE/4), f >  1. (5 .12~)  

We observe that for i(p-,, (5.12a) agrees with Pincus's 
result,' while the asymptotic expressions (5.12b) and 
(5 .12~)  correspond to features of individual chain reptation 
that were analyzed by De GennesZ5 In case B, the relaxation 
is much more rapid and occurs in four stages with the 
asymptotic behavior 

I 1- I x 1 f/2+. . . , z ~ p - ~ ,  (5.13a) 
1-2(I zI/p) (f/n)'"f.. . , p - z < f ~ p Z / ~ 2 ,  (5.13b) 

w (t) = 

I (p/I 2 I ) (nf) - Ih ,  p2/z2<f<l, ( 5 .13~)  
2 (p/I 21 ) exp (-n2?), ?>I. (5.13d) 

Finally, in case C the relaxation can be expressed in a form 
analogous to ( 5.9) : 

w(t) =exp(-r,f)+f?(f), ro=121/2, (5.14) 

1-4(p2fln)'12+. . . , ro-i<f<p-2, (5.14a) 

(n /4~ '2 ) '~ ,  p-z<f<l, (5.14b) 
1 ~ 1 .  (5 .14~)  

where the effective interaction parameter 

z=2xN1- (xcp,) -' (5.18) 

increases in absolute value as the concentration and degree 
of polymerization of the mixture decrease. If the impurity 
concentration is not too low, so that the behavior of the re- 
laxation function is determined by values ofp for which 

~pPxJ,(i.li, Pi ) ,  (5.19) 

w ( t )  is given by the expressions derived above for a symmet- 
ric mixture, provided 2 is defined by (5.18). If 
p2<xA (p ,,PI and p<x2, then 

w ( t )  =exp [-q2D,t (I-2xcpZN2) 1. (5.20) 

In other words, for low impurity concentrations self-diffu- 
sion (the statistically independent random walks of the mol- 
ecules) is responsible for the slow (long-wave) relaxation. 
However, in all cases when the initial relaxation rate 

~ , = P , I K I  [p(i+cth p) + (x/cp2)i-l (5.21) 

is large compared to 1, the residual reptation relaxation de- 
pends on the impurity concentration solely because of the 
dependence of the parameter 2, and it is described by the 
above formulas. 

We have already noted in Sec. 4 that forpg 1, the behav- 
6. CORRECTIONS FOR IMPURITIES AND A SMALL DEGREE ior of w(t) for a block copolymer is essentially identical to OF COMPRESSIBILITY 

that described above. One can show that Eqs. (5.12)-(5.14) 
continue to hold, provided that i is replaced by 3i in (5.12a), Because of the laws of equilibrium thermodynamics 

(5.13a), and (5.14a) and by 4; elsewhere. However, w(t) and the conditions mder which polymer 'ystems are 

becomes independent ofp in the limit p - ~  and behaves as formed, the macromolecules inevitably vary greatly in size 
and some monomers are present. The size distribution is 

1-3f+4f"/n", f< l ,  
w (E) = 

(5'15a) typically exponential: n (N) = N- '  exp( - NIT), where 
3 (2/n) exp (-n2E14), E> I. ( 5. 15b) n ( N )  is the number of N-mers. Because the monomers are 

These expressions correspond to Eq. (4.4) for the dynamic 
form-factor. On the other hand, a slow damping of fluctu- 
ations with r, (1 analogous to (5.7) is observed only for 
fluctuations whose wave number is close to the critical value 
~ ~ ~ 1 . 9  at which the static correlation function (3.13) 
peaks; this occurs near the spinodal, at which 
E = 2N(xc - x ) < l .  In this case 

I?,=1.2I',, (5.16a) 

The above analysis generalizes easily to asymmetric 
mixtures of homopolymers A,, and B, with N,  > N,. If the 
system is nearly symmetric (x  = NJN, - 1 ), all of the 
above results hold except that the characteristic scales rand  
R now depend on the composition; they are of order unity 
and in general differ for the different regimes (cf. Sec. 4).  
The case of strong asymmetry x( 1 is of greater interest and 
can be analyzed using the reptation model only when p,(l, 
i.e., when only a few short chains (impurities) are present 
and the topological interaction among the long chains deter- 
mines the reptation mechanism. In this case only inhomo- 
geneities withp2( 1 are of physical interest, and the frequen- 
cy dispersion of the kinetic coefficient for the short impurity 
chains can be neglected. Substitution of (3.9) and (3.10) 
into (5.2) then yields 

much more mobile than the N-mers for large N, there may be 
some doubt whether the results derived above for model sys- 
tems of only two types of macromolecule apply to real sys- 
tems. A qualitative answer can be found by considering a 
system consisting of three different chains A,, , AN2, and 
BM, where AN? (with N,(N,) is the impurity. The expres- 
sion 

+ [cpiNiDiA (P,, pi) I-' [I+ (plqZDz) I l (1 
+ (plqZDz) [ I+  (xyDzlDiL (Pi pi) I 1 (6.1) 

for the kinetic coefficient A ( q , p )  of this three-component 
system follows readily from Eq. (2.15) and the definition of 
the structural susceptibility. Here p, = p, + p, and 
p. = 1 - p, are the volume fractions of bonds A and B, 
x = N,/N, ( 1, and y = p2/p, ( 1 is the fraction of the low- 
molecular component AN2.  In (6.1) we have discarded 
terms containing the small parameters x and y, but have 
retained the parameter 

Z = X ~ D ~ I D ~ A , = ~ / X ~ ~  (Pi, pi) 9 (6.2) 

which in general is not small. For z( 1 the contribution from 
AN? is negligible. Recalling the definition (3.6) of the self- 
diffusion coefficient, we can rewrite the opposite inequality 
Z) 1 as 

Y>XL(PI, P I ) ,  (6.3) 

which is similar to (5.19). In this case also, the impurity has 
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little influence on the relaxation for times that are not too 
short, i.e., for t such that w ( t )  is determined by those values 
of the Laplace transform variable p for which 

P i < ~ i h ( P i ,  P ~ ) / x Y .  (6.4) 
By contrast, for high frequencies p)q2D, expression (6.1 ) 
yields the contribution from the high-molecular component 
A,, , whose physical interpretation is obvious-for the very 
shortest times t 2 0, the density of the B polymer relaxes due 
to interdiffusion with the more mobile component AN2 of the 
A polymer. The most interesting new effect caused by the 
impurity is that the relaxation function saturates: 

if condition (5.19) is satisfied. However, it should be 
stressed that these new "impurity" asymptotics are always 
present for small enough times and have little effect on the 
results in Sec. 5. It follows from inequality (6.4) that the 
rather unrestrictive condition 

suffices for all of the regimes described there to be observ- 
able. 

The consequences of finite compressibility can be ana- 
lyzed as in the above discussion of impurity effects. We need 
only note that allowing for a nonzero q, in the direct suscepti- 
bility matrix (2.1 la)  for an n-component system is equiva- 
lent to considering an (n + 1 )-component incompressible 
system in which the (n + 1 )th component consists of 
"holes," i.e., fictitious particles of infinite mobility whose 
number per unit volume is equal to q, /u .  The finite compress- 
ibility can therefore modify only the high-frequency asymp- 
totic of the relaxation function, in full accord with the princi- 
pal physical result of Sec. 5-namely, that the interaction 
among the polymer bonds affects the short-time relaxation 
behavior (high frequencies), but the relaxation for large 
times is determined solely by the reptation mechanism spe- 
cific to polymers. 

CONCLUSIONS 

We have shown that density relaxation in high-molecu- 
lar melts has several distinctive features which are not pres- 

ent for low-molecular solutions and can be effectively ana- 
lyzed in the microscopic approach due to I. M. Lifshitz. The 
generalization to other polymer relaxation processes is of 
considerable interest but lies beyond the scope of this paper. 

We are grateful to the participants of the twenty-first, 
fifty-first, sixty-second, and sixty-eighth sessions of the I. M. 
Lifshitz seminar on the theory of polymers. 
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