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The quasisteady growth of a spherical center of a stable phase in a massive sample, with heat 
evolution at the phase-transition front, is shown to exhibit self-accelerated growth and can 
occur explosively. The minimum heat evolution at the phase-transition front required for a 
thermal explosion of the center is calculated as a function of the initial temperature of the 
sample. Expressions for the lower and upper critical radii and for the duration of the heating 
before the explosion are derived and discussed. 

INTRODUCTION 

A problem of particular interest for configurationally 
frozen metastable states, the most characteristic examples of 
which are amorphous substances (glasses), is that of deter- 
mining the conditions under which these states are thermal- 
ly stable with respect to a transition to a stable macroscopic 
phase during uniform or local heating. The interest stems 
primarily from the thermal instability of a phase-transition 
front, which can occur in a configurationally frozen metas- 
table state.' This instability gives rise to an explosive propa- 
gation of the front, in the course of which the rate of the 
transition of the sample to the stable phase can increase 
sharply due to even a relatively small change in the param- 
eters of the problem. 

With respect to the thermal instability of a spherical 
phase-transition center in a massive sample of a configura- 
tionally frozen metastable state - the problem with which 
we are concerned in the present paper - the later observa- 
tion means that for certain values of the temperature of the 
sample and of the heat evolution at the front there exists an 
interval of radii of the growing center in which the center is a 
bistable system. In other words, two different stable values 
of the velocity (and, correspondingly, the temperature) of 
the front are possible. The results of numerical calculations 
on this instability of a spherical center were reported in Ref. 
3 in connection with an explanation of experiments on the 
explosive crystallization of amorphous H,O (Ref. 2; the heat 
evolution at the front was not taken into account in a com- 
pletely systematic way). 

Our purpose in the present paper is to analyze the possi- 
bility of an explosive growth of a spherical front for arbitrary 
values of the heat evolution at the front and of the tempera- 
ture of the medium. We will also derive the corresponding 
values of the critical radius and the duration of the heating 
before the explosion. Qualitatively similar problems are 
quite well known in the theory of combustion and thermal 
explosions (Ref. 4, for example), but in the formulation of 
the problem used in that field (in most cases, it is assumed 
that there is no sharp "reaction front") an analytic study 
requires many approximations. 

In Section I we discuss the formulation of the problem 
of the nonisothermal growth of a spherical phase-transition 

center in the quasistatic approximation. In Section 2 we de- 
termine the region in which explosive growth occurs. In Sec- 
tion we calculate the critical radii and the duration of the 
heating before the explosion in the direct heat removal ap- 
proximation. In Section 4 we discuss possibilities for experi- 
mental observation, and we state our conclusions. 

$1. STATEMENT OF THE PROBLEM 

A spherical center of a stable phase of radius R ( t )  is 
growing in a metastable phase with an initial temperature 
To > T,, where T, is the temperature of the equilibrium 
phase transition. The temperature field O(r ,  t ) ,  measured 
from To, around a center of this type is described by the heat- 
conduction equation 

1 90 9% 2 80 
--=- +--, 
x dt dr2 r ar 

(1) 

whose solution must be finite at r = 0, must be continuous at 
r = R(t ) ,  must vanish in the limit r--too, and must satisfy 
the heat-balance condition at the front: 

Here x is the thermal diffusivity, TQ =Q /c, where Q is the 
latent heat of the phase transition, c is the specific heat, a 
primed quantity refers to the stable phase, and for simplicity 
we are assuming x = x', c = c'. 

As in our previous papers, we describe the kinetics of 
the phase transition at the interface by the following depen- 
dence of u r ~  on the front temperature T,., which is well 
known in the theory of crystallization5: 

( :,){i-exp[-AH($--&)]}, (3) u (Tf) =ue exp - - 

where A H  is the heat of the phase transition per atom at 
Tf = T, , and the kinetic parameters uo and E, which deter- 
mine the viscosity of the frozen phase, can be extracted from 
experiments on low-temperature (T4T,  ), isothermal an- 
nealing of a sample in a configurationally frozen metastable 
state.6 

The problem of self-consistently determining the evolu- 
tion of the thermal field O(r ,  t )  and the coordinate R ( t )  on 
the basis of Eqs. ( 1 )-(3) is known to be very nonlinear and 
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is complicated further by the time variation in Eq. ( 1 ) . If, 
however, we ignore the inertia of the heat removal from the 
front [i.e., if we ignore the time derivative in Eq. ( 1 ), written 
in the rest frame of the front - see Ref. 71, we can easily 
derive a quasisteady solution of Eq. ( 1 ) for 8 ( r )  which satis- 
fies condition (2) and which depends parametrically on the 
time through R ( t )  and U=R ( t )  : 

0 ( r )  =Of ( z ) ,  r<R ( t ) ,  

0 ( r )  =Oi  ( z ) ,  r<R(t) , 

where z=R /I =Ru/x, 
m 

E, ( z )  =I !?- cZ{ 0, (2) =TQeezE, (n )  . 
t2 

(4) 

Expression (4) is yet another relation [supplementing (3)  ] 
between u and Of. It is analogous to Eq. (7)  of Ref. l a  if we 
introduce a local rate of heat removal from the spherical 
front [see also Eq. (34) in Ref. 71. We then write 
z = v-'=u/v, and we can easily show8 that the functions 
u(Tf) which follow from (4) behave, upon a variation of v, 
in qualitatively the same way as the analogous "heat-remo- 
val curves" in Fig. 2 in Ref. la. Specifically, as the sphere 
radius R is increased, the removal of heat from the sphere 
slows monotonically, and the heat-removal curve sags 
downward and to the right, remaining at all times in the 
bandTo<Tf < T o +  TQ. 

The problem of self-consistently calculating the rate of 
increase ii (R ) of a spherical center with heat evolution at the 
front in the quasisteady approximation thus reduces, as in 
Ref. 1 and 7, to a joint algebraic analysis of two nonlinear 
equations, (3)  and (4) .  Using the graphical method of Ref. 
1, we can show that the qualitative behavior ii(R) for var- 
ious relations among the parameters of the problem is analo- 
gous to the two-dimensional adiabatic case (see Figs. 8 and 9 
in Ref. 7 1. 

$2. DETERMINATION OF THE REGION IN THE (rO, T ~ )  PLANE 
IN WHICH EXPLOSIVE GROWTH OCCURS 

We turn now to a quantitative analysis of explosive 
growth, i.e., of those cases in which the dependence ii(R) 
becomes multivalued in a certain interval of the parameters 
of the problem (see also Fig. 9, b and c, in Ref. 7). We will 
restrict the discussion to cases in which the "nucleating" 
kinetic curve ( 3 )  can be represented accurately by u(Tf) 
= uoexp( - E /Tf ) (Refs. 1 and 7). 

Transforming to the dimensionless variables w=u/uo 
and r=T/E, we can write Eqs. (3) and (4)  as 

where 

To determine the critical radii of the growing center [i.e., 
those values of R, (rO, T~ ) at which new branches of the 
function ii (R)  appear, or old ones disappear] we make use 

of the circumstance that at R = Rc not only the values of 
w (rc ) given by (5)  and (6)  but also the values of the corre- 
sponding derivatives w: must be equal. Using the identity 
Y; = Y ( 1 + 2 /z )  - 1, which is easily verified, we can then 
show that we have 

V,=exp (-llt,)lzc, (7) 

where Vc = % / u s , ,  and z, and r, , which are functions of 
the parameters rQ and rO, are found from a system of two 
nonlinear equations, one being (6)  and the other 

z= ( z - z l )  ( t - t 2 ) l ( r - ~ s ) ,  (8)  

where 

Here and below, for simplicity, we omit the index c [which 
corresponds to the points of tangency of curves (5) and (6) 1 
from r and z: The determination of the points of tangency of 
curves (5)  and (6)  thus reduces to finding the points at 
which (6) and (8)  intersects. 

We will therefore analyze system (6) ,  (8)  in more de- 
tail, in order to identify those regions in the (ro, rQ ) plane in 
which explosive growth can occur. 

Since the only solutions of Eqs. ( 6 )  and (8) which are 
physically meaningful are those for which the conditions 
z > 0 and r > 0 hold, we easily see that the latter is possible if 
one of two inequalities of the form 

holds. Here 8 r , , ,  - ro [see also Fig. 1, where the func- 
tion 6,(r0)  is shown by the solid line and 8,(r0) by the 
dashed line]. If rQ = 8,, expression (8) simplifies substan- 
tially: 

We will make use of this result below. The inequality 
TQ > 6, (ro) along with the condition ro < 1/2 (see the 
expression for ) defines a region in the (ro, rQ ) plane in 
which the function ii(R) is clearly single-valued (the 
oblique hatching in Fig. 1 ). In order to reduce still further 
the intervals of ro and rQ in which the functions ii (R)  may 
be multivalued, we need to pursue the graphical analysis of 
Eqs. (6) and (8)  in the (z, r )  plane. 

We find as a result that as the parameters ro and rQ are 

FIG. 1. The region of explosive growth in the (T,, rp ) plane lies between 
the line .r', (rQ ) and the abscissa axis (the region wlth the vertical hatch- 
ing). 
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varied independently the points at which the lines in (6) and 
(8) intersect generally - except in special cases in which 
these points coalesce - appear or disappear exclusively in 
pairs. These special (singular) cases of a coalescence of the 
intersections of curves (6)  and (8),  on the other hand, on 
the (rO, rQ) plane correspond to the line .r", (rQ ), which 
separates single-valued growth from multivalued growth. 
Since the singular points in the (z, r) plane are by definition 
the points of tangency of lines (6) and (8),  we find from the 
equality of the derivatives dz/dr at those points that we have 

For simplicity here we have omitted the index s from r and 
rO. The three equations (6),  (8),  and ( 12) determine singu- 
lar values of three critical parameters ( 2 ,  r', and 6) as 
functions of the adjustable parameter r e .  However, since 
these equations are nonlinear, analytic results for .r", (TQ ) 

can be found only at small values, intermediate values 
(r3 = r2) ,  and large values of the parameter TQ. We will 
briefly review the basic points and results of this analysis 

a )  rQ+O (r3 < r2). We seek the equation of the line 
6 (re ) in the limit ro+O. Assuming re -ri and 
r9 =r - ~~-7- i  by analogy with the one-dimensional prob- 
lem (where a similar result can be derived explicitly), we can 
write Eq. ( 12) as follows, with an accuracy to terms of order 
T: : 

Introducing x by means of the relation rp =xri,  we find 
from (13) 

0,-h, ( 2 )  .toZ, h, (x) =[1+2x& ( 4 x 2 - 2 0 x + 9 )  '"I 14, ( 14) 

with x > 9/2. With the same accuracy, we find from (8)  

and Eq. (6)  becomes 

Y (z, )  =h,/x. (16) 

The problem of determining x has thus been reduced to one 
of solving Eqs. (15) and (16) jointly. After plotting the 
function z * (x)  and A ,  (x) ,  we can prove that solutions 
exist at x > 9/2 [corresponding to only the plus sign in ( 14)- 
( 16) 1. We thus verify our original assumption regarding the 
relationship between T, and rQ at ro<l .  We skip over the 
corresponding lengthy analysis (which must be carried out, 
however, for a numerical determination of x )  to the final 
result: x z  5.44. 

b) r3 = r2, i.e., rQ = r2 - r0. In this case we are on the 
line 8,(r0) = re. Expression ( 8) reduces to ( 1 1 ), while 
( 12) simplifies considerably 

It can be shown that the problem of solving the system 
of equations (6), ( 1 1 ) , ( 17) reduces to the problem of solv- 
ing the single transcendental equation 

A numerical solution of ( 18) yieldsz =. 0.12, also using ( 19), 
we find r = 0.35 and ro = 0.20. 

C )  r3 > r2 (rQ+ w ). In this case it is convenient to re- 
place Eq. ( 12) by an equation which relates r and z at the 
singular points. Since (8)  and (6)  give us 

by eliminating dz/dr we find 

In the limit T ~ +  W ,  which corresponds to z-0, we then 
have 

and from (20) we easily find 

Substituting (21) into (6),  and substituting (22) into (8), 
we find 

where E= 1/4rQ < 1. From (22) and (23) we find 

Expressions (22)-(24) give us the asymptotic (~4) soh- 
tion of system (6),  (8),  (20) which we have been seeking. 

We thus find the following asymptotic results for the 
line .r", (re ) which bounds the region of explosive growth in 
the (rO, TQ ) plane: 

t o S Z  ( ~ Q / X )  I h ,  T Q - ~ O ,  

Toa,'/& ( l + 3 ~  In E ) ,  TQ+m. 

Also shown in Fig. 1 is a curve of .r", (re ) found through 
numerical analysis of the system (6),  (8),  (12). We see that 
the asymptotic behavior in (24) gives a very accurate de- 
scription of the function ( T ~  ) at large values of re ,  up to 
the point of intersection with the line 8, (ro) (Fig. 1 ) . 
53. DURATION OF THE PRE-EXPLOSION HEATING IN THE 
"DIRECT HEAT REMOVAL" APPROXIMATION 

It would be impossible to analyze Eqs. (6)  and (8) ,  
which give the coordinates of the points of tangency of the 
functions ~ ( r )  and the heat-removal curve, in the general 
case because of the transcendental nature of \V(z); numeri- 
cal calculations would be necessary. There is, on the other 
hand, a simple and important case in which this analysis 
simplifies considerably. Specifically, if z(1, we have 
T (z )  ZZ, and in this case the heat-removal curve (6) be- 
comes the heat removal line 

z= (T-TO) ITQ, (25) 

and Eq. (8)  gives us 

T~=T-'co. (26) 
from which we find 
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Using (7), we find 

where p ,  are the dimensionless (expressed in units of 
I ~ x / u )  upper and lower critical radii of a growing center 
from given values of T, and rQ ; the conditionp + < p  - holds 
at all times.' 

For the duration ti of the heating before the explosion 
(this time interval is analogous to the "induction time" in 
the theory of the thermal explosion4), we easily find the fol- 
lowing expression, using (25), (26), and z=pw 

This integral can be expressed in terms of special functions.' 
A physically interesting result, however, can be found more 
quickly from (29) in the case in which the heating before an 
explosion, ST=T- - T,, is small(br<r,). Here it is suffi- 
cient that the inequality ~,(1/4 hold (for in this case we 
have Sr  -_ri ) , as follows from (27). Switching to the new 
variable x-(T - T,)/T; in the integral in (29), we finally 
find 

It follows from (30) that at T,( 1 the time interval ti is deter- 
mined primarily by the exponential function, while the coef- 
ficient of the exponential function is proportional to ST< 1. 

It is also interesting to compare the expressions for the 
lower critical explosive radiusp- in (28) and ti in (30). We 
find 

where D =4r;/e2rQ. Relation (3  1 ) clearly emphasizes the 
diffusive nature of the coupling ofp- with ti, which follows 
from the diffusion mechanism for heat propagation from a 
growing center. 

What is the range of applicability of the approximation 
of direct heat removal which we are using in this section?" It 

FIG. 2. Schematic plot of the front velocity w versus the radius p of the 
center for explosive growth (7, and rQ are fixed). The dashed line shows 
the unstable branch of w; p ,  are the upper and lower critical radii; 
w0-w(ro). 

turns out that the quantity p -  (7,) found from (28) in the 
limit rO+O is a good approximation of the actual lower criti- 
cal radius, calculated from ( 7 ) ,  in the case ) TQ (6 ). The 
condition for the applicability of the expression forp+ (7,) is 
more stringent: re) 1. We note, however, that in this ap- 
proximation it is in principle impossible to find the mini- 
mum (for a given T,) heat evolution TQ which is required for 
the occurrence of explosive growth ( 4  2), as can be seen 
formally just from the fact that the values of T + - given by 
(27) are totally independent of TQ. 

CONCLUSION 

Let us summarize this study. We have shown that at a 
constant temperature T, of the medium a quasisteady growth 
of a spherical center of a stable phase in a configurationally 
frozen metastable state with heat evolution at the phase- 
transition front is always self-accelerated: The temperature 
at the front increases monotonically from T, to T, + re ,  
where rQ is the maximum heating. However, the growth of 
the center can occur in either of two ways, depending on the 
relation between T, and TQ : a)  If T, > 6 (rQ ) (Fig. 1 ), the 
function w (p)  is continuous and single-valued. b) If, on the 
other hand, T, < 6 (p), then forp + < p  < p  -, the front veloc- 
ity w(p) is a multivalued function (Fig. 2),  so that a sp  in- 
creases the transition from the lower branch, w- (p) ,  to the 
upper branch, w+(p),  occurs in an explosive manner at 
p = p-  (the region of explosive growth is shown by the verti- 
cal hatching in Fig. 1).  The quantity p +  in Fig. 2 is the 
smallest radius of a sphere which evolves in a quasisteady 
manner along the upper branch of the function w (p)  as a so- 
called hot center.'z3 If the physical meaning ofp- can be seen 
even in the case of uniform heating, physical realization of 
p +  is possible only in a time-varying experiment, with a 
spherical temperature T-burst of suitable intensity, dura- 
tion, and initial dimen~ion.~ 

Finally, we consider some possible ways for experimen- 
tally studying the explosive growth discussed above. In a 
transparent medium (a configurationally frozen metastable 
state in a dielectric, a liquid crystal, or a polymer), because 
of the difference between the optical properties of the stable 
and frozen phases, it would apparently be possible to directly 
observe the functions w * (p; r,, rQ ) and ti (7,; rQ ). In a 
metallic glass, where such an observation would not be pos- 
sible, an effective and convenient method for controlling the 
growth of crystallization centers would be to use rapid heat- 
ing of a bulk sample to a temperature T, by passing a current 
pulse of the appropriate height and length through the sam- 
ple. We might also mention some recent observations of hot 
crystallization centers in amorphous H,O, which is a con- 
venient model system for an experimental study of explosive 
growth, as Skripov and Koverda3 have pointed out, because 
of the relatively low velocity of the hot crystallization front 
(low in comparison with that in metallic glasses). 
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"Similar arguments should hold for the one- and two-dimensional decay 
of a configurationally frozen metastable state, which has been studied 
previously'.7 in the same approximation. 
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