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The quasi-two-dimensional quantum states of an electron near a curved interface between two 
media are studied. It is shown that the potential of the image forces of a point charge that 
is6'pressed" against the curved interface contains a part that depends on the surface curvature and 
goes as H 1nlzH I, where H(r,  ) is the mean curvature of the surface, and z is the distance from it. 
An equation is obtained for the wave function of an electron moving along the curved interface. 
Near individual irregularities two-dimensional localization is possible. The bound states near the 
extremum points of the curvature are described by the equation for a two-dimensional anisotropic 
oscillator. It is shown that in an arbitrarily strong magnetic field the degree of anisotropy of the 
ground state of such an oscillator approaches a constant limit. The application of the results to 
irregularities on heterojunction boundaries, on MIS structures, and on surfaces of solid hydrogen 
and neon, including hydrogen dust particles in interstellar space, are discussed. 

1. INTRODUCTION 

The electronic states near the interface between two me- 
dia have been the object of intensive study in recent years. As 
examples we may cite electrons above the surface of liquid 

or semiconductor electrons in metal-insulator-se- 
miconductor structures or heterostructures. Most of the in- 
vestigations in this field have been focused on the case of a 
plane interface. All the same, there is interest in studies of 
curved surfaces. In this case the energy of an electron de- 
pends on its position on the surface so consequently phe- 
nomena such as two-dimensional localization, variation in 
the structure of the spectrum of the magnetic levels, etc., are 
possible. The curvature of the surface of liquid helium in the 
presence of an external constraining electric field has been 
the subject of many investigations (see, e.g., the review, Ref. 
1 ). In the case of semiconducting films of variable thickness, 
analogous problems have been studied in Refs. 3 and 4. 

There is, however, another important (and in a certain 
sense a general mechanism through which surface curvature 
has an effect on the near-surface electrons. This mechanism 
is associated with the fact that the image forces depend on 
the curvature of the surface. In particular, this effect is im- 
portant for understanding the structure of the bound states 
on small particles (grains of solid hydrogen in interstellar 
~ p a c e , ~ . ~  liquid helium or semiconductor parti- 
cles embedded in an insulator or another semiconductor), or 
surface irregularities (cryogenic insulators-solid hydrogen8 
or neon-heterojunctions, or MIS structures), that occur nat- 
urally or are produced artificially. These states may govern 
the absorption, emission, and scattering spectra of electro- 
magnetic waves (and their polarization) and the character- 
istic cyclotron resonance features that appear in the kinetic 
characteristics. 

Our investigation focuses on the role of the image forces 
in the formation of the bound electron states at arbitrary 
curved interfaces between two media, both with and without 
the presence of a magnetic field. 

2. IMAGE FORCE POTENTIAL NEAR A CURVED INTERFACE 

Below we will confine the discussion solely to the case 
where the electron is localized (by image forces or by any 
other kind of force) at small distances from the interface, 
i.e., F, its average distance from the interface, is much 
smaller than the characteristic radius of curvature R, of the 
surface: 

Here Ri (r, ) is the principal radius of curvature at the point 
r, of the surface. 

We shall now find the potential energy of a point charge 
above the surface of the interface. By virtue of inequality ( 1 ) 
the potential energy of the image forces in the leading ap- 
proximation is given by the expression for a plane surface: 

wherez is the distance to the surface along its normal, e is the 
electron charge, and E ,  and E,  are the dielectric constants of 
the two media (with the electron being in medium 2).  An 
important consideration is that u,(z)  does not depend on the 
point of the curved surface. Therefore the correction that we 
derive below to (2)  for the curvature will also be a leading 
term that determines the motion of the electron over the 
surface. 

Let a normal, dropped from the position r, of a charge 
to the surface, intersect the surface at the point r,. Let us 
construct through this point a tangent plane on which the x 
and y axes are directed along the tangents to the principal 
normal sections. The equation of the surface near the point 
r, can be written in the form 

z+F (x, y )  =O. (3) 

Transforming to the coordinate system x' = x, y' = y, 
z' = z + F(x ,  y )  converts the interface to a plane, and Pois- 
son's equation takes the form 
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(analogously to Ref. 4).  In the immediate vicinity of the 
point r, 

F ( x ,  y )  =x2IRi ( r , )  +y2JR2 ( r e ) ,  X, y<Ri ( r s ) .  ( 5  

After F(x, y )  haxbeen substituted from (5 )  into (4)  the 
additional terms L ( p )  can be treated by perturbation the- 
ory. Using as the zero order approximation the Green's 
function of the problem of the planar interface, finding p( r ,  
ro), and then calculating the potential energy of the image 
forces, we obtain to within terms of order 6) 

u  ( r )  =u0 ( z )4 -uI  ( z ,  r , )  , 
( 6 )  

u , ( z ,  r 8 )  = a e 2 H ( r , ) l n l z H ( r s )  I, 
where the mean curvature of the surface at the point r, is 

H  ( r , )  ='I2[RI- '  ( r 5 )  +R2-' ( r s )  I .  ( 7 )  
We note that ul/uo a 6 In 6, i.e., the correction term is not 
analytic in 6. 

3. EQUATION FOR THE WAVE FUNCTION AND TWO- 
DIMENSIONAL LOCALIZATION 

The Schrodinger equation for a near-surface electron is 
written 

Here me is the effective mass, v(z) is a constraining potential 
of a nature different from that of the image force (if such 
exists). It should be noted that in the general case this poten- 
tial also depends on r,. However, in what follows we shall 
limit the treatment to the case in which the surface z = 0 is 
an equipotential for the external constraining electric field 
(if there is one; see e.g., Fig. 2).  As regards short-range con- 
straining potentials, their possible anisotropy leads to cor- 
rections proportional to 6, which, in the leading approxima- 
tion, may be neglected (in comparison to { In 6 for the 
long-range image forces. 

In Eq. (8) (provided { is small) we can decompose the 
motion of the electron into components perpendicular and 
parallel to the surface: 

Y r )  = ( z )  $ ( r  E=Eo+Es, (9 )  
wherex,(z) and Eo are taken from the solution to the planar 
interface problem (the electron is in the lowest "transverse" 
state). We shall assume that the curvature of the surface is so 
gentle that Ro>a = ti '/2m,e2a, where a is the effective 
Bohr radius associated with the image forces (when there is 
no additional constraining potential u(z) we have a -2 and 
this condition reduces that given above, namely, l (1 ) .  
Then, averaging (8) over z with the use ofx0(z)  we obtain 
the leading approximation 

where A2(rs ) is the two-dimensional Laplacian operator on 
the surface, where the form of this operator depends on the 
shape of the surface and on the coordinate system, and E, is 
the energy of motion along the surface. 

Equation ( 10) describes the motion of a quasi-two-di- 
mensional electron in the field of the image force above a 
surface of arbitrary shape, and of course, it does not admit of 
a general solution. We shall consider the most interesting 
special cases, limiting the problem to the localization of an 
electron near a particular irregularity, in the region of which 
the curvature is an extremum (a  minimum for > E~ or a 
maximum for < E ' ) .  

1 .  Deep smooth well (radius of localization I<L ) . Here 

is the characteristic "average" size of the well. In this case 
the electron is localized in the neighborhood of the point 
r,, -the extremum ofH(r, ) and in Eq. ( 10) we can expand 
in the small quantity Ir, - r,, I (R,. Here A,(r, ) can be 
conveniently written in the local coordinates 

where the 6, are the polar angles in the planes of the corre- 
sponding transverse cross sections (Fig. 1 ), and 6; ( 1. 
Keeping only terms of second order in Oi in the expansion of 
u (r, ) and zero order terms in 6, in the expansion of A2(rs ), 
(i.e., to accuracy of the order l/Ro), and introducing the 
Cartesian coordinates xi = R (r,, )Bi, we obtain an oscilla- 
tor equation of the type 

Reducing the tensor g, to the principal axes x and y 
(principal valuesg, andg,), we can obtain the solution in the 
form of the wave functions of a two-dimensional oscillator: 
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Here the H,, ( z )  are Hermite polynomials, and 1, = (fi 2/ 

m,gi ) 'I4. The energy spectrum is given by the expression 

Let us turn now to the conditions for the applicability of 
this theory. For a sufficiently smooth irregularity there is 
one characteristic dimension R,, such that L - RO and d / 
ax, - l/Ro, and so 1 4-14-aR ;/ln(R&). Thus, the con- 
dition I(L reduces to R, ln(R,/Z))a, i.e., it is satisfied 
everywhere (for these irregularities) in the region of appli- 
cability of ( lo) .  

For the typical case of an arbitrarily oriented ellipsoidal 
irregularity (concave for E ,  > E, or convex for E ,  < E,) with 
semiaxes a ,  <a,<a, the electron is localized near the pole of 
greatest curvature (i.e., near axis 3) .  In this case in formulas 
(14) and (15) 

(16) 
and g, is obtained from g, by the interchange of axes 1$2. 

We emphasize that our results also apply in a natural 
way to the case of a closed surface (a  droplet, a small parti- 
cle, or an inclusion). Here the value of L is limited by the 
particle size. For instance if the latter ellipsoidal, as de- 
scribed above, and E, > E,, then the electron (which is out- 
side the particle) is localized in the "flattest" region, near 
axis 1, so that in formula ( 16) the indices should be inter- 
changed 1 ~ 3 .  

2. Shallow well (the opposite limiting case 1)L). In this 
case the longitudinal dimension of the well is much less than 
R, (r,, ). As is well known, for two-dimensional motion a 
bound state also exists in this case,'' with the energy level 
and the wave function outside the (in general, asymmetric) 
well given by the expression 

where KO is the modified Bessel function of the second kind. 
The criterion for the applicability of (17) and (18) is 

obtained from the requirement xL( 1, which is equivalent to 
the condition that the exponent in (17) be small: 

% 1 u (r.) d2rs<1, 
f t2 

(19) 

i.e., in every case the condition L ln(R,E) <Roa must 
hold. 

4. STATES IN A MAGNETIC FIELD 

In the case of a magnetic field we make the usual substi- 
tution ifiV+ifiV + (e/c)A. We choose a special gauge in 
which A(r,).n(r, ) = 0, where n(r, ) is the normal to the 
surface. Then in Eq. ( 10) A, should be replaced by the oper- 
ator 

where h, are the Lami coefficients of the curvilinear orthog- 
onal coordinate system on the surface. 

Let us consider the simplest case. A uniform magnetic 
field A? is directed along the normal to the surface at the 
point r,, . As we did before, we shall select a system of local 
coordinates (Fig. 1 ) at the point r,, in such a way that in the 
new coordinates x and y the tensor g, defined by formula 
( 13) is diagonal. It can be shown that in this case the vector 
potential chosen in the usual form A(A?y, 0,O) in the region 
of localization satisfies the gauge condition Awn = 0 accurate 
to terms in I/R,, and to the same degree of accuracy we 
obtain the equation for the electron wave function 

which describes an anisotropic two-dimensional oscillator in 
a magnetic field: here l~, = ( & / e x )  ' I 2  is the magnetic 
length. 

Equation (21) is most conveniently solved by trans- 
forming to a Fourier representation in x and subsequently 
diagonalizing the dynamic matrix. The frequencies thus ob- 
tained 

determine the electron energy spectrum: 

Here o, = eZ/m,c  is the cyclotron frequency and wi is 
defined in (15). The expressions for the wave function 
qhnln2 (x, y )  are rather cumbersome so we shall write down 
only the wave function for the ground state 

The asymmetric form of the phase factor is due to our choice 
of the gauge of the vector potential. In the cylindrical gauge 
A(Zy/2,  Xx/2 ,  0) this factor takes the form 

exp[i(o,-oz)xy/21x2(ol+02) 1. 
It is interesting to note that even in the limit of large 

fields Ii/ l ,y--+~ the symmetrized function qhoo(x, y )  does 
not go over to the known solution for an electron in a mag- 
netic field," n, = m = 0. This is because the anisotropic po- 
tential of the oscillator lifts the infinite degeneracy in nega- 
tive values of the momentum m in Ref. 10. 

Here the form of the wave function depends only on the 
ratio w ,/w,, which characterizes the degree of anisotropy of 
the potential. 

The anharmonic terms that were discarded in the deri- 
vation of (21 ) give nonequidistant corrections to the energy 
levels proportional to fifl(l/R,)2n2. Their exact form for 
the special case of a spherical particle (w , = w, = 0) is given 
in our previous paper.6 
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FIG. 2. 

5. CONCLUSIONS 

In conclusion we shall discuss the possibilities of ob- 
serving these states experimentally and the choice of the 
physical system that is most appropriate for this purpose. 
Let us note first of all that our treatment is valid for the 
condition R,)?, where Ro is the characteristic radius of cur- 
vature of the surface and? is the meat distance from it to the 
electron. Since in every case ?>l A, it is necessary that 
R02  100 A, so that the characteristic energy is E, - 10 K. 

By way of example let us cite some systems that are 
suitable for experimental study of these states: 

1. The surface of a cryogenic insulator-solid hydrogen 
or neon. In this case the electron is constrained to the surface 
by the image forces themselves and it is localized near small 
cavities on a plane surface8 or at regions of low curvature on 
the hydrogen particles. 

2. Natural or artificial irregularities of the interface 
(heterojunction) between two semiconductors or small in- 
clusions of one semiconductor in another. 

3. Curved MIS structures of the kind shown in Fig. 2. 
We shall give a specific estimate for the case of solid 

hydrogen. For the ground state of the transverse motion 
Eo - 250 K and?- 20 A. Oscillator states exist for irregulari- 
ties with R0)300 A, for which fiw, 5 5 K. A marked change 
in these states occurs in magnetic fields as low as Z- lo4 G 
(Is - 250 A).  

Direct experimental observation of these states is possi- 
ble in the first place through the effects of their resonance 
interaction with electromagnetic waves (in the wavelength 
0.5-1 mm) or withelectron beams (of course, in this case the 
irregularities should be about the same size). The positions 
of the absorption, emission, and Raman scattering spectral 
lines and their fine structure [determined by the anharmonic 
corrections to ( 13) ] carry information on the size and shape 
of the irregularities, while the orientation of the principal 

JG 
FIG. 3. Qualitative picture of the structure of the "cyclotron" resonance 
lines: a )R,  ( X ) ;  b) R 2 ( X ) .  

FIG. 4. Preferential orientation of dipole matrix element vectors (of an 
electron on a hydrogen dust particle) relative to the external magnetic 
field (a)  and electric field (b). 

axes of the tensor g, determines the polarization. 
The features of resonance absorption in a magnetic field 

are interesting. The transition frequencies Ri (Z) depend 
on % in a very nonlinear way. In the limit of strong fields 
(o,>o, 1, a,+, and a,-olo2/w, (o, and the latter 
(a2) depends anomalously on the magnetic field ( a %- ' ). 
Taking the anharmonicity into account brings about a split- 
ting ofboth resonance lines into ii - 1 + kT/fiai peaks equi- 
distance in Z and Z - ' ,  respectively, or (in the case of 
sufficient variation in the irregularity sizes) an inhomogen- 
eous line broadening (Fig. 3) .  

Let us discuss, finally, the possible connection, pointed 
out by Chaikir~,~ between electron states localized on inter- 
stellar dust particles and the propagation of electromagnetic 
waves in interstellar space. The orientation of particles of 
irregular shape in an external constant field (Fig. 4) leads to 
the result that the radiation associated with the oscillator 
transitions of the type discussed above (in the wavelength 
range A R 10 cm-') is preferentially polarized in the direc- 
tion of the electric field (or pependicular to the magnetic 
field ) . 
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