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We predict the existence of a stable decreasing portion of the current-voltage characteristic 
(CVC) of a system consisting of two thin metal plates separated by a dielectric layer. The nonlin- 
earity of the CVC is related to the effect of the self-magnetic field on the conductivity of the 
sample. The CVC becomes multivalued (N-shaped) when the external magnetic field h, exceeds a 
critical value h,, , and arises because the trajectories of electrons trapped by the magnetic field are 
cut off. Numerical estimates demonstrate the feasibility of experimental detection of the predict- 
ed effect. 

1. A constant electric current flowing in a metal pro- 
duces a magnetic field which affects the dynamics of elec- 
trons, and thus the conductivity. The nonlinear influence of 
this internal magnetic field on the conductivity results in 
deviations of the current-voltage characteristic (CVC) from 
Ohm's Law. This magnetodynamic nonlinearity is most 
clearly exhibited in thin metal samples with diffuse boundar- 
ies when the classical size effect'-6 comes into play. When 

d<<l<<L (1 

the conductivity is basically due to a fairly small group of 
electrons which move almost parallel to the surface of the 
metal instead of colliding with it. Here L is the length of the 
sample, d is its characteristic thickness, and 1 is the electron 
mean free path. Reducing the number of effective electrons 
under linear operating conditions decreases the conductivity 
of a thin plate by a factor of ( I  /d)/ln(l /d) ) 1 as compared 
with the conductivity u, of a bulk sample.' 

The effect of a current-induced magnetic field is that 
electrons which travel along straight-line trajectories under 
linear conditions and collide with the boundaries of the sam- 
ple are trapped by the magnetic field, and begin to move 
without collisions. Thus, in the nonlinear regime, the num- 
ber of effective electrons is increased, and the greater the 
current, the more electrons there are. 

In a plane-parallel plate, the current-induced magnetic 
field is distributed antisymmetrically, i.e., it vanishes at the 
center of the plate and takes the values H and - H on the 
opposite faces, with 

H=BnI/cD. (2) 

Here I is the total current, D is the horizontal dimension of 
the plate in the direction perpendicular to the current, and c 
is the speed of light. With this alternating field distribution 
within the plate, there exist scalloping electron trajectories 
near the plane x = x, where the sign of the magnetic field 
changes (see Fig. 1 ) . While moving along these trajectories, 
electrons do not collide with the faces of the plate, and they 
effectively interact with the electric field over their whole 
mean free path. When 

d< ( R d )  '"ecl ( 3  

(where R is the Larmor radius for the field H ) ,  the conduc- 
tivity of the trapped electrons 

exceeds that of all other classes, and the voltage drop V 
across the sample is proportional to the square root of the 
current, I ' I 2  (Refs. 3 ,4) .  

The internal magnetic field h,, which is collinear with 
the current-induced magnetic field, displaces the plane 
x = x ,  where the direction of the total magnetic field 
changes toward one of the sample surfaces. If h, > H, the 
magnetic field in the plate will be constant, there will be no 
trapped electrons, and the sample will operate under essen- 
tially linear conditions, even when ( 3 ) is satisfied. As the 
current in the sample increases, the plane x = x, makes its 
appearance, and there is a transition from the linear to the 
nonlinear regime. Thus, an external magnetic field shifts the 
nonlinear portion of the CVC toward higher current. The 
change in CVC slope associated with the transition to non- 
linearity is more abrupt in an external field than when h, = 0 
(Ref. 4).  For high currents (H)h,), the field h, exerts a 
negligible influence, and the equation for the CVC has the 
same form as for h, = 0. Note that as the current increases, 
the plane x = x, tends asymptotically toward the middle of 
the plate. 

We now consider a sample consisting of two identical 
thin plates with an insulating layer between them-a sand- 
wich. The plates are connected in parallel. For h, = 0, the 
planex = x, lies between the plates, and there are no trapped 
electrons in either. The sandwich CVC is therefore linear. In 
an external magnetic field, this situation changes drastically. 
When H>ho,  the plane where the total magnetic field 
changes direction can migrate to any position within either 
plate, depending on the current. For the sake of definiteness, 

-L+ 

FIG. 1. Coordinate system and trajectory of a trapped electron. 
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let us assume it is the upper plate (h, > 0; see Fig. 1). Until 
the plane x = x, crosses the middle of the upper plate, the 
sandwich CVC does not differ qualitatively from the nonlin- 
ear CVC of a plate of thickness 2d. As the current increases, 
the number of trapped electrons grows, and the conductivity 
of the sandwich increases. It reaches a maximum when the 
plane x = x, crosses the middle of the upper plate. With a 
further increase in current, this plane crosses into the lower 
half of the plate, and the number of trapped electrons starts 
to drop, due to collisions with the lower face. In other words, 
the electron orbits are interrupted. 

The cutoff current I, delineates two regions. In the 
first, for I <I,, the number of effective electrons increases 
with increasing current, and in the second, for I >  I,, it de- 
creases. The change in sign of the derivative of the conduc- 
tivity with respect to current should result in a discontinuity 
in the CVC at I = I,. 

The magnitude of the discontinuity, i.e., the jump in the 
derivative of the function V(I), increases as the external 
magnetic field h, increases. This is consistent with the earlier 
assertion that the slope of V(I) increases with increasing h,. 
A rigorous calculation of the sandwich CVC below demon- 
strates that for some critical value h, = hcr of the field, the 
derivative dV/dI goes to infinity at I = I, (curve 2 in Fig. 
2),  and for h,> hcr, a decreasing segment appears on the 
CVC (curve 3 in Fig. 2). We stress that the appearance of a 
negative differential impedance is due to the combination of 
two factors: the cutoff of the electron orbits, and the pres- 
ence of a strong field h,. The first produces a discontinuity in 
V(I), and the second sets the critical value of the discontin- 
uity. 

Note that the decreasing segment of the CVC of a thin 
metal plate due to magnetodynamic nonlinearity had been 
predi~ted,~ with a field h, oriented along the current being 
considered. The CVC thus obtained was S-shaped. The 
sandwich CVC being investigated in the present paper is N- 
shaped. Thus, it can be said that in pure metals at low tem- 
peratures, there is a nonthermal nonlinearity mechanism 
which is responsible for the same variety of CVC shapes as in 
semiconductors. 

FIG. 2. Current-Voltage characteristic o f  the sandwich for various values 
o f  external magnetic field: 1 )  h, = 0.75hC,; 2)  h, = h,,; 3 )  h, = 1.5hC,. 

Note that the sandwich critical field h,, is two orders of 
magnitude lower than the critical field computed for a single 
plate.5 Thus, the experimental detection of the decreasing 
segment of the CVC is a much simpler proposition for the 
sandwich than for the plate. 

2. We now compute the CVC of a sandwich consisting 
of two identical plates of thickness d, connected in parallel 
electrically. The origin of the coordinate system is put at the 
center of the sandwich. The current is directed along they- 
axis, with the x-axis perpendicular to the face of the sand- 
wich. The constant external uniform field h, lies along the z- 
axis (Fig. 1 ). 

The equation for the CVC is obtained by simultaneous- 
ly solving the Boltzmann equation and the equations of mag- 
netostatics. However, in the present instance, we can avoid 
this procedure and derive the sandwich CVC by using the 
known4 form of the CVC for a single thin plate in an external 
magnetic field. 

We assume that we know the relation between the elec- 
tric field E in the plate, the magnetic field H, which is pro- 
portional to the current in this plate, and the external field 
h,: 

Here g amd h are the natural units for field measurements 
introduced in Ref. 4: 

wherep, is the Fermi level momentum and e is the absolute 
value of the charge on the electron. In the geometry of Fig. 1, 
the planex, and the group of trapped electrons can only exist 
in the upper plate, and it is just to this plate that we apply Eq. 
(5 ) .  In this equation, H pertains to the field produced by the 
current passing only through the upper plate, and h, is the 
absolute difference between the external magnetic field and 
the field produced by the current in the lower plate. The sign 
of the latter field must satisfy the rule that the equation for 
the CVC of the plate is invariant under inversion of the exter- 
nal magnetic field. 

Thus, the sandwich CVC can be derived from Eq. (5)  
with the substitutions 

We have assumed here4 that the conductivity of the lower 
plate is 

3. The actual form of the function f ( E  / g ,  H /h, hdh ) ,  
which determines the CVC ofa thin metal plate, was derived 
in Ref. 4. Carrying out the substitution (6) in Eq. (3.15) of 
Ref. 4, we obtain 
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Just as in the case of the CVC of the plate in Eq. (3.15) of 
Ref. 4, Eq. (8)  can be used in the limit of large nonlinearity, 

(Rd)'" R+ 
ln-< 1, 

1 d 

when the sample conductivity is due to a group of trapped 
electrons. 

If the electric field in the sample satisfies the inequality 
( E / ' 8 )  111 (R+/d) <ho/h, (10) 

the quantity between the vertical bars in Eq. (8)  is negative. 
The upper plate is then immersed in a positive external mag- 
netic field which is the sum of the field h, and the field pro- 
duced by the lower plate. Under these circumstances, the 
plane x = x, lies within the upper part of the plate (x,>d / 
2), and the sandwich CVC is a monotonic function E ( H )  
which is essentially the same as the nonlinear CVC of a plate 
of thickness 2d: 

We can easily obtain the values of the cutoff fields Hc and Ec 
from Eqs. ( 10) and ( 11 ), for which the absolute values in 
Eqs. (8)  vanish: 

This point on the sandwich CVC corresponds to the plane 
x = x, being right in the middle of the upper plate. The deri- 
vative 

which characterizes the slope of the CVC at cutoff, is finite 
for all h,. 

We now consider the regime of higher electric fields, 

In this region, Eq. (8) is quadratic in E /$, giving 

The choice of sign in ( 15) is determined by the "matching" 
condition at the point Hc given by ( 12). At this point, the 
expression inside the square root in ( 15) is a perfect square, 

which vanishes when h, = h,, . The critical field comes from 
the equation 

Thus, the result of taking the square root and choosing a sign 
in ( 15) will depend on the ratio between the fields h, and h,, . 

If the external field strength is less than the critical val- 
ue (h ,  < h,, ), we must take the plus sign in ( 15). The func- 
tion E(H) is then increasing. As H+ w , h, can be neglected 
in ( 15), and the sandwich CVC is given by the almost linear 
asymptote 

Figure 2 (curve 1 ) shows the typical form of the sandwich 
CVC for h, < h,, . There is a kink in the CVC at Hc , since the 
derivative on the right, 

is not the same as the derivative ( 13) on the left. 
At the critical value h, = h,, of the external magnetic 

field, the vertex of the hyperbola ( 15) falls at H = Hc,  and 
the derivative (18) goes to infinity there. It is easy to obtain 
the coordinates of the vertex of the hyperbola for h, = h,, 
from (12) and (16): 

The sandwich CVC is shown in Fig. 2 (curve 2)  for h, = h,, . 
Note that the equation for the critical field for the CVC of a 
thin plate in an external magnetic field directed along the 
current5 differs from ( 16) only by a numerical factor on the 
right-hand side. However, this factor is a large one: instead 
of2, the factor is 625 in Eq. (3.9) of Ref. 5. Thus, experimen- 
tally, the falling segment of the CVC can more easily be real- 
ized in a sandwich than in a plate. 

There is a segment with negative differential impedance 
in the sandwich CVC for h, > h,, . In this case, the point with 
coordinates Hc and E, winds up on the decreasing branch of 
the hyperbola ( 15). The falling segment of the CVC is locat- 
ed between Hc and H *, where 

is the coordinate of the vertex of the hyperbola. Above the 
point E(H * )  lies the ascending branch of the hyperbola 
( 15), which for H+ w is described by the linear asymptote 
( 17). When h, > h,, , E ( H )  is multivalued in the interval 
H * < H < Hc : three values of E correspond to one value of H 
(curve 3 in Fig. 2) .  

4. Up to this point, we have been considering a sand- 
wich containing plates of the same thickness. We now dis- 
cuss the effect of a difference between plate thicknesses d l  
and d2 on the previous results (d l  is the thickness of the 
upper plate, and d2 the lower). 

First of all, we note that when there is no external mag- 
netic field, the point x, lies within one of the plates, and not 
in between them, as in the symmetric sandwich with d l  = d,. 
At large currents, when the field h, can be neglected, there is 
accordingly a group of trapped electrons in the sandwich 
with trajectories which wind back and forth along the plane 
x = x ,  = (dl2 - d22)/2dl. The asymptote of the CVC is 
therefore nonlinear ( V-I ' I2 ) .  

We shall not explicitly write out the sandwich CVC, the 
structure of which, on the falling segment, is fairly insensi- 
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tive to the ratio dl/d,. However, the very fact of the existence 
of a falling segment of the CVC as well as the critical field 
value h,, , depend on this ratio. A straightforward calcula- 
tion gives the following equation for the field h,, : 

Equation (2 1 ) implies that the optimum conditions for ob- 
serving the falling segment of the CVC occur when dl/ 
d, = 3'12/2. The coefficient in front of the logarithm in (21 ) 
is then at a minimum, and is equal to 16/9. 

We now direct our attention to the fact that the depen- 
dence of the critical field h,, on the thicknesses d, and d, is 
quite asymmetrical. A reduction in the thickness d, of the 
lower plate results in a rapid rise in the critical field, and to 
the disappearance of the falling segment of the CVC when 
d , ~  (2/3)1'2d1. Also, a reduction in the thickness d l  of the 
upper plate results in a rise in h,, as well. However, the nega- 
tive differential impedance effect does not disappear, no 
matter how small we make d1/d2. Thus, to exhibit the falling 
segment of the CVC experimentally, the upper plate must be 
the thinner (for the directions of current and external field 
shown in Fig. 1 ) . 

5. It is well known that the falling segment of a static 
CVC can turn out to be unstable to circuit current or voltage 
fluctuations. Under these circumstances, it is not possible to 
observe the theoretically calculated falling segment, since 
the system readjusts itself as a result of the development of 
instability, and the decreasing segment either disappears 
completely, or it undergoes a significant change in shape. We 
therefore will discuss the problem of the stability of the de- 
creasing segment of the sandwich CVC derived above. 

For a fixed current, it is not possible to go over to the 
decreasing segment, since the change in voltage V occurs 
along one of the two stable rising segments. If the current 
increases from zero, the voltage will gradually increase 
along the line ABC (Fig. 2) .  At point C, there is a voltage 
discontinuity: it jumps to the higher value at point D. Any 
further change in voltage takes place along the rising seg- 
ment DF. When the current is reduced along the curve FDG, 
the system passes through point D, and the voltage discon- 
tinuity takes place at a lower current-at point G. This behav- 
ior of V(I) is related to hysteresis of the CVC. 

It is possible to go over to the decreasing segment with a 
controlled voltage, since the measured function I( V) is then 
single-valued. It is in this setting that the problem of stability 
of the decreasing segment of the CVC is of interest. 

First of all, we note that on the decreasing segment of 
the sandwich CVC for each plate, the voltage dependence of 
the current in the plate is an increasing function. Thus, inde- 
pendent current fluctuations are quickly damped out, and 
instability can only arise when there is positive feedback 
between the fluctuating fields in the plates. However, the 
neutrality condition div j = 0 for metals limits the form of 
electromagnetic fluctuations in a plate, and as will be dem- 
onstrated below, it turns out to be impossible for coupled 
fluctuations to exist in a sandwich. 

Let us look at the simplest nonuniform fluctuation 
along the current which ensures that the voltage across the 

sample is constant, i.e., 

I E ,  ds=o, 

where E,, is the fluctuation field. In order for a fluctuation in 
one plate to affect the conductivity of the other, the fluctu- 
ation must contain the z-component of the magnetic field, 

H,=H(x) exp (iky+iot) . 
Maxwell's equations tell us that there are also x- and y-com- 
ponents of the electric field in such a fluctuation: 
E,=E,(z) exp ( iky+iot ) ,  E,=E,(x) exp ( iky t - io t ) .  

An investigation of the stability to fluctuations of the type 
described reduces to an analysis of the dispersion relation 
w = w(k) obtained by simultaneously solving Maxwell's 
equations in the two plates. However, in the present case, the 
dispersion relation cannot be obtained in explicit form. It 
follows from this that at the interface, all fluctuating field 
components vanish. Therefore, fluctuation processes in the 
plates develop independently, and cannot result in instabil- 
ity. Note that the possibility of a stable falling segment of the 
CVC was demonstrated in a series of experiments in semi- 
conductors [ 8-10]. 

6. To conclude, we present the necessary numerical esti- 
mates. In Fig. 2, we show the results of a calculation of the 
CVC of a sandwich consisting of two plates of thickness 
d = lop3 cm, length and width L = D = 1 cm, 
p, = 10-I9g . cm/sec, and I = 0.1 cm. With these values, 
the scaling factors h and 8 for the field measurements are 
h = 0.54 Oe, = 3.1 . lop5 V/cm. The corresponding 
scaling current and voltage are iz0.86 A, U z  3.1 - 10-5V. 
The critical field strength obtained by solving Eq. (16) is 
h,, z 20 Oe. The decreasing segment of the CVC in curve 3 is 
located at a current 240 < I  < 280 A. The power density dissi- 
pated in the sample on the decreasing segment of the CVC, 
P = IV/LD = 0.2 W/cmZ, can easily be carried off by liquid 
helium. These estimates demonstrate the possibility of ob- 
serving the predicted decreasing segment of the CVC experi- 
mentally. 
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