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The replica method is used to construct a field theory for describing dilute solutions of polymer 
macromolecules in the presence of arbitrary bulk interactions. It is shown that a spontaneous 
breaking of the replica symmetry describes the formation of a giant gel macromolecule and the 
coil-globule transition of a linear chain with a fixed primary structure. The correlation functions 
for the density of the constituent units of the gel in a polymer system with an arbitrary frozen 
molecular-structural distribution are calculated, and the Ginzburg number, which determines 
the size of the region of strong critical fluctuations in a dilute solution of branched macromole- 
cules, is found. 

1. INTRODUCTION 

Field-theory methods have been used in a number of 
papers'-5 for the statistical description of polymers. One of 
the most fruitful ideas in field theory has been the concept of 
spontaneous symmetry breaking. Polymer theory, however, 
has yet to incorporate this concept in a practical manner. In 
this paper we show that the spontaneous breaking of the 
replica symmetry5s6 describes the formation of giant poly- 
mer macromolecules, and we calculate their correlation 
functions. 

Polymer molecules can be obtained, for example, by po- 
lycondensation of monomeric units (see Fig. l a ) .  Each poly- 
mer molecule consists of a monomer R and a number f of its 
functional groups. Two functional groups can form a chemi- 
cal bond (see Fig. lb),  and in certain polycondensation pro- 
cesses the formation of the chemical bond can occur as a 
reversible reaction. In the presence of chemical equilibrium 
with respect to the formation and breaking of the bonds, the 
polymer macromolecules found in solution are statistical 
and have no definite primary (chemical) structure. 

Equilibrium polycondensation is widely used for syn- 
thesizing polymers. In the majority of experiments, how- 
ever, the chemical reaction is "frozen" at a certain level, and 
the solution obtained is subsequently diluted. In the dilute 
solution one can determine the molecular-structural distri- 
bution and the average dimensions of the molecules and 
their radius of inertia.' Geometric characteristics of this 
kind are described completely by the correlation functions 
for individual macromolecules that were determined in Ref. 
Z 
3. 

Thus, in a dilute solution the primary structure of the 
macromolecules can be regarded as fixed and its monomeric 
units as being in thermodynamic equilibrium. Thermody- 
namic fluctuations can bring together units which are widely 
separated along the molecule; the interactions between such 

FIG. 1. Monomeric units RA' ( a )  and the formation of a chemical bond 
between their functional groups (b) .  

units are called bulk interactions. These interactions deter- 
mine the spatial configuration of the macromolecules, and 
they must be taken into account along with the chemical 
bonds which form the primary structure of the macromole- 
cule. The correlation functions of individual macromole- 
cules in the dilute solution can be very different from their 
values in the solution in which the reaction occurred, since in 
the dilute solution the excluded volume effects are weaker 
than in the initial solution. 

In this paper we consider polymer systems with arbi- 
trary frozen molecular-structural distributions. An impor- 
tant particular case of such a system is that of dilute polymer 
solutions of polymer macromolecules, where one can neglect 
the bulk interaction of the units of different macromolecules 
and consider only the intramolecular interactions and the 
interaction of the units of the macromolecules with the sol- 
vent. The case of concentrated solutions of macromolecules 
in chemical equilibrium is treated by the replica method in 
Ref. 5. 

In Sec. 2 we study the thermodynamic fluctuations of 
branched macromolecules withf>,3 obtained in the course 
of an equilibrium polycondensation of the monomeric units. 
The behavior of molecules of finite dimensions was consid- 
ered in Refs. 3 and 8. The statistical properties of such ma- 
cromolecules are determined by the conversion p, which is 
the ratio of the number of bonds in the system to the maxi- 
mum possible number of bonds. Forp>p, a macromolecule 
of infinite dimensions, i.e., a gel, arises. The correlation func- 
tions ofsuch a giant macromolecule in the initial concentrat- 
ed solution are calculated in Ref. 5. 

In Sec. 3 we use the replica method to construct a field 
theory for the statistical description of the thermodynamic 
fluctuations of the gel macromolecule in a dilute solution. It 
is shown that beyond the gel point the replica symmetry is 
spontaneously broken. In the case f = 2 the molecules are in 
the form of chains or loops (Fig. 2).  In Sec. 3 we also find an 
exact representation of the partition function of a chain with 
a fixed primary structure in the presence of arbitrary bulk 
interactions, in the form of a functional integral over the 
replica field. It is shown that the coil-globule transition9 of 
such a chain is also described by the spontaneous breaking of 
the replica symmetry. 

In Sec. 4 we find in the self-consistent field approxima- 
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FIG. 2. Linear polymers: chain (a)  and loop (b). 

tion the correlation functions of the giant polymer network 
of the gel in a system of arbitrary chemical composition and 
in the presence of arbitrary bulk interactions between its 
units. In Sec. 5 we calculate the correlation functions of the 
gel in a dilute solution. We find the Ginzburg number, which 
determines the dimension of the region of strong critical 
fluctuations of the density of units of the gel. 

2. GRAND CANONICAL ENSEMBLE 

Let us consider a solution of N  monomeric units with 
coordinates x,, ... , x, each of which has fa functional 
groups of type a ,  where a = 1, ... , w. Two functional groups 
of units i, j can form a chemical bond, and we denote by 
A (xi - xj ) the conditional probability of finding these units 
at a distance Ixi - xj I from each other. We use the term (I, 
m)-isomer macromolecule to describe 1 units linked only 
among themselves by m = 1 + r - 1 chemical bonds, and we 
let r be the number of independent loops of the macromole- 
cule. Obviously, macromolecules having the same numbers 
( I ,  m )  can have different topologies. Let us consider a con- 
figuration G containing a number n,,, of (1, m)-isomers, so 
that the total number of units, bonds, and macromolecules in 
this configuration are respectively 

We describe the bulk interactions by the interaction poten- 
tial energy V(x - x') of pairs of monomeric units. In the 
presence of chemical equilibrium with respect to the forma- 
tion and breaking of chemical bonds, we assume that in con- 
figuration G the Gibbs distribution function for the coordi- 
nates of the particles in a d-dimensional space is equal by 
definition to 

Here h is the external field, T is the absolute temperature, 
and a factor ka8 .A (xi - x, ), where ka8 = k, exp( - 
T), is associated with each bond between functional groups 
of types a and P (k, and E~~ are the entropy characteristic 
and energy characteristic of the bond). The factors N !  and 
fa ! take into account the identical nature of the units and of 
the groups of each unit, A, = (MT/2?Tfi 2 ,  - ' I 2  is the ther- 
mal ~ave length ,~  M is the mass of the units, and z, zb , and n 
are the activities (relative fugacities) of the units, bonds, and 
molecules. The thermodynamic potential R is determined 
by the normalization condition. 

where the summation is over all possible configurations G. 
The correlators of the density of units of the system are 
found by differentiating R with respect to the field h. 

We note that for n-0 sum (3) contains a contribution 
to first order in n from configurations G which contain only a 
single molecule and, in particular, a giant gel macromole- 
cule. Such a macromolecule results from the "freezing" of 
the chemical reactions at fixed values of the total density of 
units ( p )  and of the conversionp>p, beyond the gel point 
and the subsequent "washing out" of the finite macromole- 
cules of the sol. 

3. FIELD THEORY FOR THE STATISTICAL DESCRIPTION OF 
GIANT MACROMOLECULES 

To evaluate the thermodynamic potential R(3)  we use 
the method of Ref. 5, according to which R in the presence of 
arbitrary volume interactions can be expressed in terms of 
the thermodynamic potential R"' of a system with V = 0 in a 
random field u (x)  . In the present case formula ( 14) of Ref. 5 
becomes 

Q (h ) ,  
'"P [- 1 

Ho ( v )  + nSFO) (h+v) 
= DV exp [- 

T ] / j ~ v  exp[- 1, 
1 (4)  

Ho ( v )  = - - j j  dx dx' V-' ( x - X I )  v ( x )  v ( X I ) ,  

2 

Sax,  V(X-x,)  V-I ( x , - x~ )  = 6 (x-xo . 
A representation of R'O' in the form of a functional integral is 
found in Ref. 4: 

Q'O' ( h )  
" P  [- [---I 

z exp[ -h (x ) /T l  
= 5 Drpa exp [-LO (va)  + 

where the integration is over the w-component field pa ,  and 
the quadratic form Lo is given by the expression 

Performing exactly the integration in (4)  over the field v of 
the volume interactions with the aid of the replica method, 
we find (see Ref. 5 for details) 

z exp[ -h (x ) lT]  

i=l a=< ( f a )  ! 
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where the integration is over the nw-component replica field 
pa;. The functional ?.r, determines the thermodynamic po- 
tential no of a system of broken-up units (kaB = 0)  in an 
external field h (x)  (Ref. 9) : 

Q, ( h )  =-Tn,  {z exp [ -h  (x) IT1 /AT*}. (8  

The correlators of the density of units of such a system are 
found by differentiating .rr, with respect to the field h: 

p ( x )  =-T&no/6h ( x )  , <6p ( x )  6p (x ' )  >, 
=T2fi2nO/6h(x) 6h (x ' )  . (9)  

At a low densityp of units and at h = 0, the equation of state 
of a system of boken-up units is determined by the virial 
expansion 

Po ( p )  =-Qo/P=pT+p2B ( T )  T+2p3C(T) T+.  . . . ( 10) 

Here Y is the volume of the system, and the virial coeffi- 
cients B and Care assumed to be renormalized on account of 
the solvent molecules (see below and also Ref. 9).  

The Lagrangian T, in (7)  is symmetric with respect to 
permutation of the replica fields. Beyond the gel point this 
symmetry is spontaneously broken and the ground state is 
degenerate.5 If fluctuations of the replica fields are neglect- 
ed, the extremum of the functional r, is reached for the 
solutions 

( 0 )  ( 0 )  
rpai =rp, , i=l,. . . , n, (11) 

Here the superscript indicates the type of solution (ground 
state). Evaluating the integral in ( 7 )  by the method of steep- 
est descents and summing the contributions of the steepest- 
descent trajectories ( 1 1 ), we find 

n 

and to first order in n for n 4  we have 

where the first term in the square brackets is the contribution 
from finite molecules of the sol. The second term exists only 
beyond the gel point, and it determines the thermodynamic 
potential of the gel macromolecule in a dilute solution: 

To incorporate fluctuations of the replica fields in ( 14), one 
should replace To by the effective-action functional, which 
was determined for this system in Ref. 5. 

A field theory capable of describing the thermodynamic 
fluctuations of a linear chain ( f  = 2)  with fixed primary 
structure in the self-consistent field approximation as pro- 
posed in Ref. 4. The replica method permits finding an exact 
representation of the partition function of such a chain in the 
form of a functional integral over the zero-component re- 

plica field p; (x )  . The Lagrangian of the corresponding field 
theory is of the form 

n 

where for simplicity we have considered a homogeneous 
chain (w = 1 ). For a bulk interaction of the excluded-vol- 
ume type the macromolecule is found in the coiled state and 
the density of its units is low. Using the expansion ( lo),  we 
find that the thermodynamic fluctuations of such a chain are 
described by a p theory of the zero-component replica field 
pi (Ref. 1 ) . In the presence of attraction the chain can be 
found in a globular state.9 The Lagrangian ( 15) is symmet- 
ric with respect to rotations in isotopic replica space. At the 
point of the coil-globule transition this symmetry is spontan- 
eously broken: 

n 

i = l  

where e; is a unit vector. In neglect of fluctuations of the 
replica fields, the equations for the function p (x) are equiva- 
lent to the equations of Lifshitz" (see also Ref. 9) for the 
description of the globular state of the chain. The effective- 
action enables one to evaluate the fluctuation 
corrections to these equations and to find the correlation 
functions of such a chain. 

4. SELF-CONSISTENT FIELD 

Let us consider a gel molecule obtained by equilibrium 
polycondensation of monomeric units RAf ,  for which 
fl = f and fa = 0 for a # 1 (see Fig. 1 ) . Neglecting fluctu- 
ations of the replica fields, pv = pj ,  the maximum of the 
functional To in the dilute solution at h = 0 is reached for the 
solution 
q = P l ( l - p ) ,  q=pu l ( l - p ) ,  u=Ef-' , E=l-p+pu, 

(16) 
which exists only for p >p, = ( f - 1 ) -', with 0 < u < 1. 
Here the parameterp is related to k, z, and z, by the expres- 
sions 

The density of unitspg and the density of bondsp8, of the gel 
macromolecule are found by differentiating the thermody- 
namic potential (14) with respect to the logarithm of the 
activitiesz andz, . They determine the conversionpg and the 
number r of independent loops per unit volume of the gel 
macromolecule: 
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We note that relations ( 16) and ( 18) agree with the rela- 
tions found in Ref. 5 for a system in chemical equilibrium ifp 
andp are identified with the conversion and density of units 
of such a system. By calculating the second variational deri- 
vative of ( 14) with respect to the field h, we find the Fourier 
component of the correlation function of the density of units 
of the gel: 

Here (...), is the correlation function of the density of 
broken-up units of the gel macromolecules (9).  The func- 
tion (q) is determined by the topological structure of the 
polymer network of the gel and is given by (see also Ref. 5) 

Relation (20) can be used to describe the change in the 
behavior of the infinite network of the gel resulting from a 
change in the physical conditions under which it is found. 
For a system with a given molecular-structural distribution 
the correlator (...), is equal to the correlation function of 
test particles-monomers of density pg-placed in the sys- 
tem under study. Since such a correlator is completely deter- 
mined by the partition function of the system in an external 
field h (x) ,  it can be evaluated by the diagram methods devel- 
oped in Ref. 4. Straightforward but awkward m~nipulations 
yield 

Here and below we denote by b ( x )  the complete density of 
units of the gel and sol in a system with a frozen molecular- 
structural distribution. Expression (2  1 ) has the same form 
as in a system in chemical equilibrium with respect to the 
formation and breaking of chemical bonds.5 The only thing 
that changes is the function i ( q ) ,  which describes the bulk 
interaction of the gel units, screened by all the molecules of 
the system: 

where n ,  is the number of molecules of a given type C with 1 
units and m bonds, g'3' is the structure f ~ n c t i o n , ~  and gc is 
the connectivity function of macromolecule C: 

I 

The average in (23) is over all confirmations of the ideal 
macromolecule of type C. The average density of units of the 
system is 

C 

In many-component systems Eqs. (21)-(23) have a 
matrix s t r~c tu re .~  The summation in (22) and (24) is over 
all molecule types Cin the system, including monomers and 
solvent molecules. For the latter we have I = 1 and g, = 1, 

FIG. 3. Gel macromolecule configurations which contribute to the corre- 
lation function of the density of its units. The dashed lines represent the 
volume interaction of the units (see Ref. 4) ,  and the dot-and-dash lines 
show the branches going out into the condensate. 

so that the contribution of the solvent molecules reduces to 
just a renormalization of the density correlation functionx, 
(22) of a system of broken-up units. It was this renormaliza- 
tion that we had in mind in Eq. ( 10). 

To understand the physical meaning of (2 1 ), let us con- 
sider its diagrammatic interpretation. The most surprising 
feature of field theory ( 7 )  beyond the gel point is that even in 
the self-consistent field approximation it incorporates ex- 
cluded-volume effects and the effects of loop formation in 
the gel macromolecule. The loops are constituents of the so- 
called condensate. As in the case of Bose condensation, the 
condensate is described completely by the macroscopic 
characteristics of the gel, such as the density of its units and 
bonds. Two arbitrary units i, j of the giant gel macromole- 
cule can be linked together both directly (see Fig. 3a) and 
also only through the condensate (Fig. 3b). In addition, the 
correlations in the position of these units are due to the inter- 
action between the monomeric units of the gel (see Fig. 3b). 
This interaction is screened both by the finite molecules of 
the sol (Fig. 4b) and by the infinite network of the gel (Fig. 
4c). The resulting screened interaction is calculated in (22), 
and it can also be obtained by summing diagrams of the type 
in Fig. 4. Accordingly, the first term on the right-hand side 
of (21) takes into account the correlations shown in Fig. 3a, 
and the second term those in Fig. 3b. Allowance for fluctu- 
ations of the replica fields is equivalent to summing the loop 
diagrams that do not become part of the condensate. 

We note that correlation function (21) has features 
both at the gel point and also on the spinodal. For a more 
detailed description of the system we must assign it a molec- 
ular-structural distribution {n,). For a system in which the 
molecular-structural distribution is determined by the con- 
dition of chemical equilibrium, result (21 ) goes over to the 
result of Ref. 5. We shall henceforth consider only a system 
consisting of a single gel macromolecule, for which nc = 0. 

5. DILUTE SOLUTION 

For 1 -p(l,  correlator (21), (22) with n ,  = 0 goes 
over to the correlation function of the total density of units of 
a system in chemical eq~i l ib r ium,~ .~  since forp-1 it consists 
of a single gel macromolecule. When r = 1 -p/p, is small, 
Irj < 1 the density of monomeric units of the gel is low: 
p +. Since we will be interested in scales which are large 
compared to the bond dimension a, let us assume 
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FIG. 4. Diagrams which determine the screening of the bulk 
interaction of the gel units in the self-consistent field approxima- 

t.. tion. 

A-' ( q )  =l+a2q2, pg=2fp l~ l  (f-2)-'.  (25) 

Substituting (25) into (21 ) and (22), we find for q#O 

where we have also assumed that the characteristic radius r, 
of the bulk interaction is small compared to the correlation 
length of the system. 

~,=ai2'" (.to 1 T 1 )'I1. (27) 

The denominator of (26) does not contain a q2 term, 
unlike the correlation function of the individual sol mole- 
cules (see Ref. 5 ) ,  which is found by differentiating the first 
term in the square brackets in ( 13) with respect to the field 
h.  Accordingly, in contrast to the case of a system in chemi- 
cal equilibrium,5 the quantity 6, in (27), even for (r(-0, is 
determined by the parameter B of the volume interactions. 
Let us discuss this anomalous behavior of the correlation 
length 6 , .  

The chemical bonds give rise to an effective attaction of 
the monomeric units,' and in the absence of volume interac- 
tions the gel is thermodynamically un~table .~ Excluded-vol- 
ume effects keep the polymer network of the gel from col- 
lapsing. The correlation length 6,  of such a network is 
determined by the condition of statistical equilibrium of the 
chemical attraction and mutual repulsion of the monomeric 
units of the gel, which gives rise to anomalous behavior of 6, 
(27) and of the correlation function of the gel (26). 

Correlator (26) permits estimation of the dimensions 
of the fluctuation region 

The Ginzburg number r = T, is determined from the condi- 
tion x,  - 1. It follows from (28) that the upper critical di- 
mensionality for gelation in a dilute solution is d,  = 8, in 
accordance with the fact that the critical behavior of the 
system in the fluctuation region 171 3: r, is the same as for 
"lattice animals" (Ref. 12). For T, = 0 the system loses 
thermodynamic stability, and for this transition (if it exists) 
the upper critical dimensionality is d,  = 4. 

For space of d = 3 dimensions we find from (26) for 
I~ l .g l  

The correlation length 6,  is given in (27); it goes to infinity 
both at the gel point T = 0 and on the spinodal T~ = 0. The 
parameter ?t3 (28), 

~ C Q  = 
(1-2) ' . 1 -5/,T;11a 

2'llnf ( f  -1 )  pa" , 

contains a small numerical factor (5.10M3 for f = 3). There- 
fore, the dimension rG of the fluctuation region for the gel 
macromolecule obtained by equilibrium polycondensation 
of a concentrated solution of monomeric units ( pa3 2 1 and 
pB( T) - 1 ) is small. For I T )  ST, the self-consistent field ap- 
proximation can be used for the statistical description of 
such a macromolecule practically right up to the transition 
point. 

The B point is determined from the vanishing of the 
second virial coefficient B(T)  = 0. Simple calculations 
show that under 0 conditions the upper critical dimensional- 
ity is reduced to six (see also Ref. 13). At the 0 point one 
must take three-body interactions into account, and the gel 
is thermodynamically stable only for 

To understand the importance of cyclization of the gel 
molecule, let us consider a giant branched molecule obtained 
by the polycondensation of monomeric units RBAj- ' (see 
Fig. 5);  here chemical bonds can form only between groups 
A and B. This macromolecule has the feature that it has only 
one loop. As is shown in Ref. 8, a system in chemical equilib- 
rium contains only finite sol macromolecules, and a mole- 
cule of macroscopic dimensions can arise only in a dilute 
solution. For this case 

f ~ = l ,  f ~ = f -  1, k a A = k ~ ~ = o ,  ~ A B = ~ B A = ~  

and beyond the transition point there is a spontaneous 
breaking of the replica symmetry for the field p A j .  In the 
self-consistent field approximation we find for kp 4 1 

<6pt6p- ,8>= [ 2 ~  ( T )  ( f - I )  pg]-'. 

Thus the anomalous behavior ofcorrelator (26) is not due to 
the breaking of loops in the gel macromolecule but is deter- 
mined by the bulk interactions of the monomeric units of the 
condensate that keep the giant branched macromolecule 
from collapsing. 

6. CONCLUSION 

We have shown in this paper that the spontaneous 
breaking of the replica symmetry enables one to calculate the 

FIG. 5. Branched macromolecule obtained by polycondensation of mon- 
omeric units RBAZ. 
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correlation functions of giant polymer macromolecules 
found in a system with arbitrary molecular-structural distri- 
butions. Besides the problems considered in this paper, the 
concept of spontaneous symmetry breaking permits descrip- 
tion of the statistical behavior of test macromolecules placed 
in the polymer network of a gel, the behavior of a gel near 
walls, etc. 

Of course the possibilities of the replica method are not 
limited to the polymer model we have used (some of the 
models are reviewed in Refs. 9 and 14). The replica method 
permits one to "dress" the ideal macromolecules or ensem- 
bles of ideal macromolecules in each of the models in a 
"coat" of arbitrary bulk interactions. 

The choice of order parameter for the sol-gel transition 
in a solution of branched polymers in chemical equilibrium 
is discussed in Ref. 5. In a dilute solution the correlators 
(p, (x)pi (x ' ) )  diverge on approach to the gel point for any 
i, j = 1, ... , n, n # 1. Therefore, the order parameter is the n- 
component replica field p, (x )  for n-0. Beyond the gel 
point ( w  = I ) ,  the quantity 

" 

is determined by the density of unreacted functional groups 

p; of the polymer network of the gel. 
I wish to thank S. P. Obukhov for discussing a number 

of the questions considered in this paper. 
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