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Canonical transformation of a model Hamiltonian is used to introduce the "phonoriton" 
elementary excitation, which arises from the restructuring of photon, exciton, and phonon 
excitations of a semiconductor in the presence of a polariton wave. A system of macroscopic 
phonoriton equations that permits analysis of the nonstationary problem is derived and analyzed. 
The conditions under which phonoriton splitting can be observed are indicated. It is shown that 
greatest experimental interest attaches to spectrum restructuring by interaction between the 
exciton component of the initial wave and longitudinal optical phonons. The question of 
supplementary boundary conditions for acoustic phonoriton waves is considered. 

In Ref. 1 we considered the restructuring of polariton 
excitations and of longitudinal acoustic phonon of a semi- 
conductor in the presence of an intense polariton wave k, 
and introduced an elementary excitation, the phonoriton, 
consisting of polariton and acoustic waves. 

The primary purpose of the present paper is to derive 
and analyze macroscopic equations that describe all three 
quantized fields (excitons, photons, and longitudinal phon- 
ons) that interact with the initial coherent polariton wave. 
This system of macroscopic equations, derived for arbitrary 
anisotropic crystals, will allow us to consider, in the general 

of a polariton k mode is most important if the corresponding 
exciton component is large, i.e., the initial polariton wave is 
exciton-like. The reason for the last condition is that it is just 
through the exciton component that the polariton wave in- 
teracts with the various elementary excitations of the medi- 
um. These two conditions, that the initial polariton k wave 
have a small absorption coefficient and that this wave be 
exciton-like, can be satisfied simultaneously in certain cases, 
viz., when the polariton-wave frequency w, is in the range 

case, thinonstationary problem in both the anti-stokes and 
where h, is the exciton-level energy reckoned from the va- the Stokes approximations in the exciton-phonon interac- 
lence band, h,, the longitudinal-transverse polariton split- tion. We shall consider the need for separating the exciton 
ting, y the characteristic reciprocal lifetime of the k exciton, 

and photon components of the polariton excitations in the 
and the energy fin, characterizes the strength of the exciton- analysis of questions connected with the phonoriton restruc- 

turing of spectra. The phonoriton elementary excitations photon interaction. In fact, it is knownz4 that the dispersion 

have in this case three (photon, exciton, and phonon) com- polariton equation takes, in the approximation where the 

ponents. These elementary excitations will be introduced for exciton-photon interaction is the form 

both longitudinal acoustic (LA) and longitudinal optic 
(LO) phonons by a canonical transformation of a model 
Hamiltonian in the approximation in which a coherent po- 
lariton k wave is given. After analyzing the feasibility of ex- 
perimentally observing the phonoriton splitting of the spec- 
tra, we shall show that the most interesting case arises when 
the spectrum is restructured by interaction between the exci- 
ton component of the initial k wave and LO phonons. We 
conclude by considering the question of the supplementary 
boundary conditions for acoustic phonoriton waves. 

We consider first the conditions under which an initial 
polariton wave of momentum k of finite amplitude can be 
associated with the concept of macroscopic filling of a k 
mode. The rigorous notion of macroscopic occupation of a 
polariton mode can be introduced, for a physically plausible 
case of passage of an electromagnetic wave of frequency w, 
set by an external source and close to the frequency of the 
exciton transition, only if the exciton absorption coefficient 
is small at the specified frequency, when the wave vector of 
the initial polariton wave satisfies the condition Re k)Im k. 
On the other hand, the concept of macroscopic occupation 

The variables 4h0' and w r  stand here for the respective fre- 
quencies of the photon and exciton terms in the absence of 
exciton-photon interaction, Mx is the translational mass of 
the exciton, and E~ is the crystal background dielectric con- 
stant of the exciton transition. It can be easily seen5 from an 
analysis of the dispersion equation (2)  that in the considered 
case of polariton-like propagation of the initial electromag- 
netic wave (a, > y) the characteristic scale of variation of 
the dielectric-constant component connected with the exci- 
ton resonance is determined by the parameter o,, . The spec- 
tal width of the absorption line corresponding to the exciton 
resonance is then determined by the values of o,, and y. For 
exciton transitions with clearly pronounced polariton prop- 
erties (w,, 2 y) the conditions Re k)Im k, defined by the 
right-hand side of inequality ( 1 ), will certainly be met at 
w, - w , ) ~ , , ,  SO that the lower bound of the frequency re- 
gion ( 1 )  can be taken in this case to be the value of the 
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longitudinal-transverse splitting. The intensity of the exci- 
ton component of a polariton wave having the frequency w, 
of the lower polariton branch is characterized, in turn, by a 
weighting factor 

i.e., the characteristic frequency scale of the exciton-compo- 
nent is determined by the strength R, of the exciton-photon 
interaction; this strength is connected with the oscillator 
strength 4np of the exciton transition and with the param- 
eter w,, by the familiar relations3.' 

It can be seen from the last relation that the inequality 
n, Sw,, 2 y holds for typical direct-gap semiconductors, and 
it is this which justifies the introduction of the frequency 
range ( 1 ) . For the semiconductor CdS, for example, the cor- 
responding values are R, -- 100 meV and w,, --2 meV (Ref. 
6).  The condition ( 1 ), which we regard hereafter as satis- 
fied, means in fact that the frequency a, of the initial polari- 
ton k wave should belong to the low-frequency "transparen- 
cy region" near the exciton-absorption line. The wave vector 
k of the initial polariton wave is then connected with its fre- 
quency w, by the polariton dispersion equation (2).  

It appears that the following can be stated in general. In 
the sense indicated earlier,' the initial polariton k wave can 
be related to a nonequilibrium condensate of k excitons hav- 
ing a restructured polariton spectrum that constitutes ele- 
mentary Bose-like excitations of the crystal. Actually, an 
electromagnetic wave from an external source can be used to 
produce a nonequilibrium Bose condensate of elementary 
excitations of the medium (excitons), generally speaking, in 
an arbitrary k mode determined by the frequency interval 
( 1 ). The corresponding density No of the k-mode Bose-con- 
densate excitons is given by 

where V ,  is the group velocity of the initial polariton wave 
and I is flux of the external electromagnetic wave that pene- 
trates into the crystal through its boundary. 

The Hamiltonian that describes the system of interact- 
ing excitons, photons, and longitudinal phonons in a direct- 
gap semiconductor can be represented in the form 

phol 
H = zfi { a p e * b p + b p + o p  n p + n p + ~ , - ~ c , ~ ~ c p - ~  

Here (4h0',ap ), (w;,bp ) and (ap - , ,cp - , ) are respec- 
tively the frequency and annihilation operators of the pho- 
ton, exciton, and longitudinal-phonon excitations of the se- 
miconductor. As already indicated, R, is a measure of the 

exciton-phonon interaction strength, and the matrix ele- 
ment M ( p  - 1) determines the binding energy of excitons 
with longitudinal phonons. This Hamiltonian was written 
assuming that the exciton-phonon interaction is resonant, 
and can be substantially simplified when account is taken of 
the presence of a macroscopically filled polariton k mode. In 
the present case of a coherent polariton k wave of given am- 
plitude, it is valid to make in the Hamiltonian (6)  the substi- 
tution 

where the c-numbers a, ( t )  are determined by the following 
relation with the amplitude Po(t)  of the exciton polarization 
that is connected with the initial polariton wave: 

v 
a, ( t )  = 5 ( b k )  d3p = [-@-]"' Po ( t )  

2fi a, p 

The substitution probosed is tantamount to retaining in 
the Hamiltonian (6)  only those terms of the part that de- 
scribes the exciton-phonon interaction which characterize 
the interaction of the phonon system with the excitons of the 
macroscopically filled k mode. This substitution is permissi- 
ble, roughly speaking, because one macroscopically occu- 
pied exciton k mode influences the dynamic properties and 
the kinetic behavior of the crystal excitons, photons, and 
longitudinal phonons to the same degree, in the sense of pro- 
portionality to the crystal volume V,  as all other exciton 
modes. The influence of the latter is determined primarily by 
population of the modes p#k  by excitons, which we shall 
call scattered; this influence can be quite weak. Eliminating 
the explicit time dependence from the resultant Hamiltonian 
by using the canonical transformation 

P 

which shifts the photon and exciton frequencies by w,, we 
obtain the following model phonoriton Hamiltonian: 

The terms Hs and HAS of (9)  describe respectively the 
Stokes and anti-Stokes interactions of the excitons between 
the macroscopically occupied k mode and the longitudinal 
phonons. The variables a, = a, ( t  = 0)  are assumed to be 
real and can always be made so by suitable choice of the 
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phol 
origin of time. The model phonoriton Hamiltonian (9)  is a v1=ape*-ak-E, V ~ = Q ~ - ~ - E ,  v3=ap -ak-E, 
Hermitian quadratic form in the operators a, ,b, ,c, - , and C7. phat 

can be diagonalired. The diagonalization introduces phon- v~=-a2k-pCak-E7 v5=-R~-k-E1 v8=-azk-p+ak-E7 

orition annihilation operators (2, ,hp ,1., - , , that are connect- and the relation between Q and the exciton density in the 
ed in the general case with the old operators by the relation macroscopically occupied k mode is 

where the normalization of the AV matrix elements is subject 
to the natural requirements that the commutation rules be 
preserved for the new phonoriton operators. With allowance 
for this requirement, the A,, matrix elements and the general 
dispersion equation are obtained by considering six condi- 
tions of like form, of which the first is 

1 
-[a",, Hk]= EGp, 
f i  

bP 

c p - k  

+ 
bzk -p  
+ 

C-p+k 
t 

a2k-P 

where the variable E determines the phonoriton frequency. 
The dispersion equation in the variable E, which corre- 
sponds to the general form of the Hamiltonian (9),  is 

1 

Of greatest interest to us, however, is the anti-Stokes- 
interaction frequency range corresponding to the phonori- 
tonic spectrum restructuring near the frequency E = np -, . 
In this case we can neglect in the Hamiltonian (9)  the term 
H, that describes the exciton-phonon Stokes interaction. 
This simplifies greatly the phonoritonic transformation 
( 11 ), with the new phonoriton operators (2, ,h, and Z, -, 
now determined by linear combinations only of the annihila- 
tion operators a, ,bp and c, - , . Moreover, in this approxi- 
mation, which is resonant in the anti-Stokes interaction, we 
can diagonalize using the explicit canonical transformation 

[ (~,v~-l/~Qe2) v2vs+QZ (v2-v5) vs] (~k~a-~/rQ?) which is determined by three sets of real parameters 8, ,p, 

(12) 
and y, . The matrix Aij that relates the set of annihilation 

-Q2v6 (v2-vs) ( v ~ v ~ - ' I ~ Q ~ ~ )  SO, 
operators b, ,cp -, ,ap to the new phonoriton annihilation op- 

where the variables vi are defined as , erators 6, ,E, - , ,rip takes in this case the abbreviated form 

The corresponding phonoriton dispersion equation, 
which can also be obtained in this approximation from the 
more general dispersion equation ( 12), is cubic in the phon- 
oriton frequency E: 

phol '' ) v 2 - ~ 2 ~ ,  = (apex-ak-E) (ap -ak-E) (v,v3 - , 
whose real roots determine three phonoriton dispersion 
branches. We note that within the framework of the present 
model Hamiltonian (9)  the diagonalization procedure pro- 
posed permits an exact account to be taken also of the exci- 
ton-photon and exciton-phonon interaction. The new ele- 
mentary excitations can be correctly introduced, generally 
speaking, just in the approximation that is resonant in the 
anti Stokes approximation. This statement is valid because 
the roots of ( 16) are real, whereas the analysis of the general 
case entails consideration of the dispersion equation ( 12), 

I 
- -- 

which can have complex roots. Complex roots are obtained, 
for example, in the analysis of the approximation 
E=: - a,-, that is resonant with respect to the Stokes in- 
teraction. This result has a clear physical meaning and is due 
to the instability of the Stokes polariton p wave and of the 
corresponding scattering p - k wave when their amplitude 
are increased by decay of the initial polariton k wave. 

It follows from these results that phonoriton elemen- 
tary excitations have exciton, phonon, and photon compo- 
nents whose respective contributions x, , y, , and z, to the 
intensities of the phonoriton excitations are given by 
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where the subscript i = 1,2,3 labels the dispersion branches 
of the phonoriton excitations. It appears that in the most 
frequently encountered case (n, )Q, where the exciton-pho- 
ton interaction is stronger than the exciton-phonon interac- 
tion, the phonoriton dispersion equation ( 16) can be made 
even simpler: 

This equation, roughly speaking, describes the restructuring 
of the polariton and phonon spectra and conforms to the 
analysis of Ref. 1. 

Depending on whether the anti-Stokes interaction in- 
vestigated is between optic or acoustic longitudinal phon- 
ons, we can introduce respectively optic or acoustic phonori- 
ton excitations. In the former case the squared matrix 
element of the exciton-phonon Frohlich interaction for po- 
lar direct-gap semiconductors takes the f ~ r m ~ . ~  

where (no is the optic-phonon frequency, me and m, are the 
average masses of the electron and hole constituting the exci- 
ton, p is the exciton reduced mass, a, is the exciton Bohr 
radius, and E,, and E ,  are respectively the static and high- 
frequency dielectric constants of the crystal for the optical 
phonon. In the latter case, of acoustic phonoriton excita- 
tions, the squared exciton-phonon interaction matrix ele- 
ment is connected with the crystal strain potential D by the 
r e l a t i ~ n ~ * ~ ~ ~  

wherep is the crystal density and u is the average velocity of 
the longitudinal acoustic waves in the crystal. 

Of greatest interest, as mentioned, is the case when the 
frequency w, of the initial polariton k wave and the frequen- 
cy w, + (n, -, of the corresponding anti-Stokes component 
are in the frequency region (1)  of the lower polariton 
branch. The oscillator strength of the phonoriton resonance 
induced at the anti-Stokes frequency w, + (n, -, is defined 
in accord with ( 16) as 

and the phonon, exciton, and photon spectra restructuring 
corresponding to this resonance produces a characteristic 
gap whose value A(p - k)  depends on the scattering angle 
and on the intensity of the initial polariton k wave. In accord 
with the forms of the matrix elements (19) and (20), the 
spectral gap A (p - k)  for both acoustic and optical phonori- 
ton excitation is a maximum in the "backscattering" geome- 
try. Figure 1 shows, in particular, the optic phonoriton dis- 
persion curves for the CdS crystal (the abscissa axis 
corresponds to scattering along the vector k, w, = 2.74 eV, 
the flux density of the external electromagnetic wave that 
eneters the crystal through its boundary is I = 41 G W/cm2). 

The complication in this approximation which results 
from the possibility that the p exciton may not be scattered 
into the initial macroscopically occupied k mode, and also 

from allowing for the finite lifetime of the longitudinal phon- 
ons, introduces the parameters y ( ~ )  and Gh (p  - k) ,  which 
are the respective reciprocal lifetimes of the scattered p exci- 
ton and of the scattering p - k phonon. The conditions for 
the validity of introducing the phonoriton elementary exci- 
tations, and for the possibility of observing experimentally 
the phonoriton restructuring of the spectra, are 

where yp,, (k )  is the spectral width of the initial polariton 
wave or of the corresponding pulse. Conditions (22a)- 
(22c) have the following physical meaning. The first condi- 
tion is tantamount to requiring that the frequencies of the 
initial polariton k wave and of its anti-Stokes component be 
located in the range ( 1 ) . The second condition (22b) is simi- 
lar to the condition for the observation of polariton restruc- 
turing of the spectra and reduces, generally speaking, to the 
requirement that the frequencies of the phonoriton oscilla- 
tions exceed the reciprocal lifetimes of the phonoriton exci- 
tations. The third condition has a clear physical meaning. 
Note that a high initial-polariton k-wave intensity was used 
in Fig. 1 solely to be able to represent in a single scale the 
entire phonoritron spectrum-restructuring range. In parti- 
cular, to obtain experimentally an exciton component den- 
sity No = 1017 cmP3 in an initial polariton k wave in the 
semiconductor CdS, the maximum phonoriton gap can 
reach Am"" ~ 0 . 3  meV for optical phonoritons and 
Am"" ~0.02-0.03 meV for, acoustic ones. For the acoustic 
phonoriton we have for CdS Gh (p  - k )  < y(p)  5 0.01 meV 
at T = 4.2 K (Ref. 9) and the basic conditions (22b) can be 
easily met, but the phonoriton gap itself is also small in this 
case. For optical phonoritons, in turn, we have for CdS 

FIG. 1.  Phonoriton dispersion curves for CdS: w ,  = 2.52eV, m, = 0.2 
m,, in, = 1.35 m,, a, = 27 A, E, = 8.87, E ,  = 5.10, no = 38 meV 
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y(p)  < $,, ( p  - k )  ~ 0 . 1  meV (Refs. 10-12), condition 
(22b) is likewise easy to satisfy, but the phonoriton gap is 
large here. Naturally, the frequency spread of the absorp- 
tion-line connected with the induced phonoriton resonance 
can exceed substantially the corresponding phonoriton gap 
A(p - k) .  Note that in this approach all the dynamic phon- 
oritonic phenomena are independent of the population of the 
considered phonon modes. 

We have analyzed so far a simplified case with a pre- 
ferred direction of the dipole moment d of the exciton transi- 
tion. There was therefore no need to consider the change of 
the polarization of the initial polariton k wave in the course 
of Stokes or anti-Stokes interaction. We examine now the 
macroscopic phonoriton equations that enable us not only to 
investigate the changes of the spectra, but also to analyze the 
evolution in space and time of the phonon, exciton, and pho- 
ton excitation of a semiconductor in the presence of a speci- 
fied coherent polariton k wave. 

To make the approach general, we derive the necessary 
system of macroscopic equations for a sufficiently arbitrary 
anisotropic direct-gap semiconductor. That is to say, we in- 
troduce a system of principal opt i~al  axes, in terms of which 
the oscillator-strength tensor 4743 is diagonal with compo- 
%ents 4n-Pi, where i =  1,2,3. The symmetric tensor 
M(p  - k) of the exciton-phonon interaction matrix ele- 
ments can then be represented in the form i M ( p  - k) ,  
where the e l e m e n t s ~ ~  of the tensor 2 are determined by the 
angle between the linear-polarization. vector of the initial 
polariton k wave and the scattering d i re~t ion .~  Analysis of a 
model Hamiltonian which generalizes the Hamiltonian (9)  
to include the anisotropic case enables us to obtain for the 
case in question the following system of phonoriton equa- 
tions in terms of the operators of the vector potential A(r,t), 
the polarization vector P(r,t) ,  and the scalar phonon poten- 
tial @(r,t):  

E g  a2 EB"' d 
rot rot A f - - A=4n --- - . 2 at2 c at P, (23a) 

3 
' I  r 

, [ P O  0 ( - ) (A) X L ~ ]  Am, (23b) 
1 =1 PI 

3 X.. 
x [ pai cos (wkt - kr) -- " ] + A t ) .  (23c) 

i. i= l  (PiPjfl* . . 
A= (A,, Az, A,) ; P= (Pi, Pz, Pa) ; 

The upper and lower operators in the curly brackets 
pertain here to scattering by longitudinal acoustic and optic 
phonons, respectively. Generalization of the system of equa- 
tions to include the case of propagation of a given coherent 
polariton pulse entails replacement of Po cos (w, t - k.r) by 
a specified function P,(k,r,t), that defines the polarization 
vector of the initial polariton pulse. This system of differen- 
tial equations was obtained in the Coulomb gauge 

where E is the electric-field operator and b,,, is the polariton 
dielectric tensor and is diagonal with components 

The M y  in (23b) and (25) are the translational masses 
of the exciton along the principal axes. In addition, the phase 
of the linearly polarized initial polariton k wave was chosen 
to be zero, so that the corresponding components of the po- 
larization vector Po are real. 

Let us dwell on the physical meaning of the equations 
derived. The first, (23a), is a Maxwell wave equation having 
in the right-hand side a source due to the exciton polariza- 
tion. The second vector equation (23b) describes the evolu- 
tion of the exciton-polarization vector P (r, t) .  In accordance 
with the form of the right-hand side of this equation, this 
evolution is governed both by the temporal variation of the 
vector-potential operator A(r,t) and by the presence of an 
initial polariton k wave in the semiconductor. The latter 
mechanism is connected with the possibility of creation or 
annihilation of an the exciton-polarization P(r , t )  wave 
through scattering of the exciton component of the polariton 
k wave by longitudinal optic or acoustic phonons. An alter- 
nate form of this equation is a Schrodinger equation for the 
exciton wave function that describes the translational mo- 
tion of the exciton as a whole. The last equation (23c) of the 
system is the phonon wave equation in terms of the operator 
of the scalar phonon potential @(r,t), which defines the cor- 
responding operator of the longitudinal phonon displace- 
ment vector u( r )  = V@(r,t). The first term in the right- 
hand side of this equation describes the source of the 
longitudinal phonon waves; this source can be called coher- 
ent and is connected with the change of the phonon-wave 
amplitude in scattering of excitons from the initial polariton 
k wave. The second term Af(t) in the right-hand side of 
(23c) is the thermal source of longitudinal phonons and its 
strength is determined by the corresponding phonon occu- 
pation numbers. For longitudinal optical phonons, in parti- 
cular, this source can be altogether neglected. 

The derived system of macroscopic equations is valid 
for the description of both Stokes and anti-Stokes scattering 
of the initial polariton k wave. If the coupling of the polariza- 
tion P(r,t)  wave and the polariton k wave by the phonons is 
neglected, an assumption formally equivalent to the case 
M(p  - k)  = 0, Eqs. (13a) and (23b) form a closed system 
of linear polariton  equation^'.^ in terms of A(r,t) and P (r,t) . 

It is easy to derive from the system of macroscopic 
phonoriton equations an expression for the corresponding 
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symmetric dielectric tensor of a semiconductor in the pres- 
ence of an intense polariton k wave: 

This expression was derived for the case when one can ne- 
glect in the system (23) the exciton and phonon damping 
and also the action of the thermal source Af ( t ) .  In analogy 
with ( 13), we have here 

3 

j= 1 

where the c-numbers a;, describe the macroscopic occupa- 
tion of the initial k mode with coherent excitons polarized 
along thej axis. We note that the general form of the phonor- 
iton dispersion equation that corresponds to the system (23) 
and to the dielectric tensor ( 16) is a rather complicated alge- 
braic equation of seventh order even for the case of the reso- 
nant anti-Stokes interaction approximation. The simpler 
case described by Eq. (16) with the substitution 
E = R - w, can apparently occur only in certain special 
scattering geometries. 

We note one more interesting problem encountered in 
the analysis of the macroscopic equations (23) for the case 
of scattering by longitudinal acoustic phonons, viz., two 
phonoriton waves having the same frequency can corre- 
spond to an external acoustic or polariton wave of a specified 
frequency in the range in which the phonoriton restructur- 
ing of the lower dispersion polariton wave and of the acous- 
tic wave takes place. This raises the problem of specifying 
additional boundary conditions, a problem that has a direct 
bearing on the phonon equation (23c), in contrast to the 
analogous problem when account is taken of spatial disper- 
sion for the polariton case. If the external acoustic or polari- 
ton wave is coherent (as is the electromagnetic wave that 
penetrates through the crystal boundary ), its propagation in 
that region of the superconductor which is excited by the 
initial intense polariton k wave is described by the system of 
coherent equations (23). This system expressed in terms of 
the c-numbers A(r,t),P(r,t) and @(r,t)  describes only co- 
herent phonoriton excitations and does not contain the ther- 
mal source Af ( t )  in the right-hand side of (23c), at all since 
(Af(t)) = 0. In this case the additional phonon boundary 
conditions apparently take the form 

VcD ( r t )  I s=uo ( t )  , (28) 

where u,(t) is a given function that describes the coherent 
oscillations on the boundary S. In the particular case when 
the crystal boundary coincides with the region where the 
initial polariton k wave is excited, the corresponding func- 
tion satisfies u,(t) = 0, meaning that there are no coherent 
phonon oscillations on the crystal boundary. 

From an analysis of the form of the macroscopic phon- 
oriton equations (23) it can be concluded that the premise of 
macroscopic occupation of the polariton k mode is manifest- 

ed in these equations only implicitly, namely, via the speci- 
fied exciton-polarization amplitude P,, that is connected 
with the initial polariton k wave. Moreover, to a certain de- 
gree these equations have the customary nonlinear-optics 
form. In many problems, however, it is just the macroscopic 
occupation of the polariton k mode which plays an exclusive 
role. In particular, the very description of the propagation of 
the polariton k wave calls for a special approach.' One en- 
counters here, for example, a question such as the preserva- 
tion of the degree of coherence of the initial polariton k wave 
in real kinetic scattering of k excitons from a macroscopical- 
ly occupied mode, followed by a probable return of these 
scattered exciton to the k mode. A nontrivial aspect of prob- 
lems of this type is that the excitons of the macroscopically 
occupied k mode are not in kinetic equilibrium with the sys- 
tem of scattered P excitons, a situation that requires a sepa- 
rate analysis of how the k-exciton Bose condensate evolves. 
The last problem does not arise at all when the Belyaev dia- 
grammatic technique13 is used to describe an equilibrium 
Bose-particle system with condensate in the k = 0 mode. 

We note in conclusion that a spectrum restructuring 
similar to that considered above can occur under much more 
general assumption: any anti-Stokes three-particle scatter- 
ing of a sufficiently strong k wave by a translationally sym- 
metric crystalline excitation can be accompanied by such 
restructuring. In particular, a similar effect results from 
three-particle interaction between the exciton component of 
a polariton wave and biexcitons in direct-gap semiconduc- 
tors. 1 4 9 1 5  

The author is sincerely grateful to L. V. Keldysh for a 
discussion of a number of questions touched upon in this 
paper. 
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