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Coupled oscillations of a packet of parametric spin waves (PSW) and of the elastic subsystem 
of a crystal are investigated. The frequencies and damping rates of these oscillations are 
determined. It is shown that the coupled oscillations can be unstable, as confirmed by 
experiment. 

1. Parametric microwave pumping produces in a mag- 
net a narrow-frequency-band packet of random-phase para- 
metric spin waves (PSW) (see, e.g., the review by Zakharov 
et al.' ) . Smirnov2 has recently observed in experiment the 
acoustic oscillations induced by parametric excitation of 
spin waves in an antiferromagnet. The oscillations were ob- 
served at the frequencies f l z ~ c / L  z2a(2-3)  lo6 s-' of the 
lower acoustic modes of the sample (c is the speed of sound 
and L the sample dimension). The frequency variation Afl 
of such oscillations was below 100 Hz. The lifetime T-' of 
the acoustic modes in the absence of pumping was 
1.5 x 10W5 s, and the lifetime of the PSW was y-' z 10W6 s. 
The excited acoustic oscillations were thus highly coherent. 
We report here an investigation of the mechanism by which 
coherent acoustic oscillations are generated, and show that 
they result from instability of coupled collective oscillations 
of PSW and sound. 

2. The Hamiltonian of the magnetoelastic subsystem of 
a magnet can be written in the form 

Here 

is the Hamiltonian of the free elastic oscillations, b is the 
amplitude of a sound wave with wave vector x and polariza- 
tion a, and RE = c, x is the phonon-dispersion law. For am- 
plitudes which are not too far above the critical level, the 
spin-system Hamiltonian need only include terms that are 
diagonal in PSW pairs (S-theory approximation) ': 

1 + T.k~ak'akar,*ak~ dk dk' +r 1 Skkvak*a-k*akva-k dk dk'. 
2 

(3  
Here a, is the complex amplitude of the spin waves, w, their 
spectrum, h the microwave-pump amplitude, w, its frequen- 
cy, V, the coefficient of the coupling between the PSW and 
pump, and 

where T,,, ,>, ,,, k4 is the amplitude of the four-magnon inter- 
action. At low elastic-oscillation amplitude, the magneto- 

elastic-interaction Hamiltonian is 

The value of VEkrx is given in Refs. 3 and 4 for ferromagnets 
and antiferromagnets, respectively. Note that the subdivi- 
sion of the Hamiltonian ( 1 ) into magnetic, elastic, and mag- 
netoelastic components is quite arbitrary, since we have 
omitted from the Hamiltonian component the magnetoelas- 
tic coupling which is quadratic in the amplitudes a, and b E. 
As a result, the respective frequencies fl; and w, of the 
acoustic and magnon modes, and also the matrix elements 
T,,, and S,,, , contain the magnetoelastic-interaction con- 
stants. Nonetheless, under the experimental conditions of 
Ref. 2 the values of T,,, and S,,, are close to those calculated 
in Ref. 5 with magnetostriction neglected. 

3. The equations of motion for the PSW amplitudes, 
with allowance for relaxation, take the form1 

It follows therefore that in the absence of acoustic oscilla- 
tions (when b = 0), PSW pairs (k  and - k)  appear on the 
surface w, = w, /2 when I h V, I > y, . The overall phase shift 
of the waves with opposite momenta is then closely related to 
that of the pump, but the phase difference is random. As a 
result, a stationary uniform distribution of the PSW is pro- 
duced in the sample, except for a small region near the 
boundary whose thickness is approximately equal to the 
mean free path. The total number of the PSWs is1 

where S is the value of S,,, averaged over the PSW distribu- 
tion. 

4. The equations of motion for the acoustic-oscillation 
amplitudes, with allowance for magnetostriction and damp- 
ing, are 

+ i J VZfikak'b (k-k'-x) dl; dkf=0. (8) 

Since we are considering specific acoustic oscillations such 
that b E = (b  Z), while the PSW phases are random, the 
sound amplitudes are determined by the oscillations of the 
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correlation function n, ( x )  = (aka,*) .  In the spatially uni- 
form case we have n,  ( x )  = n,  S(x) .  By virtue of Adler's 
theorem, however, V,,, = 0, so that the acoustic oscillations 
are connected with the spatially uniform perturbations of 
the correlators: 

nk=(ak*ak),  ~ k = ( a k a - ~ ) .  

We confine ourselves to the case of small sound amplitudes 
and weak spatial modulation of the PSW distribution. We 
introduce for this purpose, following Ref. 6,  small perturba- 
tions of the correlation functions: 

fir(%) = (ak+xako') ,  fir+ ( x )  = ( a - k o a - k - . ) ,  

(9)  
ek  ( x )  = (ak+.a-ko) ,  ~ k +  ( x )  = ( a k o ' a : k - , ) ,  

where a: are the amplitudes of PSW with a distribution that 
is uniform on the average, and a, + , are small inhomogen- 
eous corrections. We get therefore from ( 6 ) ,  (8),  and (9) 

where 

Nk ( x )  =fir ( x )  +Zk+ ( x )  , Ek ( x )  = f i k  ( x )  -f ik+ ( X I ,  
F k a  ( x )  = ~ ~ k ~ b , " + v ~ ~ ~ b - ~ " ,  (11) 

We confine ourselves below to the most interesting case, 
that of an antiferromagnet, in which the quantities a,, V ,  , 
T,, , S,,, and the correlators n,  and a, are isotropic. We 
assume also the sound-wave vector and the spatial modula- 
tion tl. of the PSW to be small, i.e., 

The latter means that only the zeroth and first spherical har- 
monics with respect to the directions of the wave vector k 
take part in the PSW oscillations. In this approximation we 
get from ( 10) the dispersion equation 

Note that we can leave out of the expressions for the 

matrix elements T,,, and S,,, in ( 10) and ( 13) corrections 
that are second order in the interaction with the elastic oscil- 
lations, which are proportional to I Vkk,K 12, slnce we take 
explicitly into account the PSW interaction via Eqs. (8)  and 
(10). 

5. It is easiest to investigate the case when the dispersion 
of the PSW can be completely neglected by putting 
g, =lo = 0, and the damping of the magnons and of the 
sound can also be ignored. In addition, we take into account 
the interaction of the collective oscillations of the PSW with 
acoustic oscillations of one polarization, assuming sound 
frequencies of different polarizations to differ greatly from 
the coupled-oscillations frequency n ( x  ) . As a result we get 
from (13) 

P L 2 ( x ) =  ' / 2 { ( 5 1 , ' + Q , l )  * [ ( Q A 2 - Q 0 2 ) '  + 32x1 V k r .  1' N2]"') ,  
(14) 

where no = 2 [S(2T + S) ] ' 1 2 ~  is the frequency of the ho- 
mogeneous collective PSW oscillations.' In easy-plane anti- 
ferromagnets the matrix element S is nega t i~e ,~  so that the 
coupled oscillations of the PSW and of the elastic subsystem 
are unstable. Note that collective oscillations interacting 
with sound were treated in this approximation in Ref. 7, but 
there the transition to the normal modes of the collective 
oscillations is made without the appropriate transformztion 
in the Hamiltonian H,,, , and the result is therefore incor- 
rect. 

If allowance is made for the damping of the spin waves 
and of the sound, the coupled oscillations ( 14) become un- 
stable when the number N of the PSW exceeds the threshold 
value N,, (x ) .  The minimum value of N,, is reached at reso- 
nance when flo = a, = cx: 

The interaction of collective oscillations with sound is 
significant also far from resonance. In this case it follows 
from ( 13 ) that 

In the absence of magnetoelastic interaction, oscillations fre- 
quency R,  ( x )  are pure acoustic, and those with frequency 
R,(x) are PSW collective oscillations. The damping T, of 
long-wave sound is as a rule small compared with the PSW 
damping y, , so that at negative S the damping of the acous- 
tic mode a, ( x )  can become negative, which implies instabil- 
ity. The threshold of this instability is reached at some num- 
ber N,, * of the PSW 

6. The experiments in Ref. 2 revealed excitation of an 
acoustic mode in the sample when a certain pump power was 
reached. Since the sample size was finite, the frequency a, 
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of the acoustic oscillations was substantially higher than the 
frequency fl, of the collective ones. The sound-oscillation 
excitation threshold is determined in this case by Eq. (17) 
and is a minimum for the acoustic mode having the lowest 
frequency (x z n - / L ) .  An S-theory estimate of the pump am- 
plitude h *, at which the critical PSW number given by (17) 
is reached, yields for the experimental data of Ref. 2 

where h, is the threshold amplitude and Ih, V I = y. 
The experimental value of the ratio (18) is ( h  */ 

h, ),,, = 7 to 10. Since the values of / Vkk, I, IS I, and the 
damping y, are not known very accurately, the results of the 
theory and experiment should be regarded as in satisfactory 
agreement. 

It must be noted that sound excitation considered here 
can be produced by an alternate mechanism, viz., kinetic 
instability (see Refs. 8 and 9),  meaning instability to excita- 
tion of oscillations having random phases. Kinetic instabil- 
ity, however, cannot explain the experimental results of Ref. 
2. Indeed, even if the kinetic-instability threshold is lower 
than ( 17), evolution of this instability cannot lead to coher- 
ent acoustic oscillations of amplitude substantially larger 
than thermal noise, for otherwise the coherent oscillation 

must be described by Eq. (8) .  The coherent acoustic oscilla- 
tion must of necessity be caused by collective PSW oscilla- 
tions and cannot be excited at h < h * given by Eq. ( 18). 

I take pleasure in thanking V. S. L'vov, A. I. Smirnov, 
and G. E. Fal'kovich for helpful discussions of the questions 
touched upon in this paper. 
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