
Theory of the smectic-A-smectic-C phase transition 
E. I. Kats and V. V. Lebedev 

L. D. Landau Institute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 2 December 1985) 
Zh. Eksp. Teor. Fiz. 90, 1 1 1-123 (January 1986) 

The smectic-A-smectic-C phase transition is investigated by the renormalization-group method. 
In the region 7 <In( 103/r) < lo2 (7 is the dimensionless distance from the transition point) the 
corrections to the Frank constants are small. Therefore, the critical indices describing the tem- 
perature dependences of the compressibility of the smectic layers, susceptibility, and specific heat 
in this region are functions of K,/K,. These indices are calculated in the one-loop approximation. 
The renormalization-group equations for the Frank constants are found in the two-loop approxi- 
mation. 

1. INTRODUCTION 

Liquid crystals are substances which have undergone 
spontaneous breaking of rotational invariance but which are 
not true three-dimensional crystals (see, e.g., Ref. 1 ). Such a 
state is possible by virtue of the fact that liquid crystals con- 
sist of molecules with a strongly anisotropic shape (in most 
cases, rod-like). The average direction of the liquid-crystal 
molecules is characterized by a unit vector n, called the di- 
rector. A nonuniform deformation of the director in the liq- 
uid crystal requires the expenditure of energy; the corre- 
sponding term in the expansion of the free energy is called 
the Frank energy: 

Fp='12Ki(Vn)2+'/2Kz(n[Vn])2+'12K,( ( n V ) n )  '. ( 1) 

Here square brackets are used for cross products, so [ V n ]  
denotes the curl of n, and K,, K,, and K, are the Frank con- 
stants. 

The liquid-crystalline phase of a substance exists in a 
temperature range AT- 10 K between the liquid and solid 
phases. However, even in this narrow temperature range liq- 
uid crystals undergo numerous phase transformations, one 
ofwhich (the smectic-A-smectic-C transition) will be inves- 
tigated in this paper. As is well known, smectics are liquid 
crystals in which besides the spontaneous breaking of rota- 
tional invariance there is also spontaneous breaking of trans- 
lational invariance in one of the directions. As a result of this 
there appears a layer structure with period I of the order of 
the length of a liquid-crystal molecule. We shall describe this 
layer structure by means of a function W(t,r), which has the 
property that the equation W = const specifies the position 
of a smectic layer in space (and the evolution of the layer in 
time). We note that, by the definition of the function W, the 
vector V W specifies the direction of the normal to the layer. 

2. FREE ENERGY FOR THE SMECTIC-A-SMECTIC-C PHASE 
TRANSITION 

In equilibrium the smectic layers are parallel and equi- 
distant. If the z axis is perpendicular to these layers, this 
structure will correspond to the function W = z/l, where I is 
the interlayer distance. Away from equilibrium we must put 

Here u has the meaning of the displacement vector of the 

layers along thez axis. In the expansion of the free energy the 
corresponding term that reaches a minimum at u = 0 has the 
form 

Fs='lgB [Z2(V W )  '-112. (3) 

In order that the energy (3)  have a minimum we must set 
B > 0. Besides the terms ( 1 ) and ( 3 ) we must include in the 
expansion of the free energy a term specifying the relation- 
ship between the orientation of a layer and the direction of 
the molecules in it. We write this term in the form 

Fa=-'/zA [ ( V  W) - ' (nV  W )  '-11 

+' / , (U,+2U2/B) [ ( V W ) - 2 ( n V W ) z - 1 ]  
+ ' / 2U[Z2(VW)2- l ]  [ (nVW) ' (VW)- ' -11 .  (4) 

Henceforth we shall take U, > 0, which corresponds to the 
real situation in the A-C transition. 

At equilibrium n and V W are uniform, and the angle 
between them is determined by the parameters of (4) and 
can be found by minimizing the energy (4)  with respect to 
n.V W. IfA > 0 the energy (4) is a minimum when n is paral- 
lel to V W (i.e., the orientation of the molecules is perpendic- 
ular to the layer), corresponding to a smecticd. For A < 0 
the interlayer distance turns out to be different from I and 
equal to 

l'=Z(I+BUIA I/BU')-". ( 5 )  

IfA < 0 the energy (4)  is a minimum when n and V Ware at 
an angle 0 determined by the condition 

COS' B=I+A/Ui. (6) 

This case corresponds to a smectic C, in which the molecules 
are oriented obliquely to the layer. We note that forA > 0 the 
presence of the energy (4)  does not affect the interlayer dis- 
tance, which is simply equal to 1. In smectics A the direction 
of n if fixed uniquely by the vector V W, while in smectics C 
only the projection of n on V W is fixed; the azimuthal angle 
describing the director remains free, and is in this case an 
additional Goldstone variable. Thus, when the sign of A in 
(4)  changes, the symmetry of the system changes, and, cor- 
respondingly, a phase transition (from the A phase to the C 
phase) should occur. 

We shall give estimates of the quantities appearing in 
the expressions written out above. The characteristic scale of 
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the energies is the atomic energy density, which can be esti- 
mated in terms ofpc2, wherep - 1 g/cm3 is the mass density 
and c- lo5 cm/sec is the speed of sound in the liquid crys- 
tals. For the Frank constants that specify the energy of de- 
formation of the director field we have the following natural 
estimate: K-pc'a2 - 10-6-10-7 erg/cm. 

Here a - 10Ws cm is the atomic size. As regards to con- 
stant B that appears in the smectic energy (3) ,  we have the 
estimate 

B-10-Spc2-107 erg/cm3. 

The small magnitude of this expression is due to the 
weakness of the modulation of the density in smectics. The 
latter circumstances, in turn, is associated with the fact that 
the transition from the nematic to a smectic phase of liquid 
crystals is second-order, and, therefore, because of the nar- 
rowness of the region of existence of the smectic phase, the 
smectic is always close to this transition point. An estimate 
analogous to that for B holds for the constant Uappearing in 
the energy ( 5 ) ,  and so we shall assume that U-B- U,. 

This distance of the smectic from the A-C-phase-transi- 
tion point is characterized by the dimensionless parameter 

z = A / U l .  (7 )  

In the A phase r > 0, and in the Cphase r < 0; for this param- 
eter we have the estimate 

7-  (T-T, ) /T , .  

Here T, is the temperature oftheA-C transition. From this, 
by virtue of the narrowness of the temperatue range of exis- 
tence of the liquid-crystalline phase (AT- 10 K) ,  it follows 
that Irl is small in the entire region of existence of the smec- 
tic phase. In particular, this explains the observed smallness 
of the angles 0 of tilt of the director with respect to the nor- 
mal to the layer in smectics C; from formula ( 6 )  it follows 
that 0~ 171 'I2, and 0 < 0.1 in real smectics C. We note two 
further facts. First, liquid crystals exist at temperature 
T- 100 K -pc2a3, and, consequently, the temperature does 
not specify any additional energy scale. Secondly, the region 
of applicability of the treatment given above is bounded by 
the scale 2 103a; the large factor in this estimate is associated 
with the above-mentioned closeness of the transition to the 
nematic phase. 

To describe the phase transition from the A phase to the 
C phase we shall use the following parameter: 

( P ~ = E U ~ ~ ~ V , , ,  Y=V W /  I V WI . (8 )  

This quantity is equal to zero in the A phase and becomes 
nonzero in the C phase. The director is expressed as follows 
in terms of $: 

n = I V W ( - ' ( V W ( 1 - $ ' ) " + [ V W ,  $1). (9)  

Substituting (9)  into ( I ) ,  ( 3 ) ,  and (4) and retaining the 
leading terms in the resulting expressions, we find the fol- 
lowing free energy: 

Fc-a=1/8B[12 ( V W ) ' - i ]  2+'/2K12(VZW) 2+'/zA$2 

- ' J z U $ ~ l ~  V W ) 2 - I ] + i / ~ ( U , + 2 U ' / B )  $4+'IzK, ( V [ V + I ) ~  

+'lzKZ[ (V$)2-((~V)+)21+ilzK3(~VS)Z. (10) 

Here the constant K = K , .  We note also the conditions 
U> 0, B > 0, and U ,  > 0. The first two terms in the expansion 
( 10) are the standard smectic energy, the last terms in ( 10) 
give the energy of the critical mode, and the term with U  
describes the interaction of the critical mode and the smectic 
mode. 

3. RENORMALIZATION GROUP 

If the distribution function exp( - Fc-A /T) is integrat- 
ed over the fluctuations of W, leading to the effective elimi- 
nation of the smectic degree of freedom from the analysis, we 
arrive at a model with a +b4 interaction. Such models are 
conventionally used for the description of phase transi- 
tions.'~~ However, in the case of the smectic-A-smectic-C 
transition the order parameter $ realizes a representation of 
the rotation energy group'in real space; it therefore couples 
with the spatial derivatives, and the situation becomes sub- 
stantially anisotropic. Because of this, the problem under 
consideration does not reduce to familiar models, even with 
a many-component order parameter. However, the phase 
transition in the system described by the free energy (10) 
can be investigated with the aid of the standard renormaliza- 
tion-group methods of the theory of phase transitions. In 
particular, the expression ( 10) is renormalizable; in calcu- 
lating the renormalizations of the parameters in (10) we 
shall use the well-developed perturbation-theory procedure 
that reduces to the so-called loop expansion. In contrast to 
the &-expansion  method,'^^ we shall find it more convenient 
to perform the acted calculations directly in three-dimen- 
sional space, because of the above-mentioned specific fea- 
tures of the problem. 

Before proceeding to the calculations, we shall give 
some estimates. For the fluctuation effects of interest to play 
an important role, it is necessary that there be a wide range of 
wave vectors q in which the fluctuations of the order param- 
eter can be regarded as gapless. It is precisely in this region 
that the main fluctuation contributions to all the observable 
quantities are formed. It is not difficult to estimate that (in 
the gapless region) fluctuation corrections become appre- 
ciable at the scale 

10KZ/TU-101a. (11) 

For it to be possible to regard the fluctuations of the order 
parameter on this scale as gapless it is necessary that the 
inequalities" 

171 <T2UJK3-10-3 (12) 

be fulfilled. To describe the fluctuation effects it is conven- 
ient to introduce the following quantity: 

L=min{In(2n/ql)  ; ' I 2  l n ( i O s / l ~ l ) } .  ( 1 3 )  

This logarithm is characterized by the scale (or temperature 
factor) at which the integrals appearing in the calculation of 
the fluctuation corrections are cut off. In accordance with 
the estimates ( 11 ) and ( 12) these corrections become im- 
portant for L > 7. 

We note that for L > 7 the effective parameters A, B, U, 
and U ,  in ( 10) begin to be substantially renormalized," 
while the quantities K  ,-, in this expression are renormalized 

64 Sov. Phys. JETP 63 (I), January 1986 E. I. Kats and V. V. Lebedev 64 



much more weakly, this being a reflection of a well known 
fact in the theory of phase transitions, namely, that the 
anomalous critical index 77 is small. Estimates show that 
there exists a wide range of scales (or temperatures) in 
which the corrections to K ,-, can be assumed to be small. 
This region is determined by the inequality L < lo2. Evident- 
ly, the region L > 10' is experimentally inaccessible, and, 
therefore, we shall concentrate our main attention on the 
region 7 < L < 10' in which fluctuation effects are important 
but the moduli K in ( 10) can be regarded as constants. How- 
ever, it is of undoubted methodological interest to analyse 
the behavior of the parameters of the free energy (10) for 
L > lo2; this analysis will also be given in the present paper. 

In the calculation of the fluctuation corrections we can 
neglect completely the fluctuations of Win the last terms in 
( lo),  i.e., we can assume that v in this expression is the unit 
vector along the z axis. The same can be said of the vector v 
in the definition (8).  Thus, the order parameter +, in accor- 
dance with this definition, will have only components along 
the x and y axes, and we shall denote these components by 
Greek indices: = ( ICl, ,$y ) . 

Using analogous notation for the spatial derivatives, we 
find from ( 10) the following expression for the gradient part 
of the energy: 

F : ~ ' = ~ I Z K ~  (eabvaqe) 2 + i / z ~ z  ( ~ a Q a )  z + i / z ~ ,  ( v ~ Q . )  '- ( 14) 

Here E , ~  is the two-dimensional antisymmetric unit tensor 
( E , ~  = - eyx = 1 ). Hence, in the fluctuation region we ob- 
tain the following correlator of the Fourier components: 

4a4e 
~ a e ( q ) = ( Q a  (q') Qe(-q) )= 7 T ( K ~ q ~ 2 + K ~ q , Z ) - '  

471 

"" ) T (KtqL2+Ksq:) -', + (b - -p (15 )  

qL2=qaZ=qX2+q;. 

Expanding now the smectic part of the free energy ( 10) to 
second order in the displacement vector u defined as in (2), 
we find 

F,'"=='I,B ( V , U ) ~ + ' / ~ K  (v2u) 2.  (16) 

Hence we obtain the following correlator of the Fourier 
components: 

A ( q )  = < u ( q ) u ( - q )  )=T(Bq,2+Kq4)-I. (17) 

4 
FIG. 2 

the second term in ( 18) gives the four-point vertex of the 
self-interaction of the critical mode. In the one-loop approxi- 
mation the interaction term ( 18) generates corrections to 
the parameters of ( 16) and ( 18 ), these corrections being 
depicted by the Feynman diagrams given in Figs. 1-3. In 
these diagrams a solid line corresponds to the correlator 
( 15 ), a wavy line to the correlator ( 17), and the points to the 
vertices generated by ( 18). The corrections to B are depicted 
by the diagram in which two three-point vertices appear 
(Fig. 1 ). The corrections to U are depicted by the diagram 
with one three-point and one four-point vertex (Fig. 1 ), and 
also by the diagram with three three-point vertices (Fig. 2). 
The corrections to the four-point vertex are depicted by the 
diagrams with two four-point vertices (Fig. I ) ,  by the dia- 
grams with one four-point and two three-point vertices (Fig. 
2),  and also by the diagram with four three-point vertices 
(Fig. 3 ) .  Finally, the corrections to the two-point vertex A 
are determined by the diagrams containing one two-point 
vertex A and either one four-point vertex (Fig. 1)  or two 
three-point vertices (Fig. 2).  

In the calculation of these diagrams we introduce an 
intermediate cutoffp, replacing q: by q: +p2 in the expres- 
sion ( 15). We now investigate how the answers obtained for 
the fluctuation contributions depend on the factor p, which 
has the meaning of the characteristic wave vector on which 
all the vertices introduced above become dependent when 
the fluctuation corrections are taken into account. The spe- 
cific details of the calculations are presented in the Appen- 
dix, and as a result we obtain (in the one-loop approxima- 
tion) the following renormalization-group equations: 

Expanding the term with U in the free energy ( 10) to 
Here we have introduced the notation 

first order in the displacement vector u and combining the 10 9 1 l n ( K i / K z )  2 - 1 1 -+- + --- +-. (20) 
result with the term proportional to $ in ( lo ) ,  we finally ZP ( K ,  j2 K,-K,  g, K ,  E;, 

obtain the following expression: 
If K, = K,, then K4 = K, = K,. The system of equations 

( 18) ( 19) is valid in the region of applicability of our analysis, i.e., 
The free energy ( 18) describes the interaction of the modes. 
The first term in (18) gives the three-point vertex of the 
interaction of the smectic mode and the critical mode, and 

FIG. 1 FIG. 3 

65 Sov. Phys. JETP 63 (I), January 1986 E. I .  Kats and V. V. Lebedev 65 



in the region determined by the inequality p <p,- 10Za-'. 
On the other hand, the region of applicability of the system 
(19) is bounded by the inequality p >p , ,  where 

(this inequality ensures that the critical mode is gapless). At 
larger scalesp- ' the constants of the theory cease to change. 

In the one-loop approximation there are no corrections 
to the constants K, and, therefore, in solving the system of 
renormalization-group equations ( 19) we can regard K,, K,, 
and K, as constants. Under this condition the system ( 19) is 
trivially integrated, and as a result we find the solution 

Here we have used the subscript 0 to denote the bare values 
that the corresponding quantities take a t p  = p,, and in (25) 
we have taken definition ( 7 )  into account. If we use now the 
estimates given above it is straightforward to show that (in 
accordance with the estimate ( 11 ) ) for p &  103a- ' the be- 
havior of the solutions (22)-(25) acquires a universal char- 
acter that does not depend on the initial conditions: 

The behavior of the constants of the theory at large scales 
can be obtained from the solutions (22)-(25) by substitut- 
ingp = p, ,  wherep, is defined in (21 ). Taking into account 
the proportionalities (26), we find 

The expressions (27) are valid when the condition ( 12) is 
fulfilled. 

Above we have neglected effects associated with the in- 
trinsic fluctuations of W-effects that lead, outside the criti- 
cal region, to a logarithmic renormalization of the constants 
B and K in ( 10) .4,5 Thus, in the one-loop approximation the 
renormalization of the constant B is determined by the dia- 
gram given in Fig. 4, which contains two vertices obtained by 
expansion of the coefficient of B in ( 10) to third order in u. 
The explicit expression for the corresponding correction to 
B is given in the Appendix; as a result of the integration over 
q, we find 

FIG. 4 

verges in the fluctuation region, and, consequently, is a con- 
~ t a n t , ~ '  to which the main contribution is made by the inte- 
gration over q, -p,. This constant is of absolutely no 
importance, since it simply renormalizes the bare value B,, 
and, moreover, the magnitude of this renormalization is 
small: AB /B,- 10W3. The same applies to the corrections 
contributed to Uand U ,  by diagrams ofthe type given in Fig. 
4, and it is this which justifies the neglect of the intrinsic 
fluctuations of W. 

Corrections of the constants K in ( 10) and ( 14) appear 
only in the two-loop approximation. An example of such a 
correction generated by ( 18) is given by the diagram of Fig. 
5. It is not difficult to show that all two-loop corrections to 
the constants K are reduced to this diagram if we take U, as 
the four-point vertex. This diagram is calculated more easily 
in the r-representation (see the Appendix.) We represent 
the result of the calculation in the following form: 

Here j,, j,, and j, are numbers of order unity that are func- 
tions of K,/K,. Expressions for these functions in the form of 
(single) integrals are given in the Appendix. We note that 
the following relations hold: 

These relations are a consequence of a symmetry of the sys- 
tem under considerations; namely, under the replacement 
+a - + E , ~  the expression ( 18) does not change, while the 
expression (14) for the gradient energy is reproduced but 
with K, and K, interchanged. The general form of the func- 
tions j obtained as a result of a numerical calculation is pre- 
sented in Fig. 6. 

As already noted, the constants K change much more 
slowly than U,, and, therefore, for U,, as before, the expres- 
sion (22), in which we can also neglect the bare terms, is 
valid. Substituting this expression into (30), we find 

dln K1 Z2(K1+KZ) K,Z , 
- -- 

d In y-' 33.52K12112 "' (31a) 

By virtue of the proportionality (26) for B this integral con- FIG. 5 
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FIG. 6 

The equation for K, is obtained from (3  la)  by interchanging 
the indices 1 and 2. Since thej  are numbers of order unity, we 
obtain from this the estimate 

d In K/d In y-i-10-2, 

which determines the region L > 10' in which the constants 
K begin to change appreciably. In the limit K,(K, we have 

Thus, in this case the constants K, and K, have indices of the 
same order lop2, while the constant K, remains constant. 
An analogous situation obtains in the limit K,)K2 with K, 
and K, interchanged. 

If follows from the symmetry of the problem under in- 
terchange of K, and K, that the system (3  1 ) admits the solu- 
tion K, = K,. This solution corresponds to the isotropic 
case, since here, by a change of scale along the z axis, we can 
also arrange that K, = K,, after which ( 14) is transformed 
into the standard isotropic gradient energy for a two-compo- 
nent order parameter. The quantities j in this case are calcu- 
lated analytically (see the Appendix) and turn out to be 
equal to unity. 

It is not difficult to calculate the index of the difference 
K, - K, near this fixed point (see the Appendix): 

This index is smaller than the index of K,, which, in accor- 
dance with ( 3  1 ), is equal to 23/3352. Therefore, the relative 
magnitude of (K, - K,)/K, decreases with increase ofL, so 
that the isotropic fixed point is found to be stable. 

4. CONCLUSION 

We shall summarize our work. We have calculated the 
change with temperature of the parameters of a smectic A 
(the compressibility of the layers, the Frank elastic con- 
stants, and certain other parameters) in the region of the 
phase transition from smectic A to smectic C. We have 
shown that when the dimensionless distance from the transi- 
tion point has a value T( the compressibility B varies as 

where 

1n(Kt/K2) 2 1 1 -=-+-. 
' K5 Ki Kz 

The Frank constants themselves do not change in this 
approximation (the one-loop approximation of the renor- 
malization group, for the applicability of which it is required 
that the logarithms L specified by formula ( 13) that appear 
in the theory satisfy the inequality 7 < L < 10'). Therefore, 
the index ofB depends on the bare Frank-constant ratio K,/ 
K,. If K, = K,, then B a T " ~ ,  while if K,)K2 (or K,)K,), 
then B a 7"14. The indices, unfortunately, are small, but the 
change ofB, in principle, lies within reach of the present-day 
experimental accuracy of x-ray or ultrasound methods. 

In this same region it is easy to find the change of the 
specific heat of the system: 

where the polarization operator II is determined by a dia- 
gram of the type depicted in Fig. l ,  in which in the correla- 
tors ( 15) we must take into account the gap a A and vertices 
a 1. A simple calculation of this diagram gives the following 
expression for the specific-heat index: 

i.e., the specific-heat index is equal to minus the index of the 
elastic constant B (a = 1/8 for K, = K,, and a = 1/14 for 
K I M 2  or K, gK2 1. 

According to (27), the susceptibility index is equal to 

At the point K, = K, we have y = 5/4, which agrees with 
the known experimental data.697 In an analogous way, from 
the definition of the order parameter in the C phase and 
estimates of the type (27) we can find the order-parameter 
index 

For K, = K, we have f l =  7/16=0.43, which also does not 
contradict the experimental data.' 

We draw attention to a difference between our work 
and all previous papers on this subject (see, e.g., the review 
Ref. 8 and the literature cited therein). The theoretical de- 
scription of the smectic-A-smectic-C phase transition goes 
back to the work of de G e n n e ~ , ~  who drew attention to the 
analogy between the transition and the transition in helium- 
4. However, this analogy takes no account of substantial dif- 
ferences in the order parameters of the two types of transi- 
tion. The order parameter in liquid crystals is coupled to the 
spatial coordinates, and it is this which leads to the entirely 
distinctive character of the phase transitions, one of which 
(the A-C transition) is considered in our paper. Finally, the 
region L > lo2 in which the Frank constants change substan- 
tially with temperature is hardly accessible to experiment. 
We note only that in this region isotropization of the system 
in the plane of the layers should occur. 

In conclusion the authors express their gratitude to V. 
A. Avilov for assistance in the computer calculations. 
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APPENDIX 

We shall consider first the expression for the correction 
to the constant B. This correction is determined by the dia- 
gram of Fig. l :  

Substituting the expression ( 15) into this and introducing 
the intermediate cutoff, we find 

Performing the integration in the order indicated in (A.21, 
we finally obtain 

Differentiating now with respect top,  we obtain the expres- 
sion for dB /d 1q.- in ( 19). The correction contributed to 
the vertex U by the diagrams in Figs. 1 and 2 has, after aver- 
aging over the angles, the following form: 

(A.4) 
Here u, = U + 2 U * /B ,  and A is determined by the expres- 
sion ( 17). In the region p < 10-3a-1 in which, in accor- 
dance with the estimate ( 11 ), fluctuation corrections be- 
come important, the ratio of the second term in the 
denominator of ( 17) to the first is of the order of 

( K l B )  p2<10-3. (A.5) 

Therefore, we can neglect this second term, as a result of 
which we obtain 

q12A"TIB. (A.6) 

Thus, the integrals in (A.4) are completely identical to the 
integral in (A. 1 ), and are taken in exactly the same way. 
Differentiating the result with respect top,  we find the deri- 
vative of U / B  in ( 19). The correction to A is determined by 
the analogous diagrams. Averaging over the angles and sub- 
stituting (A.6), we find 

From this follows the expression given in ( 19) for the deri- 
vative ofA. Finally, the corrections to El that are defined by 
the diagrams in Figs. 1-3, after averaging over the angles 
and insertion of (A.6) give 

Some of the terms in (A.8) have the form (A. l ) ,  and the 
others reduce to the integral 

- n K 3  K t  
ln-. 

p(Ki-Kz) K2 

Using this integral to calculate AG,, going over from AD, to 
AU,, expressing this quantity in terms of U,, and differenti- 
ating with respect top,  we find the expression in ( 19) for the 
derivative of U,. 

Expanding the smectic energy (the first term in (10) ) 
to third order in u (see the definition (2) ) ,  we find 

F,"' = - * ~ ; B V , U ( V U ) ~ .  (A.lO) 

Using the third-order vertex found in (A. 10), we can con- 
struct the fluctuation correction contributed to the constant 
B in ( 16) by the diagram in Fig. 4 (here the pairing is per- 
formed in such a way that V, remains on the external 
points) : 

Substituting the expression ( 17) into this and integrating 
over qz, we find (28). In this integration we must keep in 
mind that 

ql-  (KIB) "ql2<ql .  

Therefore, in the integral (A. 11 ) q4 can be replaced by q:. 
We now consider the fluctuation corrections to the con- 

stant K. These corrections appear only in the two-loop ap- 
proximation. An example of such a two-loop diagram is giv- 
en in Fig. 5. Allowance for diagrams with intermediate 
smectic lines (diagrams of the type shown in Fig. 7) reduces, 
with the use of (A.6), to replacing the vertex Dl by the ver- 
tex U, in the diagram of Fig. 5. This diagram is more easily 
calculated in the r-representation. The corresponding 
expression for the correction to the free energy has the form 

+2Aap (r) (r) A76 (r) 1% (r' f r) . 
(A.12) 

In (A. 12) we expand @6 (r' + r )  to second order in r; the 
terms with the first two quantities in the free energy drop out 

FIG. 7 
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upon regularization, and the second-order term gives the 
desired corrections to the constants K. Averaging over the 
angles, we find 

In the calculation of the expression (A. 13 we shall need the 
explicit form of the correlator (1C', t,bD ) in the r-representa- 
tion. Fourier-transforming ( 15) (with an introduced inter- 
mediate cutoff p ), we find 

Pi + - exp (-p,ri) (8aB - 1.1") 
r1 'A2 

(A. 14) 
Here we have introduced the notation 

After substitution of (A. 14) into (A. 13) the integration 
over the angle in the plane perpendicular to the z axis is 
trivially carried out. We also introduce the dimensionless 
variable{ = z/rl. The integral over r1 is taken explicitly. As 
a result we find expressions for AK ,-, , which, after differen- 
entiation with respect to p ,  give (29) with the following 
functions: 

OD 

Here we have introduced the notation 

The expression forj, differs from that forj, by interchange of 
the indices 1 and 2. The results of a numerical calculation of 
the quantities j are given in Fig. 6. 

For K, = K, =KO the form of the function (A.14) is 
simplified considerably: 

We substitute the expression (A.16) into (A.13) and go 
over to integration over R. The integration over the angular 
variables is trivial, and the integral over R is also taken sim- 
ply; as a result, we obtain expressions which, after differenti- 
ation with respect to p ,  give (3  1 ) with j, = j, = j3 = 1. We 
now consider a weak deviation from the regime K, = K,: 

It is easy to see that the introduction of x in the linear ap- 
proximation does not effect the equations for U, and K3, 
since these equations are symmetric under the interchange 
K,++K, and, consequently, are even in x ,  so that it will be 
sufficient to take account of the presence of x in the equa- 
tions for K,  and K,. Linearizing the expressions (A. 13) for 
AK, and AK, in x ,  we find 

Here, 

[ i + p ( g )  "' R ]  (baa- -2n~) .  
(A. 19) 

We substitute the expression (A. 16) into (A. 18) and go 
over to integration over R. The angular integrals reduce to 
averaging over the angles, and the integral over R is also 
taken. Differentiating the resulting expression with respect 
t op  and substituting x = (K, - K2)/K0, we find the expres- 
sion (33). 

"We note that temperature 1 T - T, I - K, i.e., I T /  - are fully 
accessible experimentally. 

''To avoid confusion we note that we are using T to denote a quantity 
which, in accordance with (7),  is expressed in terms of the bare (unren- 
ormalized) quantities. 

3'0f course, this integral becomes logarithmic on the large scales (outside 
the fluctuation region) to which the analysis of Refs. 4 and 5 applies. 
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