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A new class of nonequilibrium effects in a gas-solid system, in which transport processes arise 
in one medium when a thermodynamic force is set up in the other, is analyzed. Effects of this 
sort are shown to be important for nonisothermal gas flow in narrow channels ( - 100 A; the 
diameter is comparable to the phonon mean free path) or in fine-pore media, where it is 
necessary to consider the drag exerted on gas molecules by the phonon flux of the 
nonequilibrium solid as the molecules are scattered by the surface. A thermodynamic analysis 
is carried out for a unified nonequilibrium system with an interface. A kinetic theory is derived 
for nonequilibrium interfacial effects by solving the kinetic equations for molecules and 
phonons together with boundary conditions reflecting the nonequilibrium nature of the 
medium in contact with the given medium. Under conditions such that the phonon drag of the 
molecules dominates, the free molecular flux of the gas is proportional to d 2, the square of the 
channel diameter is independent of the mass m  of the gas molecules, and depends strongly on 
the average temperature (e.g., T  -2 in the low-temperature limit) and the properties of the 
solid. In particular, this gas flux is proportional to the fourth power of the sound velocity. All 
of these dependences are fundamentally different from those established previously for 
channels of ordinary size, where the (isothermal) gas flux is proportional to ( T / m  ) 'I'd and 
weakly dependent on the material of the channel wall. This new theory is generalized to the 
case of a mixture of gases. The possibility that this effect may have been seen in some 
previously unexplained experimental data on gas mixtures is discussed. 

1. INTRODUCTION 

Transport processes in gases in narrow channels and 
porous media are attracting increasing  interest'^^ because of 
the extensive potential technological applications of fine- 
pore media and also because of the appearance of ideal sys- 
tems for such research, nuclear fil tershith smooth chan- 
nels 20-1000 .& in diameter. On the other hand, systems of 
this type have a fundamental feature which has apparently 
not been noted previously: In sufficiently thin channels, the 
kinetic length scales of the gas and the solid (the channel 
width d if the mean free path of the molecules satisfies 
A ,  kd, or the phonon mean free path A,, for a dielectric 
crystal) may be comparable. In such a case, the assumption 
of a local equilibrium for the gas in contact with the solid-a 
reasonable assumption for gaseous systems of ordinary geo- 
metric scale (with d, A, &Aph )-may be incorrect. Our pre- 
liminary calculations4 for nonisothermal gas flow in chan- 
nels with d- 100 .& show that a new component of the gas 
flux becomes important. This new component is proportion- 
al to the temperature gradient in the wall and arises from the 
drag exerted on the gas molecules by the phonon flux of the 
nonequilibrium solid. We are seeing here a new type of non- 
equilibrium phenomenon at an interface, in which transport 
processes in one medium depend on a nonequilibrium state 
in another. Effects of this type have not previously been iden- 
tified in a gas-solid system or, apparently, in other systems 
with an interface. As a result, the methods of kinetic theory 
which have so far been developed are "single-phase'' meth- 
ods (the kinetic theory of gases, plasmas, metals, etc.). In 
the present paper we construct a theory of "interfacial" ki- 

netic phenomena for the example of a system of a low-den- 
sity gas and a crystal in which mass and heat are transported 
tangent to the surface. 

To some extent, the phonon drag of gas molecules is 
analogous to the well-known drag effects in the electron- 
phonon system in a metal, but there is also a fundamental 
distinction: In this case we are dealing with a drag which 
involves particles (or quasiparticles) in different media, and 
the drag process itself is played out at an interface. In order 
to take this effect into account, we need to treat the gas-solid 
system as a single, unified nonequilibrium system. Although 
this representation has not previously been used in the litera- 
ture, it is in fact necessary if we wish to reach an understand- 
ing of several well-known phenomena from the macroscopic 
point of view. An example is the nonequilibrium polariza- 
tion in the direction of the angular momentum5 of polyato- 
mic molecules which are reflected from a surface. This po- 
larization arises when the gas temperature differs from the 
temperature of the solid6 or as a gas flows along a surface.' 
Another example is the nonequilibrium desorption of parti- 
cles (nonequilibriurn in terms of the energy of the particles 
and the direction in which they are moving) from a chemi- 
cally' or physically9 adsorbed film on a solid surface. These 
effects, however, can be described even in a (locally) equilib- 
rium approximation with respect to the state of the solid. In 
contrast, the nonequilibrium phenomena with which we are 
concerned in the present paper are fundamentally nonlocal 
phenomena. A macroscopic consequence of the interaction 
of the gas molecules and the phonons (the drag) at the sur- 
face of a solid is a correlation between the heat and mass 
fluxes in the gas and the heat flux in the solid. As a result, the 
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macroscopic fluxes in one medium exhibit a nonlocal depen- 
dence on a thermodynamic force which is set up in the other 
medium. 

It is an extremely complicated problem to describe non- 
local kinetic effects. The methods of nonequilibrium statisti- 
cal physics which are developed from "first principles"- 
from the equations for a multiparticle distribution func- 
tion-are available only for systems with an external me- 
chanical agent,'' in which case the agent can be incorporated 
directly in the Hamiltonian of the system. For systems with a 
thermal agent, fundamental methods have been developed 
systematically only for a description at the hydrodynamic 
level.'' In the present paper we restrict the analysis of nonlo- 
cal kinetic effects at an interface to the system consisting of a 
low-density gas and a crystal. In the "quasigas" system of 
molecules and phonons we can use kinetic equations of the 
Boltzmann type for single-particle distribution func- 
t ion~ ." , '~  It is found that nonlocal interfacial effects can be 
described in such a system by incorporating the interaction 
between the nonequilibrium subsystems of molecules and 
phonons in the boundary conditions on the distribution 
functions of these particles at the interface. Boundary condi- 
tions of this type are constructed below, in Section 3, from a 
microscopic picture of the scattering of molecules and phon- 
ons by a surface. We also show that boundary conditions of 
this sort have definite symmetry properties, which reflect 
the principle of detailed balance (the time reversibility of the 
microscopic equations of motion) in the case of the interac- 
tion of nonequilibrium subsystems. 

In Section 4 we solve the problem of the nonisothermal 
flow of a collisionless gas in a channel with a nonequilibrium 
wall. We examine the simultaneous solution of the kinetic 
equations for molecules and phonons with boundary condi- 
tions written in the one-phonon approximation.13 In this ap- 
proximation, we prove Onsager relations for interfacial 
cross effects. Calculations based on the continuum model of 
a solid with a b o ~ n d a r ~ l ~ - ~ ~  show that under conditions such 
that the phonon drag of the molecules becomes the dominant 
factor the gas flux through a channel does not depend on the 
mass m of the gas molecules, does depend on the tempera- 
ture (strongly; it is proportional to T - 2  in the low-tempera- 
ture limit), is proportional to the square of the channel di- 
ameter (d 2) ,  and depends strongly on the material of the 
channel wall, in particular, on the fourth power of the sound 
velocity. Each aspect of this behavior differs fundamentally 
from that which has been established for wide channels, 
where the (isothermal) gas flux is proportional to ( T /  
rn)'I2d and depends only slightly on the wall material. 

In Section 5 we generalize this theory to the case of a 
mixture of gases. It is found that when we take into account 
the phonon drag of the molecules the spatial separation of 
the mixture in a nonisothermal flow through a channel (or 
porous solid) may be greatly enhanced. We discuss a possi- 
ble manifestation of this effect in existing experimental data. 

Before we take up the derivation of a kinetic theory for 
these effects, it is useful to look at them from the standpoint 
of the thermodynamics of irreversible processes (Section 2). 
The thermodynamic analysis of nonequilibrium phenomena 

is based on an analysis of entropy production,'6 which makes 
it possible to identify generalized forces and fluxes in the 
system and to determine the nature of the (linear) relations 
between them. As we will show below, in a nonequilibrium 
system with an interface the entropy production in one me- 
dium generally depends on the nonequilibrium state of the 
other medium. It is this dependence, which implies a nonlo- 
cal coupling between the fluxes and forces in different media, 
which expresses the thermodynamic meaning of this class of 
nonequilibrium effects. An expression for the entropy pro- 
duction is derived (Subsection 2a) from simple macroscopic 
considerations which amount to a generalization of the ther- 
modynamics of discontinuous systems16 to a system with an 
interface. This expression is also derived by a kinetic theory 
(Subsection 2b).  It is shown here that the matrix of kinetic 
coefficients includes quantities of two types. First, there are 
the ordinary kinetic coefficients which are used in a single- 
phase analysis of transport processes and which determine 
the macroscopic fluxes (the average fluxes over a cross sec- 
tion of the subsystem) in this case under the influence of the 
thermodynamic forces which are set up in the same medium. 
Second, there are new kinetic coefficients, which determine 
macroscopic fluxes (again, averages over the cross section of 
the subsystem) in the given medium under the influence of 
forces applied to the other medium. The derivation of these 
kinetic coefficients is the basic content of Sections 3-5 of this 
paper. 

2. THERMODYNAMICS OF IRREVERSIBLE PROCESSES IN A 
UNIFIED NONEQUlLlBRlUM GAS-SOLID SYSTEM 

a )  Macroscopic approach. We consider a weakly non- 
equilibrium system (Fig. 1)  including a gas between solid 
surfaces with tangential gradients of the gas pressure (V p ) ;  
of the gas temperature (VT, ), and of the temperature of the 
solid (VT, ). We assume that the system is homogeneous in 
the longitudinal direction, that its longitudinal dimension 
satisfies bBA,, A,, , d; and that there is no heat or mass 
transport normal to the interfaces.'' These conditions are 
met in the nonisothermal glow of a gas in a capillary or plane 
gap. Despite the condition VT, = VT,, it is convenient to 
treat the temperature gradients VT, and VT, as indepen- 
dent thermodynamic forces which are applied externally to 
the gas and the solid, respectively. In this approach, the ma- 
trix of kinetic coefficients of the system will contain known 
quantities (pertaining to the gas or the solid) and new coeffi- 
cients corresponding to interfacial effects. 

In accordance with ideas from the thermodynamics of 
nonequilibrium systems,I6 it can be assumed that a nonequi- 
librium state of this system is maintained as the result of an 
exchange of energy and particles between two other systems 
( A  and B )  which are in contact with our system (Fig. 1) .  
Under the assumption that systems A and B are quite large, 
we may assume that they are in equilibrium. Writing the 
equilibrium thermodynamic relations" between the differ- 
entials of the energy, the entropy, and the number of parti- 
cles for systems A and B, and assuming that the total energy 
and the number of particles are conserved, we can easily 
derive an expression for s,, , the change per unit time in the 
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FIG. 1. 

net entropy of systems A and B. The quantity sA, must be 
equal (in a steady state) to the entropy production by virtue 
of dissipative processes in our nonequilibrium system. Ig- 
noring edge effects at the boundaries with systems A and B, 
we find the following expression for the production of en- 
tropy S per unit length of the system: 

~ A B  ,g=-=- Vp VTg VT, 
b J--QgF- P Qs- T? ' 

where J, Q,, and Qs are the total fluxes (over the cross 
section of the gas and the solid) of the number of molecules 
and of the heat in the gas and in the solid. Below, we will also 
derive expression (2.1 ) for the entropy production from mi- 
croscopic (kinetic) considerations. 

In the ordinary single-phase construction of the ther- 
modynamics of irreversible processes,16 an expression for 
the production of entropy of the gas is found as a sum of the 
first two terms on the right side of (2.1 ) . The production of 
entropy of the solid is equal to the third term in (2.1 ). When 
there is an interfacial interaction, however, the entropy pro- 
duction in the gas and that in the solid cannot be considered 
independently, since the dissipation which stems from the 
collisions of particles (or quasiparticles) of a given medium 
in the surface region may depend on the nonequilibrium 
state of the other medium. Consequently, there may in gen- 
eral be a linear relationship between all the thermodynamic 
forces and fluxes in (2. I ) ,  in particular, between quantities 
pertaining to different media: 

The matrix {L,,) of kinetic coefficients incorporates cross 
coefficients L, , L ,,, i = 1, 2, in addition to the ordinary 
coefficient L,, , i = 1, 2, 3, and the familiar cross coefficients 
L,, = L,,, which describe thermotranspiration and me- 
chanocaloric effects.16 These cross coefficients describe a 
new physical phenomenon: the onset of transport processes 
in one medium when a thermodynamic force is set up in 
another medium. As will be shown below by direct calcula- 
tion (Section 4),  for these new kinetic coefficients, as for the 
classical coefficients, Onsager relations hold: Lij = Lji, i, 
j = 1, 2, 3. The nonlocal, nonequilibrium effects which are 
described by the kinetic coefficients Li3 and L ,, (i = 1, 2) 
may be interpreted as effects of a drag imposed on the gas 

molecules by the phonons and of a drag imposed on the 
phonons by the molecules, respectively. In this sense, these 
coefficients are analogous to the well-known drag effects in 
the electron-phonon system in a metal, but in the present 
case there is the fundamental distinction that the drag pro- 
cess takes place at an interface. 

How large are these new kinetic coefficients? Under 
what conditions would they be important? We assume for 
definiteness that we are dealing with a gas in a long plane 
channel with transverse dimensions d and a ( a s d ) .  We first 
consider L,,. Clearly, the component - Ll3VT,/T of the 
gas flux density in the channel-a component which stems 
from the phonon drag of the molecules-must be propor- 
tional to the characteristic gas flux density n,U [n, is the 
numberdensity ofgas particles and U- (T /m)  'I2 is theaver- 
age velocity of the molecules], to the cross-sectional area 
(A ,a) of the Knudsen layer near the surface, which the 
molecules cross without undergoing collisions, and to the 
dimensionless parameter A,, VT, /T, which is a measure of 
the deviation of the solid from equilibrium. This component 
of the gas flux density must furthermore contain a parameter 
which reflects the efficiency of the "transfer of deviation 
from equilibrium" from the phonons to the gas molecules. 
We assume that nearly every impact of a molecule on the 
surface is accompanied by the creation (or annihilation) of 
one phonon. Noting that the average momentum of a mole- 
cule is comparable to the quasimomentum of a thermal 
phonon, we may then consider this parameter to be of order 

- 
unity. We find L,, -n, vTA ,Aph a .  Similar arguments lead 
to the same result for L,,: 

where n, is the number density of the solid, and c is the 
velocity of sound. Here we have taken into account the fact 
that when a phonon is scattered by the surface the probabil- 
ity for the absorption of this phonon by a gas molecule is 
small and can be estimated to be the ratio ng F/n,c of the flux 
densities of molecules and phonons toward the surface. It is 
also a simple matter to find L,,, L,,- TL,,. Working in a 
similar way for the ordinary kinetic coefficients, we find the 
familiar results 

L12, Lz1-ng U TL2a, LII-ngF hMda, 

L 2 ~ -  ng U T2hMda, Ls3- ns cT2Aph Da, 

where D is the transverse dimension of the solid. The ratios 
of the "gaseous" off-diagonal kinetic coefficients to the cor- 
responding diagonal coefficients L ,,/L, ,, L ,,/L, ,, L,,/L,,, 
L2,/LZ2 are proportional to the Knudsen number 
Kn = A, /d. The reason is that the interfacial cross effects, 
like the known effects of thermotranspiration and the me- 
chanocaloric effect, develop in a Knudsen layer (of thick- 
ness - A M  ) near the surface. In the limit of a high gas pres- 
sure, these effects disappear. For the ratio of the interfacial 
and intrafacial cross kinetic coefficients we find L13/ 
L,,-/ZPh/AM, L2,/L2, - TAPh/AM. The effects of the 
phonon drag of the molecules are thus comparable to the 
thermotranspiration effect and the mechanocaloric effect if 
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FIG. 2. 

A ,  -Aph. At room temperature, however, we would have 
A,, - 100 A, and for most gases A M  reaches such values at 
pressures - 10 atm. In systems of ordinary geometric scale, 
the boundary effects in the gas at such pressures are usually 
negligible.2' On the other hand, in collisionless flow 
( K n s l ) ,  for arbitrary gas pressures, the role of the mean 
free path of the molecules is played by the channel width d. 
Replacing A M  by d in the estimates, we find 

In thin channels, of width d-A,, , it is thus of fundamental 
importance to take these nonequilibrium effects, L,, and 
L,,, into account. 

The effect of the deviation of the gas from equilibrium 
on the heat flux in the solid is small (L,,/T, L,,(L,,), as is 
intuitively obvious. According to our calculations, this ef- 
fect is small because the parameters A,, / D  and n, /n, are 
small. 

6 )  Microscopic derivation of an expression for the en- 
tropyproduction. Let us derive an entropy balance equation 
in a characteristic element of a nonequilibrium heterogen- 
eous system including an interface with small adjacent re- 
gions of the media which are in contact (Fig. 2).  For this 
purpose we generalize the formal pr~cedure".'~ which is 
used in the kinetic theories of single-phase systems. Using 
the expressions for the entropy of gases of molecules and 
ph~nons ,"~ '~  we find the following expression for the total 
entropy of this characteristic element: 

where f = f (v, r, t )  and n = n(k, j,r, t )  are the distribution 
functions of the gas molecules and the phonons, v is the ve- 
locity of a molecule, k andj are the wave vector and polariza- 
tion of the phonon, r is the spatial coordinate, and the gas is 
assumed to be monatomic. The integration over r in (2.4) 
and (2.5) is carried out over the entire volume of the gas 
( V, ) and of the solid ( V, ) in this characteristic element. 
We make use of the kinetic equations for the gas molecules 

and the phonons: 

where I ,  and I,, are the collision integrals of the molecules 
and the phonons, respectively, and c(k, j) is the phonon 
group velocity. Differentiating relations (2.3)-(2.5 ) with 
respect to the time, replacing the derivatives af /at and an/& 
with the help of Eqs. (2.6) and (2.7), and then transforming 
from a volume integral to a surface integral in the terms 
containing a /dr, we find 

dS - = - J J:~'{,d'r - J J:"lS d2r+sg + Ss . (2.8) 
dt 

f', a s  

Here 

The integration in the first two terms on the right side of 
(2.8) is carried out over the complete surface bounding the 
gas (R, ) and the complete surface bounding the solid (R, ), 
respectively, in our characteristic element; Cg and {, are the 
outward normals to these surfaces. Assuming dS  /dt = 0 in a 
nonequilibrium steady state, and separating the integration 
over the interface boundary (0) from the integration over 
the outer surfaces of our characteristic element (6, and 
6, ) on the right side of (2.8 ), we can rewrite Eq. (2.8) as 

where 

s = s, + ss + ss,f, &=- J J:"{,hr+ J J:"'(, d2r. 
P Q 

(2.14) 

Expression (2.13) is the entropy balance equation in the 
steady state. On the left side of this equation we have the 
total entropy flux across the boundary of our system (Fig. 
2),  while on the right side we have the internal production of 
entropy in the nonequilibrium system. The quantities S, and 
S, given by (2.1 1 ) and (2.12) dissipations 
which result from molecule-molecule and phonon-phonon 
collisions in the gas volume and in the solid, respectively. 
The surface production of entropy, SSrf, in (2.14) is the jump 
in the total entropy flux at the interface. (The concept of a 
surface entropy production was originally introduced by 
Waldmann,20 in an attempt to derive by a thermodynamic 
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method boundary conditions on the moment equations of 
the kinetics of low-density gases.) To determine the explicit 
dependence of,!?,,, on the microscopic scattering laws for the 
molecules and phonons at the interface, we need to use 
boundary conditions on the distribution functions of the 
molecules and phonons (we have not previously considered 
these boundary conditions). In general, boundary condi- 
tions of this sort take the form of a functional dependence of 
the distributions of the (quasi) particles which are reflected 
from the surface ( f  + and n-)  on the distributions of the 
(quasi) particles incident on the surface ( f  -, n + ) :  

n- (r) =@ { j -  ( r ) ,  n+ (r) }, r=Q (2.16) 

When equations like (2.15) and (2.16) are taken into ac- 
count, expressions (2.9) and (2.10) lead to an expression for 
S,,, which is analogous in meaning to expressions (2.1 1 ) and 
(2.12). It relates s,,, with f -, n+,  and the microscopic pa- 
rameters of the interaction (through F and @). 

The scattering of molecules and phonons by an inter- 
face reduces to elastic scattering by the corresponding sur- 
face potentials and inelastic scattering associated with the 
exchange of energy and momentum between molecules and 
phonons. The latter also gives rise to a dependence off + on 
n+ and of n- on f - in (2.15) and (2.16). A fundamental 
point in this paper is the incorporation of the dependence of 
f + on the nonequilibrium distribution n+ and the depen- 
dence of n- on the nonequilibrium distribution f -. Bound- 
ary conditions ofthis type will be found below (Section 3) on 
the basis of microscopic considerations. At this point, we 
turn to the thermodynamic consequences of the "coupling" 
of the nonequilibrium distributions f and n at the interface. 
Regrouping terms in (2.14), we can rewrite the expression 
for the total entropy production in the heterogeneous system 
as follows: 

Since sg and J p  [see (2.9) and (2.11 ) ] depend directly on 
only the gas distribution function, the quantity s,, in (2.17) 
may be interpreted as the entropy production of the gas 
when both molecule-molecule and molecule-surface colli- 
sions are taken into account; s,, is the corresponding quan- 
tity for the solid. In this sense [cf. (2.14) ] the entropy pro- 
duction in (2.17) is additive, as is the entropy itself in (2.3). 
However, by virtue of the dependence off + on n+ in (2.15), 
it follows from (2.18), (2.9), and (2.11 ) that the entropy 
production of the gas depends on the nonequilibrium state of 
the solid. Analogously, the entropy production of the solid 
generally depends on the nonequilibrium state of the gas. As 
a result, in a unified nonequilibrium system the transport 
processes in one medium cannot in general be examined 

without reference to the transport processes in the other me- 
dium. 

When we ignore the coupling of the nonequilibrium dis- 
tribution functions f and n at the interface, we can treat Eq. 
(2.13), with (2.17), as the formal sum of two independent 
equations pertaining to different media. We are then led to a 
single-phase formulation of the thermodynamics of irrevers- 
ible proces~es.'~ [For example, an expression like (2.18) 
was used in Ref. 21 in deriving a kinetic basis for the applica- 
bility of the methods of the thermodynamics of nonsteady 
systems to the dynamics of low-density gases.] The single- 
phase approximation in a description of a nonequilibrium 
heterogeneous system corresponds to two possible represen- 
tations. The first is that in which the interaction the particles 
of the given medium with elements of other media can be 
replaced by an interaction with a given potential barrier. An 
example is the resistance of a channel in isothermal (Poi- 
seuille) flow of a gas, which is found in the zeroth approxi- 
mation by considering only the elastic scattering by the sur- 
face potential, which leads to an accommodation of the 
tangential momentum of the molecules. The second case is 
that in which the nonequilibrium medium in contact with 
the medium under consideration can be assumed to be local- 
ly in equilibrium. This assumption implies n+ = no in 
(2.15) and f - = f, in (2.16), where no and f, are corre- 
sponding locally equilibrium distributions. This approxima- 
tion is used in most problems of the kinetics of low-density 
gases (heat transfer between a gas and a surface, thermo- 
transpiration, etc. ). As for the kinetics of a solid, the pres- 
ence of a gas above its surface can usually be completely 
ignored. Perhaps the only exceptional case would be the de- 
pendence of the attentuation of surface sound on the pres- 
sure of the gas.22 

Let us return to the complete nonequilibrium system in 
Fig. 1. The entropy balance in an element of the system of 
unit length (along the x axis) will evidently again be of the 
form in (2.13). Here s is the total entropy production in the 
element presently under consideration, and the integral on 
the left side of (2.13) is evaluated over the external surfaces, 
i.e., over the two vertical planes, R'  and R", described by the 
equations x = x' and x = x u ,  which bound the element. We 
make use of the fact that in a weakly nonequilibrium system 
the distribution functions differ only slightly from locally 
equilibrium functions: 

[ ( ) - 1 .  (2.20b) no= exp - 
T, (XI  

Here p, is the chemical potential of the gas, which, like the 
temperature, depends on the coordinatex, and &(k j) is the 
energy of a phonon. Using (2.9) and (2.20a), we find the 
following expression for the total entropy flux across RL that 
part of the plane R' which intersects the gas: 
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where 0, is the total energy flux through the gas. The energy 
flux 0, and the particle number flux J i n  (2.21 ) are integrals 

mu2 of the functions v, - f o p  and u, fo q, over the surface 
2 

and over the phase volume of the molecules, respectively. On 
the right side of (2.21) we have omitted some analogous 
terms, which appear raised to a power higher than the first in 
the integrand in the expression for the function p. Analo- 
gously, using (2.20b), we find the following expression for 
the total entropy flux across R i ,  that part of the plane fl' 
which intersects the solid: 

We also write relations for the entropy fluxes across the S1' 
plane, and we substitute them along with (2.21) and (2.22) 
into Eq. (2.13). Transforming from the total energy flux 
through the gas, Z), , to the heat flux Q,, and making use of 
the linear dependence ofp  and Ton x, we immediately find 
Eq. (2.1). 

Comparing the macroscopic derivation of Eq. (2.1) 
(Section 2a) with the kinetic derivation of this equation, we 
note that the former is based on three postulates: 1 ) entropy 
balance, s = S,, /b; 2) the hypothesis of a local equilibrium, 
which in this case means the use of equilibrium thermody- 
namic relations for systems A and B (Fig. 1 ); and 3) the 
treatment of the nonequilibrium system with an interface as 
a unified whole. According to the kinetic theory, postulate 
1 ) is simply a consequence of the kinetic equations; expres- 
sions (2.20a) and (2.20b) are equivalent to postulate 2); 
and coupled boundary conditions like (2.15) and (2.16) 
correspond to postulate 3 ) .  

There is another point to be noted. In the expression 
(2.1 ) found for the entropy production and in the expres- 
sions (2.2) found from it for the kinetic coefficients, the total 
heat and mass fluxes (over the cross section of the system) 
are used. In this form, the expressions are completely consis- 
tent with experiment, where it is always total fluxes which 
are measured. It can be shown, however, that an analysis of 
nonlocal phenomena (which these interfacial cross effects 
obviously are) should be carried out in terms of local values 
of the thermodynamic forces and fluxes, coupled with each 
other by integral relations with nonlocal kernels. In princi- 
ple, relations of this sort could easily be derived by analogy 
with the derivation above [it is sufficient to return to a vol- 
ume integral on the left side of (2.13), noting that there are 
no entropy fluxes across the interface in approximation 
(2.21 ), (2.22), and then working with local fluxes]. In the 
case at hand, however, of gradients VT and Vp which are 
independent of r, the relations of this sort degenerate'' and 
reduce to (2.1 ), (2.2). 

3. BOUNDARY CONDITIONS ON THE DISTRIBUTION 
FUNCTIONS OF THE MOLECULES AND PHONONS 

In the kinetic theory of gases, the Boltzmann equation 
is used. If an interaction of molecules with a solid surface 

must be taken into account, the Boltzmann equation is sup- 
plemented with boundary conditions which relate the distri- 
bution functions of the molecules incident on the surface 
with those of the molecules reflected from it. ' Isz3. Boundary 
conditions of this type can be constructed without a rigorous 
derivation, on the basis of physical considerations. Strictly 
speaking, we also lack a formal derivation of the possibility 
of applying to a system with an interface a kinetic equation 
for a single-particle distribution function which is derived 
from an equation for a multiparticle distribution function in 
an unbounded gas.24 From the physical standpoint, how- 
ever, the validity of this formulation of the boundary-value 
problems would hardly raise any doubt. In the present pa- 
per, where we are also offering only a "physical" derivation 
of the basic equations, we are extending this approach to the 
unified nonequilibrium system consisting of a gas and a sol- 
id. Our purpose in this section of the paper is to derive 
boundary conditidns for the distribution functions of the 
molecules and the phonons, taking into account the non- 
equilibrium state of the solid and the gas, respectively. We 
assume that the surface is formed by a cleaved face of a single 
crystal and has no chemisorbed layer. As we will show be- 
low, under certain restrictions on the gas density, the tem- 
perature, and the purity of the crystal such boundary condi- 
tions can be obtained by applying the relations of formal 
scattering theory to the interaction of the molecules and the 
phonons with the surface. 

In general, the distribution function of the incident gas 
molecules, f -, and that of the molecules reflected from the 
surface, f +, are related by an equation of the 

where 5 is the unit normal to the surface, directed from the 
solid into the gas. If the (physical) adsorption of molecules 
on the solid surface can be ignored,the kernel W of integral 
transformation (3.1 ) does not depend on f - and represents 
the probability density for a transition of the molecule from a 
state with velocity v' to a state with velocity v in the course of 
scattering by the clean surface. We assume that the average 
time ta spent by a molecule in the effective range of the sur- 
face forces is much shorter than the time td for the decay of 
the vibrational state of the solid. (For the case of scattering 
of molecules by a surface without capture we would have 
ta -ro/6- 10-l2 S, where ro is a scale length of the effective 
range of the surface forces, and td is equal in order of magni- 
tude to the average lifetime of the phonons, having a value 
t ,  - 10" s both in the interior and near the surface of suffi- 
ciently pure crystals at room  temperature^.^'.'^) The scat- 
tering of molecules by a surface can be treated by dynamic 
scattering theory. The probability Wcan then be ~ r i t t e n ~ ~ . ' ~  

Heres' and s are sets of quantities characterizing the state of 
the solid respectively before and after the collision of the 
molecule, W, is the probability density for a dynamic transi- 
tion in the molecule-solid system, and p is the distribution 
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function over the states of the solid. In the approaches which 
have been taken p r e v i o ~ s l y , ~ ~ ~ ' ~  the solid has been assumed 
to be at equilibrium; correspondingly, the assumption 
p(s f )  a exp( - E,. /T) was used, where E is the energy of 
the solid. The basic feature of the theory which we are deriv- 
ing here is the incorporation in (3.2) of a nonequilibrium 
state of the solid. It turns out that when we use a special 
representation for the states s', s we can -without calculat- 
ingp-express the kernel W(vl-+v) in terms of the distribu- 
tion function of the phonons incident on the surface. In 
speaking of the states s we mean a set of occupation numbers 
{ N ,  ) of vibrational normal modes of a semi-infinite harmon- 
ic crystal. Included in this category arez8 the collective vibra- 
tions which involve either a finite number of atomic layers 
near the solid surface (surface modes) or the entire crystal 
(internal modes). For simplicity, we will ignore surface 
modes, which make an additive contribution to the nonequi- 
librium interfacial effects under consideration here in the 
single-phonon approximation, which we use below. The in- 
ternal modes are determined by specifying their asymptotic 
behavior in the interior of the crystal. They can be chosen in 
such a ~ a y ~ ~ , ~ ~  that each mode corresponds to a wave which 
is incident on the surface with a wave vector k, a polarization 
j, a frequency w (k, j ) ,  and a component of the group velocity 
c(k, j) which is normal to the surface & = dw/d kc>  0; and a 
corresponding set of reflected waves. This behavior of the 
vibrational normal modes of a solid, determined unambi- 
guously by the values of k and j of the wave incident on the 
surface, corresponds to the representation of diverging 
waves in formal scattering theory.29 Formal scattering the- 
ory relates the transition probability WD wit4 s = ( N , ~ }  
and s' = { N ;  ,) to the matrix elements of the T scattering 
operator: 

When the probability WD , which depends on the set ofinitial 
occupation numbers { N ;  ,I, according to (3.3 ), is averaged 
with the distribution function p in expression (3.2), the 
probability Wbecomes a function of the average occupation 
numbers N;, of each mode (k, j) before the collision: 

In a determination of the vibrational normal modes by this 
method, the average occupation number N;, represents the 
distribution function of the phonons which are incident on 
the surface. That function was denoted n+  (k, j) above, and 
it must obey the kinetic equation (2.7). We thus have 
W = W(vl+v; n + (k, j) ) for the kernel of the integral trans- 
formation (3.1). When we take into account the dependence 
of the probability W on the phonon distribution function, 
expression (3.1) is an unknown boundary condition on the 

distdbution function of the molecules which are scattered 
from the surface of a nonequilibrium solid. The explicit func- 
tional dependence of Won n+ (k, j) can be written only for 
processes involving the scattering of molecules by a surface 
which involve the creation (or annihilation) of a certain 
number of phonons. We will go through this procedure be- 
low (in the Appendix) in the single-phonon approximation 
for WD . 

We now take up the construction of a boundary condi- 
tion for phonons. We first consider the case in which a crys- 
tal is bordered by a vacuum. We assume that the phonon 
mean free path (A,, - lop6 cm at T-300 K; Ref. 12) is 
considerably larger than the dimension of the surface region 
(a  few atomic layersz8), where the surface has a significant 
effect on the vibrations of atoms. We also note that the an- 
harmonicity of the surface atoms is not much greater than 
that of an atom in the interior of a solid, according to experi- 
m e n t ~ . ~ '  We can thus ignore the collisions of phonons near 
the surface. In constructing the boundary condition on the 
phonon distribution function we can therefore deal with the 
scattering of phonons by a surface potential associated with 
the rupture of some of the bonds of the atoms in the surface 
layerz8 and taken into account in the harmonic approxima- 
tion. At the interface of a crystal with vacuum, the distribu- 
tion functions of the phonons incident on the surface (n+)  
and of the phonons reflected from the surface (n- ) can thus 
be related by 

where Vis the probability for the transition of a phonon with 
h from the state (mode) (k, j, ) to the state (k  j ) .  Methods 
for calculating V are given in Ref. 28. A relation similar in 
structure to (3.6) also holds3' for the case of an interface 
between two solids. 

A gas above the surface also leads to the absorption or 
creation of phonons in collisions of molecules with the sur- 
face. Using transition probability (3.3), we can write the 
change per unit time in the average number of phonons in 
some mode k, j, as 

As in the case of W, the quantity Nkl ,, depends on the distri- 
bution function of the phonons incident on the surface, by 
virtue of (3,5), and,also on the distribution function of the 
molecules: N,, = Nkl { f -, n+). In describing the vibra- 
tions of a semi-infinite solid by the method described above, 
the quantity Nkl represents that change in the flux density 
of (k, j, ) phonons incident on the surface which is caused by 
the creation or annihilation of these phonons through the 
interaction of gas molecules with the surface. Consequently, 
the boundary condition on the phonon distribution function 
at the solid-gas interface can be written 
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The boundary condition on the phonons could be writ- 
ten in a different (equivalent) way. For example, in a calcu- 
lation of WD in (3.3) on the basis of scattering theory, we 
could use a converging-wave representationz9 for s', s. This 
approach would correspond to introducing normal vibra- 
tional modes of a semi-infinite crystal, whose asymptotic 
form is a set of waves incident on the surface and a single 
reflected wave. In this case, wkj would depend on the distri- 
bution function of the phonons reflected from the surface 
and would not appear inside the summation on the right side 
of (3.8); instead, it would appear additively on the left side 
of (3.8). However, this way of writing the boundary condi- 
tion is less convenient for use in a kinetic theory. 

It is not difficult to show that the generalized boundary 
conditions on the molecules and phonons satisfy some gen- 
eral requirements which we would expect from the macro- 
scopic standpoint. For example, by virtue of the normaliza- 
tion of the functions WD andp in (3.2), the probability Wis 
normalized in the sense J Wdv = 1, so that the flux densities 
of molecules incident on and reflected from the surface are 
equal in (3.1 ) (there is no accumulation of molecules at the 
wall). In contrast, despite the normalization of the probabil- 
ity V in (3.8), in the scattering of phonons by a solid-gas 
interface in a nonequilibrium system the flux densities of 
incident and reflected phonons (i.e., the energy fluxes) are 
not equal, because of the condition Iji #O. If f - = fo and 
n + = no, where fo and no are equilibrium distributions with 
an identical temperature, we have wk, ,, ( fo,no) = 0. In this 
case, relations (3.1 ) and (3.8) lead to f + = fo and n- = n,, 
as they should in an equilibrium system. 

To pursue the calculations and also to determine the 
physical meaning of the coupling of the nonequilibrium dis- 
tribution functions of the molecules and the phonons at an 
interface in a weakly nonequilibrium system, we find it con- 
venient to rewrite boundary conditions (3.1) and (3.8) in a 
linearized form, making use of (2.20a) and (2.20b): 

I eG I n o r  (k j )  = dv9G ( v f -  k j )  rp- (v') 

- V'G<O 

Here 

and the kernels Wo, P, G, and R of integral transformations 
(3.9) and (3.10) depend only on the locally equilibrium dis- 
tributions fo and no and also on the parameters which deter- 
mine the dynamics of the scattering of the molecules and 

phonons. We also note that the temperature varies only in 
the direction tangent to the surface. In the Appendix we give 
expressions for the kernels W,, P, G, and R which are found 
in the single-phonon approximation for WD , which is justi- 
fied13 for the scattering of light molecules by a surface. We 
also give the explicit expressions for the kernels for the con- 
tinuum model of a solid with a boundary and with a repul- 
sive exponential potential for the molecule-surface interac- 
tion. 

In the case $ = 0, Eq. (3.9) reduces to a boundary con- 
dition which is used in the kinetic theory of gases, in the case 
in which the vessel wall can be assumed at equilibrium. The 
new term (the second term) on the right side of (3.9), which 
corresponds to the scattering of the molecules of an equilib- 
rium gas by the surface of a nonequilibrium solid, causes the 
distribution function of the reflected molecules to depend on 
the phonon distribution function. Analogously, the second 
term on the right side of (3.10) corresponds to the scattering 
of the phonons of a nonequilibrium solid by a boundary with 
an equilibrium gas. The first term reflects the additional cre- 
ation (or annihilation) of phonons at the surface due to the 
nonequilibrium nature of the gas. The kernels P and G de- 
scribe the mutual drag of molecules and phonons and are 
responsible for nonequilibrium interfacial effects, as we will 
see in Section 4. 

How is the principle of detailed balance manifested in a 
nonequilibrium gas-solid system? By virtue of the time re- 
versibility of the microscopic equations of motion, the dy- 
namic probabilities for the transitions, WD and V, have the 
property 

W D ( v f ,  sr+v, s ) = W D ( - V ,  sT+-vf ,  s f T ) ,  (3.1 la )  

V ( k , f , + k j ;  o) =V ( -k j+-k i j , ;  a), (3.11b) 

where the Tmeans time reversal. As a result of (3.1 la ) ,  the 
kernels of integral relations (3.9) and (3.10) also have defi- 
nite symmetry properties. The probability W, for the scat- 
tering of a molecule by an equilibrium wall satisfies the well- 
known reciprocity r e l a t i ~ n ~ ~ . ~ '  

This relation follows directly from (3.2), since in an equilib- 
rium solidp(sl) is a Gibbs distribution. Using (3.1 la )  and 
(3.1 lb) ,  we easily find the following results for the kernels 
R,  P, and G from expressions (A.7),  (A.8), and (A.9) in the 
single-phonon approximation: 

Rkj=-R-kj, (3.13) 

[ n , ( k j )  +I] P ( k j - t v )  =G ( - v - t - k j ) .  (3.14) 

These relations are analogs of reciprocity relation ( 3.12) for, 
respectively, the scattering of phonons by an interface with 
an equilibrium gas and for the interaction between nonequi- 
librium subsystems of molecules and phonons. Relation 
(3.14) leads to Onsager relations for the interfacial cross 
kinetic coefficients [L ,; = L,  , i = 1, 2 in (2.2) 1, as we will 
show below. 
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Although the new reciprocity relations in (3.13) and 
(3.14) were derived here in the single-phonon approxima- 
tion, we made no additional assumptions, other than proper- 
ties (3.1 l a )  and (3.1 lb ) ,  in their derivation. Accordingly, 
analogous relations apparently hold in the general case. 

4. TRANSPORT PROCESSES IN A NONEQUlLlBRlUM GAS- 
SOLID SYSTEM 

To calculate the kinetic coefficients Li j ,  i, j = 1, 2, 3 
[see (2.2) 1,  of a nonequilibrium gas-solid system (Fig. 1 ), 
we need to jointly solve kinetic equations for molecules and 
phonons. We restrict the discussion below to the case of a 
collisionless gas (Kn = A, /d> 1 ), in which transport pro- 
cesses are determined entirely by the interaction of mole- 
cules with the surface, so that the interfacial cross effects 
should be manifested to the greatest extent (Section 2) .  A 
generalization to arbitrary values of Kn would require the 
additional use of  method^^'.^^ of the kinetic theory of gases, 
and this generalization is not of fundamental interest. We 
will therefore ignore the collision integral in Boltzmann 
equation (2.6) (unless otherwise stipulated). To avoid com- 
plicating the calculations with points which are not of funda- 
mental importance, we use the phonon collision integral in 
(2.7) in the T approximation: 

Iph=-- [ n  ( k j )  -no ( k j ) ]  t,-I. 

Choosing the coordinate system in such a way (Fig. 1 ) that 
the xy plane coincides with the lower surface, while the up- 
per surface is described by the equation z = d, and using 
(2.10a) and (2.20b), we can rewrite kinetic equations (2.6) 
and (2.7) in linearized form: 

Here 

As boundary conditions on the distribution functions of the 
molecules and the phonons at the surface z = 0, we use rela- 
tions (3.9) and (3.10), derived above. For simplicity, we 
assume that the reflection of molecules and phonons from 
the z = d surface is diffuse: 

Here and below, the plus and minus signs specify the distri- 
bution functions of the molecules and phonons which are 
moving respectively upward (u, > 0, c, > 0 )  and downward 
( v ,  < 0, c, < 0) .  The boundary conditions in (4.3) corre- 
spond to, for example, reflection from a very rough wall and 
are used in calculations by most a ~ t h o r s . ~ ~ , ~ '  In the present 
paper, this formulation of the problem makes it possible (on 
the one hand) to incorporate nonequilibrium interfacial ef- 
fects [between the gas and the lower (z < 0 )  solid] and (on 
the other) to solve the problem analytically, by reducing the 
system of integral equations on (3.9), (3.10) to algebraic 

equations. The solution of system of equations (4.1 )-(4.3), 
(3.9), (3.10) leads to the following expressions for the dis- 
tribution functions of the gas molecules and of the phonons 
of the lower solid ( z  < 0 )  : 

I$+ (kj, Z) =-C, ?-,K2, z<O. (4.7) 

Using distribution functions (4.4)-(4.7) to calculate 
the flux densities of the number of particles and of the heat in 
the gas and the solid, and transforming to the total fluxes 
over the cross section of the system, we find expressions for 
the kinetic coefficients L i j  in (2.2). Below we give expres- 
sions for all the coefficients except L,,; in the case A,, ( D ,  
that coefficient reduces to the product of the volume thermal 
conductivity of the solid and its thickness D, and is of no 
interest. The interfacial kinetic coefficients are 

v, 
L,i=-da loc.rS J dv' G ( v f - k j )  (L"), i=I, 2  

kj(e,<o) r z ' c o  
L'z 

(4.9) 
A l = l ,  Az=mvV2-5 T / 2 .  

replacing the kernel P by the kernel Gin (4.8) in accordance 
with reciprocity relation (3.14), and changing the notation 
of the integration variables, we see that Onsager relations 
hold for the new kinetic coefficients: L,, = L ,(, i = 1,2. 

Let us compare the interfacial kinetic coefficients L a ,  
i = 1, 2, which are related to the drag exerted on molecules 
by phonons, with the coefficients Li j  , i, j = 1,2, found in the 
(single-phase) kinetic theory of gases. The latter coefficients 
have been calculated in many p l a ~ e s ' ~ , ~ ~ , ~ ~  through the use of 
simple boundary conditions of the type (4.3). To the best of 
our knowledge, there has been no previous analysis of the 
microscopic dynamics of the scattering in this connection. 
Calculations using (4.4) and (4.5) lead to 
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x 3 dvtu,'f0 (u') Aj (u') Wo (vt-v) ; i, j=1,2 (4.10) 
~ z ~ < o  

Using the reciprocity relation (3.12) for Wo, we can easily 
verify that the single-phase kinetic coefficients in (4.10) sa- 
tisfy the familiar16 Onsager relations L12 = L2,. The first 
term in (4.10) is the solution of the problem for the case of 
diffuse reflection of molecules from both walls, as is easily 
shown. The second term incorporates the microscopic scat- 
tering dynamics at the lower wall under the assumption that 
this wall is in equilibrium. The integral in the first term di- 
verges. This fact, which has been established previously for 
the problem of gas flow in a plane gap, is a consequence of the 
circumstance that molecules having a sufficiently small nor- 
mal velocity component v, travel arbitrarily large distances 
through the gap without undergoing collisions. In order to 
find finite values of L,,, i, j = 1,2, we must either (a )  take 
into account the finite length or finite width of the channel,34 
if one or the other is smaller than A, ,or (b)  take into ac- 
count the collision integraP3 in (4.1 ), if we are interested in 
an infinite channel at large but finite Knudsen numbers. We 
will not reproduce the calculations, which have been report- 
ed elsewhere; we simply note that in the latter case the first 
term in (4.10) is proportional to (ylln Kn + y,), where y, 
and y2 are coefficients whose values depend on the particular 
model chosen for the collision integral. The second term in 
(4.10) may also diverge if the scattering by the surface de- 
scribed by the probability W, incorporates, in addition to 
other processes, specular reflection of the molecules, which 
does not lead to slowing of the gas flow. Calculations carried 
out with the helpofexpression (A.6) for Wo show that in our 
single-phonon approximation the divergent part of the sec- 
ond term in (4.10) agrees to within a constant factor with 
the first term in (4.10). As a result, the coefficients y, and y, 
are redefined and no further problems arise in the calcula- 
tions of L j j  , i, j = 1, 2. The interfacial effects L, and L 3i, 
i = 1,2, stem only from the inelastic interaction of the mole- 
cules with the surface, so that the integrals in (4.8) and 
(4.9) do not diverge. 

A calculation of the kinetic coefficients in (4.8)-(4.10) 
with the help of expressions (A.6)-(A.8) leads to the fol- 
lowing results: 

where y,, y,, and y3 are constants of order unity, and c, is the 
transverse sound velocity in the solid. The kinetic coeffi- 
cients L,,, L23, and L32, which are associated with heat 
transfer in the gas, are similar in form to (4.11)-(4.13), 
differing by an unimportant redefinition of the constants. 
The quantities B, in (4.1 1 )- (4.13 ) are 

where p, is the density of the solid, and w, is the Debye 
frequency. The quantities bi are defined by 

Here 

c, is the longitudinal sound velocity, and 9 and q, are the 
spherical angles specifying the orientation of the phonon 
quasimomentum vector k. The expression for b2 differs from 
(4.16) through multiplication of the integrand by (u2 - 5/ 
2). The quantities bi in (4.16) and (4.17) are functions of 
the parameters ct/cl and 7, = hc , /T .  It can be shown 
that under the condition 7, ) 1 we have b, -7; 3, i = 1,2,3, 
while at 7, 5 1 the quantities bi depend only weakly on 7, 
(no more strongly than 7 2  ) . Calculations from (4.16) and 
(4.17) with ct/cl = 0.6 and 7, = 1 yield b, = 2.4-lop3, 
b, = 0.8.10-3, and b3 = 3.6.1OP3. 

The quantities B, , i = 1,2,3, in (4.11 )-(4.13) incorpo- 
rate the single-phonon scattering of molecules by the z = 0 
surface. In the case Bl = B, = 0, expressions (4.1 1 ) and 
(4.12) correspond to the flow of a gas through a channel one 
of whose walls reflects molecules diffusely, while the other 
does so in specular manner. In the limit Kn-m, we have 
Lll/L12 = 2/T, which is the same as the result published 
previously, obtained through the use of a specular-diffuse 
model for boundary conditions for the gas distribution func- 
tion. Deviations from this relation have been observed in 
several experiments3': these deviations depend on the parti- 
cular gas and the particular solid. It follows from (4.11 ) and 
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(4.12) that such deviations could be associated with quanti- 
ties of the type Bl and B,, which incorporate the dynamics of 
the molecule-surface interaction at a microscopic level. At 
present it is difficult to make a detailed comparison of ex- 
pressions (4.1 1 ) and (4.12) with experiment, primarily be- 
cause experiments generally use rough surfaces covered with 
some uncontrolled chemisorbed layer, while the calcula- 
tions were carried out for scattering by a clean crystal sur- 
face. 

Expression (4.13 ), which we have derived for the inter- 
facial cross coefficient L,,, corresponds to what we would 
expect on the basis of physical considerations (Section 2) ,  
since we have c, rS -Aph. The quantity B, in (4.13) repre- 
sents a coefficient for the "transfer of a deviation from equi- 
librium" from the solid to the gas or a coefficient for the drag 
exerted on molecules by phonons. Substitution of the corre- 
sponding quantities into (4.15), for gaseous He and a quartz 
surface at room temperature, for example, yields B,=O. 1; 
for bismuth or tin surfaces we find B, ~ 0 . 2 ;  and for titanium 
and aluminum surfaces we fiild B, ~ 0 . 0 3 .  The result B,( 1 is 
a predictable consequence of the use of the single-phonon 
approximation, which will always (within its range of appli- 
cability) lead to approximately specular scattering.', For 
heavier gas molecules, for which multiphonon processes are 
important, and the probability for inelastic scattering of the 
molecules by the surface is higher, we would expect B, - 1. 

Formally extending expression (4.14) to amorphous 
solids, we find B, - 1 for He and for polymer materials with a 
low density and a low sound velocity. Consequently, the ef- 
fects of the phonon drag on the molecules are seen most 
clearly in the porous polymer filters which are widely used 
for gas separation and also in polymer nuclear filters., 

The logarithmic term in (4.11 ) and (4.12) is a conse- 
quence of the plane geometry of the problem. In the case of a 
cylindrical channel (a porous object) this term should be 
omitted, while otherwise these expressions would retain 
their form with slightly redefined coefficients. It follows 
from a comparison on (4.11 ), (4.12), and (4.13) that in thin 
channels of size d-A,, the phonon drag on the molecules 
( - L ,,) is comparable to thermotranspiration ( - L ,,) and 
also (under the condition VT/T-Vp/p) to the isothermal 
conductivity of the channel ( -L,, ) . 

The new kinetic coefficient L13 has a temperature de- 
pendence different from L, ,, L,,, determined primarily by 
the T dependence ofA . w e  know12 that we have A,, cc T - ' 
at BhD and& aFh-5at  ~ ( t i ~ ~ . ~ s i n g  (4.131, (4.15), 
(4.17), and (2.2), we find that the gas flux in the channel 
associated with the phonon drag on the molecules is propor- 
tional to T -' at Df ieD or to T -2 at T < h D .  The tempera- 
ture dependence of the isothermal flux ( - L , , ) and that of 
the thermocreep flux ( - L ,,) are approximately T ' and 
T -Ii2. Consequently, at fixed gradients of the pressure and 
the temperature, the effect of the deviation of the wall from 
equilibrium on the gas flux in a channel should increase with 
decreasing average temperature. 

We also note that L,, is independent of the mass of the 
molecules (in contrast with L, ,  and L,, , with a mass depen- 
dence of approximately m-Ii2). This result, derived here in 

the single-phonon approximation, is apparently more gen- 
eral, since it follows from physically transparent arguments. 
For a given change in the momentum of a molecule, associat- 
ed with the creation (or annihilation) of phonons, the mag- 
nitude of the change in the velocity of the molecule is in- 
versely proportional to m, and the probability for an 
inelastic collision of a molecule with a solid is proportional 
to m. 

Among other important results we note that L 13 is pro- 
portional to the gap width d (or to the square of the diame- 
ter, in the case of a cylindrical channel, and it depends very 
strongly on the material of the solid, in particular, on c: [see 
(4.13) and (4.15) 1. The known kinetic coefficients L,,  and 
L,, are proportional to d (or to the cube of the diameter) 
and depend only weakly on the material of the channel wall. 

5. PROPERTIES OF THE FLOW OF A GAS MIXTURE IN A 
NARROW CHANNEL 

As we will show below, the fact that the phonon drag of 
the molecules, L,,, is independent of the mass of the gas 
molecules substantially changes the process by which a gas 
mixture is separated as it flows through a narrow channel, 
although this result appears at first glance to be paradoxical. 

The separation factor a for a two-component gas mix- 
ture is defined by36 

where 6 ' I '  and { "' are the concentrations of component i in 
the flow entering the channel and in the flow leaving the 
channel, respectively. If the pressure of the mixture at the 
exit can be ignored36 (emergence, into vacuum), expression 
(5.1 ) reduces to the ratio of the flow velocities u"' and u"' of 
the components in the channel: a = u"'/u'~'. 

It is an elementary matter to generalize the theory de- 
rived above to the case of a mixture of gases, since the motion 
of each of the components of the mixture in the channel is 
independent in the collisionless case, determined exclusively 
by collisions of molecules of the given type with the surface. 
For the flow velocity of component i we can write 

Herep"' and n"' are the partial pressure and the density of 
mixture component i, and the kinetic coefficients LC'' are 
determined from expressions (4.11 )-(4.13) with m = m"' 
and n, = n"' . [Expressions (5.2)-(5.4) are written in vec- 
tor form solely for convenience below; we will not take up 
here the tensor properties which the kinetic coefficients 
could in general exhibit.] Since L is independent of m"' 
we can omit the index i from uli' in (5.4). Using (5.2)- 
(5.4), we can write the separation factor as 

53 Sov. Phys. JETP 63 (I), January 1986 Borman et a/. 53 



where a, = uA"/u~~'. In deriving (5.5) we assumed for defi- 
niteness U , < U ~ )  and rn'2'>rn'1'. If we set L ti', L i;' 
c [m"' ] -'I2, as is usually assumed in the l i t e r a t ~ r e , ~ ~  we 
can reduce the expression for a, to the usual expression for 
the ideal separation factor: a, = (rn'2'/m'1') I". 

For isothermal flow of a mixture (VT = 0 )  we u ,  = 0 
[see (5.4) 1, and the separation factor in (5.5) is equal to a,. 
Expression (5.5) again leads to the result a = a, in the case 
of nonisothermal flow in a large-diameter channel (but un- 
der the condition Kn) 1 ), in which case the phonon drag on 
the molecules can be ignored. In a narrow channel with 
d -A,, (A,, - 100 A at T- 300 K) ,  however, the separation 
process is quite different under isothermal and nonisother- 
ma1 conditions. If the values of VP'~' and VT are such that we 
have u, - uA2', the separation factor a is quite different from 
a,. It follows from (5.5) that we have a > a ,  if the tempera- 
ture gradient is directed opposite the pressure gradient. In 
this case, however, the flow velocity of the mixture [see 
(5.2) 1 will be lower than in the isothermal case. If, on the 
other hand, VT and vp'*' are in the same direction, the flow 
rate of the mixture in the channel will increase, and we will 
have a <a,. The reason for this behavior of the mixture is 
that the phonon drag on the molecules, which is independent 
of the nature of the gas, leads to an identical decrease (or 
increase) in the flow rate for the two components and thus 
an increase (or, respectively, decrease) in the ratio of the 
flux densities of the light and heavy components. 

In this case of flow in a channel, the separation factor 
could in principle be increased without bound in this man- 
ner. If the flow of the heavy component is cut off entirely, 
and we have up' = - u, ,  u ' ~ '  = 0, we find a = a. An im- 
portant point is that although the flux density of the light 
component does decrease, it remains nonvanishing: 
"(1)  - ( 1 )  - u, (a, - l)/a,. In a real porous medium, a will of 
course always be finite because of the distribution in pore 
diameters. 

To the best of our knowledge, there has been no pre- 
vious special study of the nonisothermal flow of gases in 
narrow channels. The literature does, on the other hand, 
reveal data which suggest that the effect predicted here has 
already been observed experimentally. has reported 
observing a separation of an isotopic mixture of oxygen, 
016018-0:6, with an anomalously high separation factor, 
a=  1.2 at T-77 K, in contrast with the normal value 
a=  1.024 at T- 300K [cf. (rn'2'/rn'1') 'I2 = 1.031. Haul 
studied the effect of surface diffusion on the separation. Sub- 
sequent theoretical and experimental showed 
that for this particular mixture surface diffusion does not 
give rise to a significant increase in a in comparison with the 
value in ordinary gas diffusion, and the unique results of Ref. 
37 have gone ~nexp la ined .~~  

Estimates of the average pore diameter (d,, of the filter 
used in Ref. 37 yield d,, - 100 A (this estimate is based on 
the specific surface area, the porosity, and the size of the 
sample, which were reported there). The presence of a sig- 
nificant temperature drop across the filter, a poor heat con- 
ductor of thickness - 1 cm, during its cooling by liquid ni- 
trogen would be extremely likely, since reported no 

special measures to stabilize the temperature of the system. 
The anomalously large value found for the separation coeffi- 
cient in Ref. 37 might therefore be a consequence of the 
phonon drag on molecules which we have been discussing in 
this paper. 

We wish to thank V. M. Zhdanov, L. A. Maksimov, and 
B. I. Nikolaev for a discussion of these results and for useful 
advice. 

APPENDIX 

To find explicit expressions for the kernels W,, P, G, 
andR in boundary conditions (3.9) and (3.10) on the distri- 
bution functions of the molecules and the phonons at the 
interface, we need to calculate the probability WD for a tran- 
sition in the molecule-surfdce system. This probability is de- 
termined by expression (3.3). We restrict the discussion 
here to the single-phonon approximation (the first Born ap- 
proximation of the distorted-wave method29), which is justi- 
fied in the case of the scattering of light molecules. We modi- 
fy the methods of Ref. 13 to suit the problem at hand. 

The molecule-surface interaction potential can be writ- 
ten 

V=V,f v,, 
V ,  = x eitrVi (g) + x [e"*~,l (kj) o k j  

e+o  k j  (e,>o) 

-I- e-"""*~,"* (kj) a t j ] .  (A. 1 ) 

Here a+ and a are the creation and annihilation operators 
for phonons in the divergent-wave representation, discussed 
in Section 3, is the reciprocal-lattice vector of the semi- 
infinite crystal which is tangent to the surface, k, is the tan- 
gential component of the phonon quasimomentum vector, r 
is the coordinate of the gas molecule, and the quantities V,, 
V ;  , and V ;  depend only on the distance from the molecule 
to the surface. The first term in Vl describes, along with V,, 
the interaction of molecules with the frozen lattice, all of 
whose atoms are in their equilibrium positions; the second 
term in Vl incorporates the thermal vibrations of the solid in 
the linear approximation in the small displacement of an 
atom from its equilibrium position. Using (A. 1 ) , we can 
calculate WD from (3.3) in the first Born approximation of 
the distorted-wave method: 

where 
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Here h'-'=exp(ik,r)V;'(kj), h '+ '=  h'- '*,  and the 
functions IM) determine the motion of a molecule in the 
potential V, and constitute the solution of the corresponding 
Schrodinger equation. In writing (A.3) and (A.4). we have 
taken into account the circumstance that, for the particular 
way in which we have partitioned the potential in (A. 1 ), the 
functions IM) differ by only a phase factor in the representa- 
tions of convergent and divergent waves. l3  The quantity We, 
in (A.2) describes the elastic nonspecular reflection of a 
molecule from the surface (without any energy transfer), 
and the quantities Wk. ) have the meaning of probabilities 
for the creation (or annihilation) of a single phonon. 

The probability for specular reflection, which is not cal- 
culated directly in the single-phonon approximation for the 
partitioning of the potential in (A. 1 ), can be found from the 
normalization condition corresponding to a unit total prob- 
ability for the scattering: 

(N) u.20  

('4.5) 
Expression (A.5) can be used as a measure of the reason- 
ableness of the single-phonon approximation which we are 
using, since the probability for specular reflection which is 
calculated from (A.5) must be nonnegative. Using (A. 1 l ) ,  
we can show that this condition does hold for light gases (He 
and Ne) for molecules with energies up to - 1000 K. 

Using expression (A.2) for the transition probability, 
along with (3.2), (3.4), (3.5), and (2.20), we find expres- 
sions for the integral kernels in boundary conditions (3.9) 
and (3.10) in the single-phonon approximation: 

ki(cz>O) 

+s (v-v,') 

For specific calculations in Section 4 we need explicit 
expressions for the kernels in (A.6)-(A.9) for the model of 
the solid and for the potential of the molecule-surface inter- 
action, V. For the solid we use a model of a continuum with a 
free boundary14; the vibrational spectrum of the model is 
quantized as in Ref. 15. We choose the potential V to be 

where u(x, y )  is the displacement of a surface element of the 
continuum with equilibrium coordinates ( x ,  y,O) as a result 
of thermal vibrations. When we take the limit 9-00 in the 
final expressions, we find that (A. 10) corresponds to an infi- 
nitely high potential barrier. Using these models, we find the 
following results for the probabilities in (A.3) and (A.4): 

Here v, is the component of the molecular velocity tangent 
to the surface, V, is the volume of the solid, and the quanti- 
ties Dj, which are functions of the angle (9) between k and 
the normal to the surface, are given by expressions ( 1.7) and 
(1.12) of Ref. 15. Expressions (3.9) and (3.10), with 
(A.6)-(A.9) and (A. 1 1 ), give us the boundary conditions 
which we need for the distribution functions of the mole- 
cules and the phonons for the models which we have used for 
the solid and for the molecule-surface interaction potential. 

"Otherwise, it would be difficult to carry out a thermodynamic analysis, 
since the temperature and density of the gas would change significantly 
over a distance on the order of A, near the surface. 

''In the literatureiHsi9 we find indications that in several technical applica- 
tions (high-precision measurements of various quantities) the thermo- 
transpiration effect turns out to be important even at these high pres- 
sures. According to the estimates here, interfacial cross effects may also 
be important in these cases. A resolution of this question requires addi- 
tional analysis, which we will report separately 
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