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The dispersion of intense Langmuir waves is determined by an intrinsic (electron) nonlinearity. 
Generally, the wave energy density needed for the electron nonlinearity to appear is reached, 
prior to the development of dissipative processes. Until now, the influence of the electron nonlin- 
earity on the dynamics of the collapse and on the spectrum of strong Langmuir turbulence, which 
may be quite significant, has not been investigated extensively, because of the difficulty in describ- 
ing nonlinear Langmuir waves. The positive definiteness of the Hamiltonian of an electron non- 
linearity is proven in the present work. The growth rate of the modulational instability of a 
localized condensate of nonlinear Langmuir waves in a caviton is calculated and a universal 
collapse law is found. 

1. INTRODUCTION 

The first work on the collapse of Langmuir waves1 and 
most of the subsequent studies of this subject describe an 
electrostatic potential q, by a Schrodinger-type linear equa- 
tion, with the perturbed ion density n playing the role of the 
potential. The nonlinearity of the basic equations of Ref. 1 is 
revealed only via the dependence of n on the Langmuir wave 
pressure. Such a description is justified if the energy density 
Wof the waves is much less than the thermal energy density 
noTof the electrons. When W >  noT, the oscillation velocity 
of the electrons exceeds their thermal velocity and the Lang- 
muir waves become intrinsically nonlinear. A nonlinear 
equation for the electrostatic potential was derived in Ref. 2. 
This equation turned out to be quite complicated, and, as a 
result, the influence of the nonlinearity of Langmuir waves 
on their collapse could not be adequately analyzed. This 
question can be bypassed by making certain assumptions. 
For example, in the "sonic" model of ~ o l l a p s e , ~ . ~  the flatten- 
ing of the caviton increases in such a way that the threshold 
for the trapped waves instability W, -n,T(ri/a2) (a and 
rD being the smallest size of the caviton and Debye radius, 
respectively) remains always of order W. Then the Landau 
damping becomes significant before Wreaches the value noT 
and thus the electron nonlinearity does not appear. Numeri- 
cal computations do not confirm the sonic model of the col- 
lapse, but rather provide evidence, supporting the assump- 
tion that all the dimensions of the caviton have identical time 
dependence (the "supersonic" regime) .5-7 In the supersonic 
regime of the collapse, the trapped-wave energy density 
grows as aK3 and, formally, reaches the value noT at asr,. 
This indicates that electron nonlinearity may arise. There 
exist, however, several factors limiting its development. 
Firstly, Landau damping becomes significant even for a 
Maxwellian distribution, when the size of the caviton is a few 
times larger than the Debye radius. Secondly, the electron 
nonlinearity vanishes for one-dimensional oscillations (see, 
for example, Ref. 8 ), and the caviton is flattened by a factor 
of 3-5, according to numerical calculations, and therefore 
the electron nonlinearity is suppressed in this case and is 
revealed only when the wave energy density is several times 
larger than noT. These two circumstances enable us to ne- 

glect the electron nonlinearity in situations where the initial 
energy density of trapped waves in the caviton is of the order 
of the threshold for their modulational instability (see Ref. 
9) .  Generally, the question of the influence of electron non- 
linearity on the dynamics of the collapse can not be avoided, 
since at a sufficiently high average energy density of the 
Langmuir turbulence, the initial energy density of trapped 
waves in the caviton can substantially exceed the threshold 
for the modulational instability (see Ref. 10, Section 9, and 
Ref. 1 1 ) . Any initial excess is allowed, in principle, but, if the 
development of the electron nonlinearity in the process of 
adiabatic collapse is of interest, we have to require that the 
growth rate of the modulational instability y-w,, ( W /  
n,T) ' I 2  be small compared to the dispersive frequency in- 
crease Aw - wpe (& /a2) (up, and wpi being the electron and 
ion plasma frequencies respectively) for the trapped waves 
in the caviton. In particular, the caviton size a, for which W 
reaches the value of noTmust be bounded from above by the 
inequality 

g (a , )  = (ae2/rD2)  (m,lmi) '"G 1 .  (1.1) 

More accurate numerical estimates practically do not 
change condition ( 1.1). Since the domain of values of the 
parameter a, /rD defined by this condition is somewhat 
broader than the domain of strong Landau damping of 
Langmuir waves for a Maxwellian particle distribution, the 
electron nonlinearity may play a significant role in the initial 
stage of formation of the so-called accelerated electron tails. 
The models of strong Langmuir t u r b u l e n ~ e l ~ ~ ~ . ~  describing 
this process obviously should be improved, if the electron 
nonlinearity either halts the collapse or gives rise to a signifi- 
cant leak of plasmons from the caviton. The first possibility 
is ruled out by rough estimates of the lower limit for the 
decrease rate of the caviton size. The possibility of violating 
the adiabaticity of the collapse requires more refined analy- 
sis. The definiteness of the sign of the Hamiltonian He of the 
electron nonlinearity is the most important question in this 
case. If the sign is not definite, we may expect pure electron 
collapse to develop." For positive definite H e ,  the time of the 
collapse probably depends on the ion mass, but the collapse 
is not obviously adiabatic even in this case, which is more 
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favorable for assuring adiabaticity. Thus, the collapse of 
nonlinear Langmuir waves require an extensive investiga- 
tion. 

2. BASIC EQUATIONS 

The electron nonlinearity of Langmuir waves leads to 
an occurrence of the fundamental and the higher harmonics 
of the plasma frequency ape in oscillations of the electrostat- 
ic potential p :  
rp=Q+ [$  exp(-io,,t)+~.c.]+[rp~exp(-2io,,t) + c.c.]+ . . . . 

(2.1) 
The envelopes of the harmonics $, G, p,, etc., vary slowly on 
the time w; ', & and p, are quadratic functions of $, and the 
envelopes of the other harmonics are higher-order quanti- 
ties. The equation derived in Ref. 2 for the fundamental en- 
velope $ is quite cumbersome, and therefore, instead of writ- 
ing it explicitly, we find it convenient to employ the 
variational formulation 

The Hamiltonian H can be conveniently written as a sum of 
two terms, the first of which represents the supersonic col- 
lapse of ordinary Langmuir waves, while the second de- 
scribes the electron nonlinearity: 

Here, $and $, are proportional to the envelopes of the fun- 
damental and second harmonics of the electron velocity po- 
tential, and are quadratic functionals of $: 

A$=iV (A+V$*-A$*V$), (2.5) 

A$=V (V$A$) +A (V+)'. (2.6) 

The ion density perturbation n and their momentum poten- 
tial <P obey the equations 

an/3t=6 H/6@, dcD/dt=-6H/6n, 

which can be easily reduced to a single equation 

describing the evolution of the caviton in the supersonic col- 
lapse. The dispersion of the sound wave could be taken into 
account by adding the term 

to the Hamiltonian. Here 7 is the solution of Poisson's equa- 
tion 

and c, = ( T / m i  ) ' I 2  is the sound speed.,' Due to the struc- 
tural difference between the sonic and the main part of the 

Hamiltonian, the smallness of H, by itself is insufficient for 
neglecting it. When the electronic nonlinearity is absent, i.e., 
for W<noT, the correction H, ,  despite its smallness, is im- 
portant in the supersonic collapse regime, since the short- 
wavelength boundary of the domain of modulationally un- 
stable perturbations is defined exactly by the sound 
dispersion (see, for example, the Figure in Ref. 10). As the 
wave energy grows, this boundary moves towards still lower 
scales k & I ,  i.e., k ,  r, - ( W/noT). For W 2  noT the sonic 
correction is small for modulational perturbations of all 

1 scales exceeding the Debye radius and thus can be neglected. 
The short-wavelength boundary of the modulational insta- 
bility is defined, in this case, by dissipative processes. It is 
interesting that for W>noT, in contrast to the case W<noT, 
the sonic correction is destabilizing, i.e., H, < 0. 

3. POSITIVE DEFINITENESS OF THE HAMlLTONlAN 

The study of the Hamiltonian He of the electron nonlin- 
earity is complicated because this functional is of high 
(fourth) order with respect to $, and because the integrand 
in (2.4) is nonlocal. At present it has been established only 
that the functional He either vanishes for one-dimensional 
 field^^'.^ or is positive for radially symmetric fields., The im- 
portant question regarding the definiteness of the sign of He 
on the set of all localized fields $ has not been cleared up. It 
seems, at first, that this question can be easily resolved by a 
counter-example, i.e., by constructing a localized field $#0 
such that $, = 0 on it and, obviously, He < 0. Nevertheless, 
this and other more elaborate attempts to construct a 
counter-example have failed because the Hamiltonian He is 
positive definite on the ensemble of all localized fields $. The 
proof of this fact is given below. 

There exists an infinite set of equivalent representations 
of the density U of the Hamiltonian H e ,  which can be con- 
structed from each other by integrating by parts and redefin- 
ing functions nonlocally related to $. It is desirable to find a 
representation of U in the form of a sum of squares of abso- 
lute values of several quantities. It is clear that if such a 
representation exists, each of its terms vanishes on one-di- 
mensional fields $. The function $, does not possess this 
property, and thus should be replaced by the function 

After the transition from $, to F, the density of the Hamilto- 
nian of the electron nonlinearity becomes 

2 
U = -  1VF1z+2Re[VF'V(V+)21+I V ( V I ) ) ~ ~ ~  

3 
- (V 1 V$l?)"-l V$12. (3.2) 

For real (up to a phase factor independent of position) fields 
$, only the first two terms remain in Eq. (3.2). We seek to 
represent these terms as a sum of the squares of absolute 
values of several quantities and a residue which vanishes on 
real fields. The following sequence of transformations 
achieves this goal. Firstly, Eq. (3.1 ) is rewritten in the form 

Integration of Eq. (3.3) yields 
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Here the vector function F, is defined to within an additive 
term in the form of the gradient of an arbitrary scalar func- 
tion. The latter can always be chosen to guarantee that the 
field F, is divergenceless: 

Then the equation for F, is obtained from the condition that 
Eq. (3.4) for F be soluble, and, on using Eq. (3.5), has the 
form 

It is not difficult to show, by using relations (3.3H3.61, 
that 

The integration of Eq. (3.6) yields 
a Fa 
-= an,, aFa, 

eau~ - + e , ~ ,  - . a x ,  ax? 3x6 

Without loss of generality the condition 

a~,,/ax,=o, (3.9) 

can be imposed on the tensor function Fa,. Then this func- 
tion obeys the equation 

Equations (3.8)-(3.10) can be used to show that 

The trace of the tensor Fap is simply related to the original 
function F: 

Fa,=- F.  (3.12) 

Separating the traceless part of this tensor 

AaB=Fa~t1I3Ga~F 
(3.13) 

allows us to strengthen the result of the previous transforma- 
tions, because 

Combining Eqs. (3.7), (3.11) and (3.14), we have 

By employing this inequality, we can obtain the following 
representation of the density of the Hamiltonian of the elec- 
tron nonlinearity Hamilton, equivalent to Eq. (3.2) : 

U=VAUB*VAaB+Ifl2-I V$12, (3.15) 

which proves the positive definiteness of the functional He 
on an ensemble of real fields $. In order to expand the proof 
to an ensemble of all complex fields, it is sufficient to observe 
that Eq. (2.5) can be presented in the form 

A$=-div f .  

To complete the proof, we decompose the field f into poten- 
tial and solenoidal parts 

f=-V$+rot A (3.17) 

and use the obvious equality 

j d 3 r l i 1 2 = j  d 3 r ( j V $ / ' + I r o t A 1 2 ) .  (3.18) 

The representation 

U=VAa<VAae+Irot A12 (3.19) 

resulting from (3.15) and (3.18) proves the positive defi- 
niteness of the Hamiltonian of the electron nonlinearity on 
the set of all localized complex fields $. 

Without loss of generality, the vector field A can be 
assumed to satisfy the constraint 

div A=O, (3.20) 

as a result of which the condition that Eq. (3.17) for $ be 
soluble reduces to a Poisson equation for A: 

AA=-rot f .  (3.21) 

4. THE ADIABATIC APPROXIMATION 

The positive definiteness of the electron nonlinearity 
Hamiltonian shows that the collapse cannot develop without 
continually expelling ions from the localization region of the 
Langmuir waves. Due to the large ions inertia, we can as- 
sume that the caviton deepens slowly, and attempt to devel- 
op an adiabatic description of trapped nonlinear Langmuir 
waves. As in the familiar linear theory, we express the func- 
tion $ in the form 

$ ( r . t ) = a , ( q t ) e r p { i ~  h ( t , ) d t , } .  (4.1) 

where (r, t )  depends on the scale of the caviton time vari- 
ation. The equation for $A can be easily obtained from Eq. 
(2.2): 

The f~nc t iona l I [$~  ] has the meaning of the total number of 
plasmons (the wave action) and is the exact integral of Eq. 
(4.2). For a given slowly varying time-dependence of the 
caviton, the function $A can be found by successive approxi- 
mations. In lowest order we neglect the time variation of the 
caviton, i.e., the left-hand side of Eq. (4.2), and find the 
function $:"' for which the functional H[11, ] has a maxi- 
mum at a given value of the functional ]. 

~ H / G $ , ' ~ " =  0, (4.3) 
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At least one such a function certainly exists, since for a given 
value of the wave action, the Hamiltonian is bounded from 
below. In a linear problem, the Lagrangian multiplier R 'O' is 
derived from the condition that Eq. (4.3) be soluble and 
relation (4.4) is employed in normalizing the function +hi0'. 
In the nonlinear problem A 'O' depends on the value of the 
wave action and is determined by relation (4.4). By using 
Euler's formula for homogeneous functionals, one easily ob- 
tains the following equality 

where Hoe denotes the electron contribution in Ho [the last 
two terms in Eq. (2.3)]. As can be seen in Eq. (4.5), the 
quantity R 'O' is real. For a deep enough caviton, this quantity 
becomes positive and can be interpreted as the plasmon 
binding energy. 

In the first-order approximation we substitute the im- 
plicitly time-dependent function $y' into the left-hand side 
of Eq. (4.2) and solve the resulting equation for $A 

--$I0' + $1". By assuming that the correction $1') is small, 
we can limit ourselves to evaluating a [ $ A  ] up to second- 
order terms with respect to $1" 

?ere, x = (Re $;I), Im $;I)) is a two-component function, 
L is a 2 x 2 matrix self-adjoint operator depending on $y', 
and the angle brackets denote the standard scalar product. 
The first-order equation in this notation becomes 

The condition that Eq. (4.7) be soluble, is given by the 
orthogonality of th%right-hand side to the null space (ker- 
nel) of the operator L. It is assumed in the following that $y' 
is the function corresponding to the smallest of the possible 
values of the Hamiltonian H for a given number of plasmons. 
Obviousl& the function $1'' is associated with a nonnegative 
operator L. There is no positive definiteness, since the invar- 
iance of H and I with respect to the one-parameter transfor- 
mation group $+eia $, where a is a real number, yields the 
eigenfunction~, = ( - Im $y), Re @' ), corresponding to 
the zero eigenvalue of the operator L. This function is or- 
thogonal to the right-hand side of Eq. (4.7) if 

The meaning of the condition (4.8) is obvious: the inequality 
(4.4) should not be violated during the evolution process. If 
the zero eigenvalue of the operator is nondegenerate, then 
condition (4.8) guarantees the solubility of Eq. (4.7). The 
constant A ' I )  in Eq. (4.7) is chosen to eliminate the first- 
order correction to the number of plasmons. 

The smallness of $:I' relative to $2'' is guaranteed if inequa- 
lity 

is satisfied. Here y- is the characteristic time of xariation of 
the caviton, and M is the smallest eigenvalue of L on the set 
of functions orthogonal to x,. The series of successive ap- 
proximations can easily be continued. It is known that in the 
linear theory, condition (4.9) guarantees the smallness of 
the corrections at each iteration step compared to the pre- 
ceeding approximation. In the nonlinear problem there ex- 
ists an additional limitation associated with the presence of 
nonlinear terms in the higher-order equations. For example, 
in the equation for $i", in addition to idA$il)/dt, there ex- 
ists a forcing term which is quadratic with respect to $;". If 
we introduce an equivalent frequency shift SR so that this 
forcing term would be of order SRA$jl), then the second 
condition on the smallness of $y' relative to $il) assumes 
the form 

These conditions for the applicability of perturbation theory 
are not always necessary. For example, when the electron 
nonlinearity is weak, condition (4.9) is not satisfied and per- 
turbation theory cannot be employed. Inde%d, when the elec- 
tron nonlinearity is absent, the operator L is equal to the 
product of the unit 2 x 2 matrix with the scalar operator: 

h 

Next, the zero eigenvalue of operator Lo is assumed to 
be nondegnerate and located far from the rest of the eigen- 
values of Lo. Then we can apply the conventional theory of 
adiabatic perturbations to Eq. (4.2) and without loss of gen- 
erality the function $jO' can be assumed to be real. In the 
absence of thezlectron nonlinearity, the zero eigenvalue of 
the operator L is doubly degenerate, i.e., in addition to 
xo = (0, $iO'), the function io = ($y', 0 )  also belongs to 
the kernel. Therefore, M = 0 and the condition (4.9) is not 
satisfied. The necessary condition for the solubility of (4.7), 
i.e., the orthogonality of io to the right-hand side of this 
equation, yields R ' I '  = 0. A weak nonlinearity spjts the ini- 
tially degenerate zero eigenvalues of operator L into two 
eigenvalues, one of which is still zero and the other, M, is 
proportional to the nonlinearity. Due to the nonlinearity, 
the projections of the right-hand sides of (4.7) and higher- 
order equations on an eigenfunction of the operator L close 
to io no longer vanish, but remain proportional to the non- 
linearity like M, thus justifying the use of the perturbation 
theory. 

It is instructive to observe that an initially real function 
$:I) of the first-order approximation remains real in the pro- 
cess of the adiabatic collapse, despite a possibility that an 
evolved electron nonlinzarity can have complex solutions of 
Eq. (4.3). The matrix L is diagonal on the real field $jO': 
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A A 

Here L ,  and L, are scalar self-adjoint operators. InAthe ab- 
sence of an electron nonlinearity they afe equaAto Lo. As a 
result of the nonlinearity the operators L ,  and 15, are differ- 
ent. WithJhe above assumptions, the operator L,  is positive 
definite, L, is nonnegative and a singk eigenfunction $I0' 
corresponds to the zero eigenvalue of L,. Due to the invar- 
iance of Eq. (4.2) under the time reversal and complex con- 
jugation for a real field +;'', corrections to the real and 
imaginary parts of $A arise only in even and odd orders, 
respectively. In particular, the equations in the first two or- 
ders have the form 

(1)- a ( 0 )  
2 n ~ , , 2 ~ $ ~  - i - A$A , h'" = 0; (4.11) 

at 

The variation of the functional H j2' in Eq. (4.12) is evaluat- 
ed at the point 

(0' (1) 
Re $A = $A , Irn$~=-i$r . 

The functional H L2' is the part of He which is quadratic in 
Im $A and Re $A. The quantity 2 '2' is defined by the condi- 
tion 

I(2) = d3r (2 v $;@) v$:" 4- 1 v$:') 1 ') = 0. 

When the series of successive approximations has this struc- 
ture, condition (4.10) is redundant for two reasons. Firstly, 
the characteristic value w ;  ' of the operator A (w,, L + ) -' 
associated with the last term in (4.12) can be much less than 
(M ) - '. Secondly, the limitation +I2' <$;" imposed above 
is unnecessary now for justifying the iterative procedure and 
can be replaced by a weaker limitation $I2'<$;''. This en- 
ables us to replace (4.10) by the condition 

where 62, is the equivalent frequency shift, defined so that 
the last term in Eq. (4.12) is on the order of SA,A+~". 

5. THE GROWTH RATE OF THE SMALL-SCALE INSTABILITY 

The deepening of the caviton is caused by the modula- 
tional instability. As was mentioned above, at the onset of 
the electron nonlinearity W- noT and the short-wavelength 
boundary of the domain of modulationally unstable pertur- 
bations reaches the Debye radius. This conclusion is based 
on the well known behavior of the growth rate of the modu- 
lational instability at W<noT, when the electron nonlinear- 
ity is negligible. For W%noT the dependence of the growth 
rate on the wavelength of the perturbation has not been ade- 
quately investigated. Nevertheless, the question of the char- 
acter of this dependence is important, since if the perturba- 
tions with wavelength short compared to the size of the 
caviton develop faster than the other perturbations, then the 
caviton will break up. Otherwise, the caviton as a whole can 
collapse. Reference 2 has shown that the electron nonlinear- 
ity does not affect the modulational instability of a uniform 
field. Therefore, the contribution of the electron nonlinear- 

ity to the short-wavelength instability is suppressed by a fac- 
tor characterizing the quasiclassicality of the perturbation, 
and equal to the ratio between the wavelength of the pertur- 
bation and the spatial scale of variation of the field. On the 
other hand, the contribution of the electron nonlinearity is 
enhanced by a factor W / n o B  1, and thus can be dominant 
even for short-wavelength perturbations. Therefore, the 
growth rate of the modulational instability of a localized 
condensate of nonlinear Langmuir waves is unknown and 
has to be evaluated in order to understand the dynamics of 
the collapse. 

Let A, n, and +A be solutions of Eqs. (2.7 ), (4.2) and let 

~n=Ue'k '~c.c . ,  ij$A=X+e'kr+~-e-ikr (5.1) 

be a small perturbation of this solution. For small-scale per- 
turbations, considered here, the exponentials in (5.1) are 
rapidly oscillating functions of the spatial coordinates. To 
the lowest significant order to the WKB approximation, the 
linearized equations (2.7) and (4.2) are 

wheres = + , u+ = u, u-  = u*. In evaluating thequadratic 
perturbation H L2' of He ,  we proceed from the representa- 
tion (3.19), since otherwise we initially encounter terms 
proportional to high powers of k, which later cancel each 
other. The terms associated with the real and imaginary 
parts of the field +A may have different structures, and in 
particular contain different powers of k. In order to take into 
account the possible competition between the adiabaticity 
parameter (in terms of which the imaginary part of $A is 
small) and other parameters, we have to evaluate H j2' on 
complex fields . According to ( 3.19), 

Here, A$, A"' ( i  = 0, 1, 2)  are the ith order terms in the 
expansions of fields Aa8, A in terms of the amplitude of 
the perturbation. By using Eqs. (3.3), (3.10), (3.12), 
(3.16) and (3.21 ) it is easy to find that the first three terms 
in (5.4) are quadratic and the last term is cubic in k. On the 
other hand, the last term vanishes on a real field $A and 
hence is small in terms of the adiabaticity parameter and can 
be found by ignoring the quadratic corrections in k. The 
third term in (5.41, which also vanishes f ~ r  real $A and S$A, 
differs structurally from the corrections given above. In par- 
ticular, it does not vanish for imaginary pert~rbationsS$~ of 
a real field $*. Thus, we have to take into account all four 
terms in Eq. (5.4). The final result for H j2' is presented in 
the following form: 
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The indexes of the coefficients Pi (i  = 1, 2, 3 ,4)  denote the 
number of the corresponding term in Eq. (5.4). Equations 
for the coefficients Pi simplify in the coordinate system with 
one of the axes (say the z-axis) in the direction of the wave 
vector k: 

I dZA,  1 d2Auu dZA,  + - - 
2 azz ax d l / '  

(5.6) 

d y d z  

By substituting Eq. (5.5) into Eq. (5.3) and neglecting the 
term with ax, /at, which is small with respect to the adiaba- 
ticity parameter, we can expressx, via u: 

(5.7) 
Here, we have introduced the notation 

By taking Eq. (5.7) into account, we can rewrite Eq. ( 5.2) in 
the form 

wpi"P+P,+P3) I kV$rl + Re[ (Pz f  Ps) ( k V ~ a ' ) ~ l  
=- - 

x (P+Pi+P,)2 - P,z - I PZ+P, l 2  
(5.10) 

Expression (5.10) is simplified significantly for a real field 

The condition 

PA2+ (Im P3)2+/P,+  Pa/ IP3-Re PSI 

must be satisfied for the real-field approximation to hold. 
Equation (5.10) allows us to calculate the growth rate 

of the modulational instability in the entire region 
a-'gkgr;  ', where a  is the smallest characteristic dimen- 
sion of the caviton. In the long-wavelength limit, this equa- 
tion yields an estimate for the characteristic time y - ' for the 
caviton to deepen. The necessary stability condition of the 
caviton as a whole is given by the inequality yk 5 y. Simple 
analysis of the dependence of the right-hand side of Eq. 
(5.10) on k  shows that this inequality is satisfied only when 

the linear dispersion term k  2 r i  is significant even for 
k - a -  '. In this case, the electron nonlinearity does not influ- 
ence the development of fluctuations with k s a - ' ,  and their 
growth rate does not depend on k and is on the order of y: 

When the growth rate y, of the small-scale instability is 
less than y, the convective character of the instability must 
be taken into account. Any point r, except the point r, to 
which the caviton is collapsing, sooner or later lies outside 
the limit of the main energy condensate, and thus, also, be- 
yond the strong-instability region. Hence for y, - y  the 
threat to the stability of the caviton comes only from small- 
scale perturbations, localized in its central region. The con- 
dition 

dZn (rs, t )  
lim Rk-' (rs, t )  n-' h, t ) - - -  2 4 
i-1 a tz 

is necessary and sufficient to prevent the growth of the rela- 
tive magnitude of these perturbations. Here, t, is the instant 
at which the singularity is created. In the absence of the 
electron nonlinearity, this condition reduces to that ob- 
tained in Ref. 10. 

6. DYNAMICS OF THE COLLAPSE (ESTIMATES) 

The simplest assumption on the form of the caviton is to 
characterize it by a single length scale a. For a single-length- 
scale caviton, the linear dispersion term in Eqs. (4.2) and 
(5.10) is less by a factor W/n,T than the nonlinear term. As 
has been found above, in this case the short-wavelength in- 
stability develops much faster than the instability on the 
main scale. Hence the estimates related to the one-dimen- 
sional caviton (see Ref. 10, Sect. lo) ,  give only the lower 
limit on the velocity of the collapse. The development of the 
short-wavelength instability must give rise to a second 
length scale in the caviton. The simplest possibility of this 
kind is that the caviton flattens in a certain direction. Let a  
be the characteristic thickness of the flattened caviton and 
b s a  be its diameter. In estimating the energy of the electron 
nonlinearity, it is useful to note that, like an electrostatic 
potential, the function Aa8 obeys Poisson's equation [see 
Eqs. (3.10) and (3.13) 1. The "charge density" in this Pois- 
son equation is on the order of W / b  and is concentrated in 
the caviton region. The field VAaB in the caviton region is of 
the order of ( W / b  2,  a  and the density of the electron nonlin- 
earity is of the order 

W e -  W2a2/nomewp,2b4. (6.1) 

If the terms associated with the plasma density decrease and 
the linear and nonlinear dispersions are equally important in 
Eq. (4.2), the corresponding energy densities must be of the 
same order. This condition yields the following estimates 

In closing the system of the equations we must determine the 
relation between the wave energy density and the dimen- 
sions of the caviton. The condition Wab = const which sug- 
gest itself turns out to be wrong. The reason is that the inte- 
gral along the flattened direction of the caviton (say the 
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z-axis) of the "charge density" in the equation for Aa8 does 
not vanish automatically, and the terms ofthe form a 'J/Jx2, 
a 'J/ay2, 6' 2 J / d x ~ y  are left, where 

OD 

I = dz(a$ddz) ' .  (6.3) 
-OD 

If we estimate these terms roughly by a 2J /ax2 - Wa/b ', we 
should conclude that the field VAa8 is of the order of Wa/b 
not only in the caviton, but also in the entire interior of a 
sphere of radius of order b. Due to the equality between the 
different types of the energy densities, the total energy of the 
electron nonlinearity He would be larger by a factor b /a 
than the contribution to the Hamiltonian associated with the 
density decrease, and could not be compensated for by this 
negative contribution. Conservation of H would forbid the 
growth of He and the development of the collap~e.~'  There- 
fore, the collapse can develop only in such a way that the 
field VAaB does not "fall out" from the caviton. This is 
achievable if the quantity J ,  defined in Eq. (6.3), does not 
depend on x and y at distances r 5 b from the axis of the 
caviton. Let c)b be the spatial scale on which the function 
J(x,  y )  decreases and W(r), n ( r )  and a ( r )  be the character- 
istic values of the energy density of the waves, the depth and 
the width of the caviton, respectively, at distance r 2 b from 
its axis. From arguments like those used in reducing Eq. 
(6.2), we can obtain the estimates 

n ( r )  /no-  W ( r )  a2 ( r )  lnom,op,2r4 - rD21a2 ( r )  . (6.4) 

Noting that quantity 

does not depend on r, we can easily establish that 
~ z ( r ) - a ( r / b ) " ~ ,  W ( r ) - W ( b l r ) " a ,  n ( r ) -n (b / r ) s 'B .  

(6.6) 
The prohibition against the r-dependence of J is removed at 
the distance r-c from the axis, such that the width of the 
caviton is comparable to r: 

C -  b4/a3. (6.7 

From the conservation of the total number of trapped waves 
in the process of the adiabatic collapse, we have the follow- 
ing relation: 

Jc2=const. (6.8) 

As a result of Eqs. (6.2), (6.5) and (6.7) 

J -  Warn b'/a3- c. (6.9) 

The comparison of this estimate with (6.8) shows that the 
quantities Jand c do not vary during the collapse. The time- 
dependence of other quantities is found by using the esti- 
mates given in this section and the estimate (5.13) for the 
growth rate of the modulational instability, 

Wrnf-2,  amS2, b ~ m P ,  nmf-'  (f=t,-t) .  (6.10) 

The coefficients in Eqs. (6.10) are easily reconstructed from 
the known values of all the quantities at the onset of the 
electron nonlinearity. At the onset 

W - n o T ,  a- b-c-a,, n-no ( r , / ~ , ) ~ .  

It is useful to notice that the time-dependence disappears in 
Eqs. (6.6): 

' I s  

n ( r ) - n u g ( : )  , 
fie" 

since the caviton parameters in the region r s b  do not vary 
much while the central part of the caviton collapses. 

In order to find the domain within which these esti- 
mates are applicable, we have to ascertain how long the col- 
lapse remains adiabatic when the electron nonlinearity de- 
velops. The "binding energy" A of plasmons, by definition, 
does not depend on r and is determined by the depth of the 
caviton at r-a,. Together with the depth, the quantity A 
does not change its order of magnitude during the develop- 
ment of the electron nonlinearity and remains of order 
a,, (r, /ae )'.The growth rate y (a, ) of the modulational in- 
stability on the periphery of the caviton also does not vary 
and remains of order wpi, but at the center of the caviton it 
grows as y(a)  - ~ " ~ - a - ~ ' ~  and, in principle, can become 
larger than A. 

For y(a)  2/2, there is a danger that initially trapped 
particles in the caviton will undergo a transition izto the 
states of the continuous spectrum of the operator L2 with 
frequencies w 5: y (a ) .  Simple estimates show, however, that 
the main contribution in the convolution integral of this 
state with the right-hand side of Eq. (4.11 ) comes from the 
periphery of the caviton. Therefore, the condition (4.9) con- 
tains y ( ~ )  and remains practically unchanged while the 
electron nonlinearity develops. The imaginary correction 
$A1) can still be estimated by 

The verification of the condition (4.3), requires more de- 
tailed consideration of the central region r 5 b of the caviton, 
since this region gives the main contribution to the right- 
hand side of Eq. (4.12). TheAcontrib^utions of the electron 
nonlinearity to the operators L l  and L2 in the central region 
of the caviton can be estimated by 

L,- W/nom,op,2b4, L2-  ( b l a )  'L , .  (6.12) 

Remarkable difference between the "hardness" of the elec- 
tron nonlinearity with respect to real and imaginary pertur- 
bations of a real field can be explained by the fact that the 
second term in Eq. (3.19), containing the largest number of 
derivatives in the direction of the flattening of the caviton, 
vanishes on real fields $. For an evolved electron nonlinear- 
ity, the quantity w,, L2a2 (and also w,, Lla2)  significantly 
exceeds the binding energy of the plasmons and the growth 
rate of the modulational instability. As a result, the function 
$;I) in the central region of the caviton is proportional to 
i$?', up to a small correction S$il) of order [y(a) /  
ape L2a2]$p'. When the exact proportionality -i$io) 
holds, the forcing term in Eq. (4.12) vanishes. Therefore, 
this term is proportional to S$il' and the equivalent frequen- 
cy shift can be estimated by 

40 Sov. Phys. JETP 63 (1), January 1986 V. L. Malkin 40 



The quantity 6A,-a-' grows more slowly than w, 
-wp,L,a2-aC2 during the process of the collapse, and 
therefore the condition (4.13) is satisfied. 

It can be easily shown that because of the proximity of 
$A1' to ig(ae )$A0' in the central region of the caviton, the 
condition for the validity of the real-field approximation in 
calculating the growth rate of the small-scale modulational 
instability is also weakened, i.e., we can multiply the left- 
hand side of (5.12) by a small number S$il'/$:". The cor- 
rected validity condition is satisfied. 

It has been shown above that the field $y' is well local- 
ized in the direction of the flattening of the caviton, i.e., it 
decreases rapidly at distances IzI )a(r)  from the planez = 0. 
This assumption must be justified, since the "binding ener- 
gy" A of the plasmons is small compared to the "depth of the 
potential well" w,, (n/no), and as in the theory of the linear 
Schrodinger equation, we may suspect a poor localization. 
The next section is devoted to the clarification of this ques- 
tion. 

7. SELF-SIMILAR SOLUTION 

According to the estimates of the previous section, the 
solutions of Eqs. (4.3) and (4.4) in the case of an evolved 
electron nonlinearity at distances r(ae from the axis of the 
caviton, can be written in the form 

9:" (r, t )  = (24noT) 'I' a , ~ x  (5, p), 
n (r, t )  =3 (rDlae) 2no~-4u  (5, p) , 

(7.1) 

Here, the functions u and x obey the equations 

where V denotes differentiation with respect to p. The func- 
tion u can be expressed via x if we use Eq. (7 .2) .  For this 
purpose let us introduce the variables R and 8: 

c=R cos 0, p'la=R sin 0 (7.5) 

and integrate the resulting equation with respect to R. As a 
result we obtain the following equation 

C=R cos e, p = ( ~  sin ~ ) l / a  

In the region R)  1, the function G(R, 8) decreases rapidly 
(see Section 6 and below), and asymptotically u has the 
form 

m 

1 
u (R,  9) - -j dRIRIG (R,, 0) .  

2R2 , 
The condition r<a, , for which the equations (7.1 ) are valid, 
corresponds to R(RM - T - ~ +  W ,  at 7-0. 

If we use the relations (7.4) and (7.6), then the only 
remaining unknown function is x((, p),  which satisfies the 
nonlinear integral equation (7.3). Even in the axisymmetric 
case, this equation is two-dimensional and too complicated 
for a complete investigation. Considerable simplification 
takes place in the region p )  1, where spatial self-similarity 
holds: 

According to Eq. (7.7), - 
1 

U ,  ( ~ t g  0) = - sin2 0 j d~ RG (R, 9).  (7.9) 
2 

0 

The main contribution to the integral (7.9) comes from the 
region R 5 1, and therefore the function u ,  ( f )  is not related 
directly to X,  (6) and can be assumed known in the region 
p) l .  Equation (7.4) can be integrated once in the region 
p )  1 without violating its local nature 

This is the result of the constancy of the integral (6.3). The 
function X,  (g) obeys the following equation: 

At g+ + w the functionx, (C) must approach constant val- 
ues and F, (6) converges to zero.5' By linearizing Eq. (7.11 ) 
with respect to the zero order solution,y, = Cand F, = 0, it 
can be easily found out that, at f--+ + w , the small perturba- 
tion has the form 

The solution of Eq. (7.11 ) which is regular at f-+ + w 

depends on two parameters C and C,. These parameters 
must be chosen so that the values of function X, (6) and its 
second derivative vanish at = 0: 

41 Sov. Phys. JETP 63 (I) ,  January 1986 V. L. Malkin 41 



Then the function X, (6) is odd and F, (6) is even and 
the regularity conditions on the solution at <-+ - w will 
also be satisfied. This cannot be achieved without requiring 
that X,  (6) have a specific parity, because there exist three 
regularity conditions at each of the infinities (for example, at 
6. + we have C, = C, = C, = 0).  An even function 
x1 (6) is unacceptable, since the electric field at the center of 
the caviton vanishes in this case. 

We notice that for arbitrary parameters C and C4 the 
functionx, has a singularity of type 

at a certain point 6,. The condition lS < 0 defines a region in 
the plane (C, C4) where the solution of Eq. (7.11 ) can be 
analytically continued from the asymptotic form (7.13) to 
zero. Avoiding the solution which is singular at zero, 

also does not require additional parameters, since in the five- 
dimensional space of small perturbations of the solution 
(7.16), this solution can only be approached along four di- 
rections and therefore occurs on distinct lines in the plane 
(C, C,). 

Thus, the investigation of the self-similar solution in the 
spatial similarity region 15% 1, provides evidence of the expo- 
nential localization of this solution in the caviton. 

The caviton stability condition with respect to small- 
scale perturbations (5.14), has been already discussed above 
in connection with the estimates. A simple quantitative form 
of this condition, i.e., R ,  ( r , ,  t)  < 20(t, - t)-', or, equiv- 
alently, 

can easily be obtained, if we use the self-similar solution 
(7.1). 

7. CONCLUSIONS 

The present study shows that the electron nonlinearity 
not only does not halt the collapse of Langmuir waves, but 
maintains the explosive nature of this process. The most fun- 
damental contribution to the theory of strong Langmuir tur- 
bulence consists in the discovery of a universal collapse law 
in the inertial region, by taking the electron nonlinearity into 

account and in particular, the discovery of the fact that the 
nonlinearity does not give rise to the escape of the plasmons 
from the caviton. This result allows us to construct the spec- 
trum of strong Langmuir turbulence in a previously uninves- 
tigated domain of the inertial region in immediate proximity 
to the dissipative region. Convenient representations of the 
Hamiltonian of the electron nonlinearity, obtained above, 
provide a basis for numerical modeling of the collapse of 
nonlinear Langmuir waves and for investigating its dynam- 
ics, including dissipative processes. 

"This circumstance was noticed by V. V. Yan'kov. 
"The ion temperature, for simplicity, is assumed to be less than the elec- 

tron temperature. 
"The problem of the evolution of a one-dimensional Langmuir wave in the 

absence of electron thermal motion and ion density perturbations, as is 
well known, is conveniently solved in Lagrangian coordinates. The solu- 
tion shows that the envelope of all the harmonics in (2.1) is time-inde- 
pendent. Therefore, the Hamiltonian of the electron nonlinearity vanish- 
es exactly on one-dimensional fields (and not only to fourth order in the 
field amplitude) . I 3  

4'It is useful to notice that conservation of He, in the absence of a linear 
dispersion, does not halt the unlimited growth of the energy density of 
the waves. 

''The potential drop in the caviton takes place at r >  a,, i.e., outside the 
region of interest. The requirement F, ( 6 ) 4  at {-+CC is necessary for 
the localization of the electron nonlinearity in the caviton. 
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