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Examples of the collisional stimulation of the intramolecular motions in polyatomic molecules 
are considered. It is shown that when the nutation of the angular momentum of an asymmetric 
top is stimulated in collisions with inert-gas atoms anomalies in the concentration dependences of 
the rotational-relaxation times can arise for certain states. The nonequilibrium rotational-level 
distribution in a supersonic water-vapor jet is described, and it is shown that the exchange RR 
processes occurring between the levels that form the edges of the rotational multiplets, under 
certain conditions, cause nonequilibrium distribution to appear. The relaxation characteristics of 
the Fermi-coupled CO, levels that arise as a result of the collisional stimulation of the 
corresponding intramolecular motion are considered. 

1. INTRODUCTION 

Of great interest at present is the study of molecular 
relaxation in low-density gas flows.'-6 It is found that, under 
certain conditions, selective changes can be effected in the 
relaxation times of certain molecular states. These changes 
may be due to various causes, e.g., the formation of clusters 
under conditions of nonequilibrium condensation,, or the 
effect of "hot" molecules that penetrate the low-density gas 
jet.' 

Reference 8 reports experimental results that indicate 
the selective variation of the relaxation time of the 2,, state 
of the rotational spectrum of the D,O molecule when atoms 
of the inert gas Ar are added. To explain their results, Bakas- 
tov et ~ 1 . ~  assume that the selection rules, arising from the 
point-group symmetry of the mole~ule ,~  for collision-in- 
duced transitions in the rotational spectrum are not the same 
for atom-molecule and molecule-molecule collisions. 

But it is shown in Ref. 10 that, in the case of molecules 
with the point group C,,  , these selection rules are the same 
for both molecule-atom and molecule-molecule collisions. 
The experimental data reported in Ref. 8 are explained by 
the assumption that the dominant transitions are the colli- 
sion-stimulated transitions accompanied by a change in sign 
of the angular momentum component K along the quantiza- 
tion axis fixed to the top. Additional selection rules are 
found for such transitions that, it turns out, are not the same 
for molecule-atom and molecule-molecule collisions. 

In the present paper we show that the effectiveness of 
the K t t  - K collisional transitions is due to the stimulation 
of the intramolecular motion (nutation of the axis of rota- 
tion) in the asymmetric top. To describe the nutation, we use 
the method proposed by Braunl ' for solving trinomial recur- 
sion relations with slowly varying coefficients. Notice that, 
in the problem of the top, such relations arise when we go 
over to the representation whose basis vectors are the well- 
known Wigner D functions. These relations are solved in 
Refs. 12 and 13 in the limit of large angular-momentum 
quantum numbers. But for a consistent explanation of the 
experimental results of Bakastov et al.' we should consider 

the nutation of the asymmetric top for arbitrary values of the 
angular momentum quantum number. The pertinent formu- 
las are given in Sec. 2 below. In particular, we obtain expres- 
sions for the potential curves of the recursion relations and 
also describe how the characteristics of the nutation depend 
on the choice of the coordinate system X' rigidly fixed to 
the top. 

The short-range forces that occur in a molecule-atom 
collision can, by deforming the potential curves, stimulate 
the nutation. The corresponding collisional selection rules 
are discussed in Sec. 3. In the case of the molecule-molecule 
collisions, because of the greater effective interaction range, 
stimulation of the asymmetric-top nutation does not occur. 

It is well known1 that the population of the rotational 
states in a planar supersonic rarefied water-vapor jet can 
have a nonequilibrium distribution, so that it cannot be de- 
scribed by a Boltzmann distribution with some rotational 
temperature. Let us note that the state of nonequilibrium 
obtains even in those cases when rnolecular-cluster-produc- 
ing condensation does not occur in the jet. We show below 
that the cause of this state of nonequilibrium can be the ex- 
change RR processes involving the levels that form the edges 
of the rotational multiplets. These levels in turn correspond 
to the approximately equidistant level sequences for systems 
with a tridiagonal Hamiltonian.I2 We find by analyzing the 
experimental data1 the effective rotational temperatures 
characterizing the quasistationary population distribution 
over the states in a water-vapor jet. 

In spite of the fact that the vibrational relaxation of the 
Fermi-coupled 10'0 and 02'0 states of the CO, molecule has 
been the subject of roughly a score of both experimental and 
theoretical investigations, there are at present no reliable 
data on the rate constants of the characteristic vibrational- 
exchange processes involving the lowest levels of the sym- 
metric and deformed modes of the molecule. 

Let us enumerate the principal characteristics of the 
vibrational relaxation of these states. The results reported in 
Refs. 14-24 indicate the existence of three characteristic 
temporal stages with constants K,  2 lo6 s-'-Torrc', 
K2- (2-4) X 10' s-'-Torr-I, and K,-2X lo2-10" s-I- 
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Torr-I. The collisional processes corresponding to these 
stages have, however, not been explained. The situation is 
further complicated by the fact that the experiments report- 
ed in Refs. 18-24 can be described with the aid of just the 
characteristic excitation-level-dependent constant K,. 

The slowest of these three stages is governed by the VT 
processes involving states belonging to different vibrational 
multiplets of the CO, molecule. Note that the excitation- 
level dependence of the VT-relaxation rate has been investi- 
gated in the case of diatomic molecules (02 )25  and some 
polyatomic molecules (CH,, CD,, SF,, CH3F).26-29 Note 
also that the absence of the relaxation processes character- 
ized by the constants K, and K, in the experiments reported 
in Ref. 18-23 is due not only to the low response speed of the 
IR-radiation detector employed, but also to the small contri- 
bution to the phenomena in question (amplification or ab- 
sorption in a nonequilibrium g a ~ , ' ~ - ~ '  laser-radiation damp- 
ing," variation of the discharge glow in a gas as a result of 
IR-radiation absorption2,) of fast processes of the type of 
the vibrational exchange with a small energy defect. The 
latter does not contradict the result of Stark's experiment,24 
in which the value ( 1.4 + 0.5) x lo5 s-'-Torrp ' was ob- 
tained for the constant K2 in a study of the small differences 
in the amplification relaxation for the transitions 10'0-00'1 
and 02°0-0001, which are due to the vibrational exchange 
involving the Fermi-coupled states. 

More detailed information about the fast collision-gov- 
erned processes of vibrational exchange with small energy 
defects can be extracted from Refs. 30-32, which report the 
measurement of the CARS spectrum of the CO, molecule 
under conditions of two-photon Raman excitation of the 
10'0 and 02'0 levels. Note that the values found for the rate 
constants for the elementary processes differ sharply from 
the published theoretical values computed with allowance 
for the sh~rt-range~~, , ,  or long-range35 forces in the interac- 
tion potential. Let us note in this connection that an attempt 
has been made befo~e by Seeber3, to relate the first two relax- 
ation stages to stimulated Raman scattering (the absorption 
and emission of photons with wavelengths 10.6 and 9.6pm) 
and the rotational relaxation of the sublevels of the 00'1 vi- 
brational level. But the first assumption contradicts the data 
reported in Refs. 15 and 17; the second, the data reported in 
the papers cited in Ref. 36, according to which the rotational 
relaxation of the above-noted sublevels is characterized by a 
constant - 10' s-I-Torr- '. 

We show in the present paper that the anomalies in the 
experimentally ~ b t a i n e d ~ ' - ~ ~  values for the rate constants of 
the vibrational exchange involving the 10'0 and 02'0 states 
can be attributed to the collisional stimulation of intramole- 
cular motion of the Fermi resonance type. Then to the relax- 
ation process with the constant K, correspond the processes 
of quasiresonace VV exchange involving 10'0, 02'0 and 
11'0, 03'0 states, while to the relaxation process with the 
constant K, correspond the VT-relaxation processes involv- 
ing the vibrational-multiplet sublevels not coupled by the 
Fermi interaction, which relaxation processes also have 
small energy defects. The rate constants of the latter pro- 
cesses are anomalously large because of the proposed colli- 
sional stimulation. 

2. WAVE FUNCTION OF THE ASYMMETRIC TOP IN THE 
ANGULAR MOMENTUM REPRESENTATION 

The rotational Hamiltonian of a molecule regarded as a 
solid can be obtained from the classical expression for the 
energy by replacing the squares of the rotational angular 
momentum components along the axes of the coordinate 
system X' rigidly fixed to the molecule by the correspond- 
ing operators. To find the explicit forms of the rotational 
angular momentum operators, it is convenient to use the 
Dirac method,37 writing the expressions for the rotational 
angular momentum components along the axes of the sys- 
tem X' and the axes of the laboratory system X in terms of 
generalized coordinates-the Euler angle$'-and general- 
ized momenta. After deriving the expressions for the classi- 
cal Poisson brackets, and using the well-known theorem 
proved by D i r a ~ , ~ '  we find the commutation relations for the 
required operators. The commutation relations uniquely de- 
termine the operators for the rotational angular momentum 
components along the axes of the coordinate systems X'  
and 37. The explicit forms of these operators are obtained 
from the classical expressions for the rotational angular mo- 
mentum components by replacing the generalized momenta 
by the usual differential operators. 

Let (w 1 JME ), where u = p, 8, and $ are the Euler an- 
gles, J=O,  1, 2, ... , M =  -J ,  - J+  1, ... , + J a r e  the 
rotational angular momentum quantum numbers, and E is 
the energy, be the wave function of the asymmetric top in the 
Euler-angle representation. Let us go over to the representa- 
tion for which the basis vectors are the familiar Wigner D 
 function^.^' We have 

I< 

where (wl JMK ) = D L  (u) are the basis vectors and 
(JMK 1 JME ) = aiE is the wave function in the angular mo- 
mentum representation. Using the explicit form of the Ham- 
iltonian of the asymmetric top, we find for the coefficients 
aiE the equations 

where A,  B, and Care the rotational constants of the mole- 
cule. Let us introduce the notation xiE for the ratio 
aiE/aiE- *.  Accordingly, from (2.2), we obtain 

Let us, following Braun,"-l3 consider the solution to Eq. 
(2.3), assuming that K runs through a continuous range of 
values. For J)IK I the coefficients V i ,  , and G i  in Eq. 
(2.3) are slowly varying functions of the variable K. Then in 
a certain range of values of the parameter E we can neglect 
the difference between XiE+, and XiE, and replace Eq. 
(2.3) by the simple quadratic equation 

As shown in Ref. 1 1, this approximation is valid for values of 
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the parameter E sufficiently far removed from the turning 
points given by the equation D(E)  = 0, where D(E)  is the 
discriminant of Eq. (2.4). Furthermore, the transition from 
Eq. (2.3) to Eq. (2.4) is possible in the regions far from the 
points K = + J ,  + (J - I ) ,  which are the singular points 
for Eq. (2.2). Formally, we can obtain the solution in the 
vicinity of the singular points by making the substitutions1' 

For D > 0 one of the particular solutions to Eq. (2.2) will 
increase rapidly (exponentially), while the other will de- 
crease rapidly, with varying K. The corresponding range of 
values of the parameter E is called a classically forbidden 
region. The values E,=PJ, = G J, + 2 V i  and 
E2=Q = G J, - 2V; obtained from the equation 
D(E)  = 0 specify the boundaries of the classically allowed 
region of values of the parameter E. In this region the roots 
of Eq. (2.4) are complex conjugates of each other, with the 
corresponding moduli equal to unity. The solutions to Eq. 
(2.3) in the classically allowed region are oscillating func- 
tions of the variable K. 

The expressions found by Braun for the potential curves 
Pi and QJ, with J) 1 can be written in the form 

Let us consider the method of deriving the expressions for 
the potential curves that does not use the assumption that J 
is large. We transform the familiar39 recursion relations for 
the functions d in (7~/2),  where d in ( 6 )  is the Wigner func- 
t i ~ n , ~ '  into the following form: 

From (2.7) it follows that the function iK d & (7r/2), where 

satisfies an equation whose coefficients coincide with the 
analogous coefficients of Eq. (2.2). Near a turning point the 
function a; is a slowly varying function of the variable K, 
and, consequently, we can set d :, ,, .,,, =a;, , . After this, 
the expression for the potential curve is obtained with the use 
of the condition determining the turning point of the func- 
tion d i n  (7~/2), and according to which4' 

Substituting (2.8) into (2.9), we find 

Notice that (2.10) goes over into (2.6) up to the well-known 
semiclassical approximation (J  + 1/21 *-J(J + 1). Simi- 

larly, it can be shown that the function d iR  (a/2) ,  where 

satisfies an equation with coefficients equal to the coeffi- 
cients in (2.2). Then for the potential curve we obtain the 
following expression: 

PKJ=AJ (J+1) - ( A - C )  KZ. (2.12) 

Near a turning point an arbitrary solution to Eq. (2.2) can 
be written in the form of a linear combination of the func- 
tions iK d ip (7r/2) and d iR (7~/2), and, consequently, the 
expressions (2.10) and (2.12) are indeed the required po- 
tential curves. 

Note that there is a case in which the above approxi- 
mate method of finding the potential curves leads to the ex- 
act result. Let us compare the equation 

p(lv-l+pav+l=2avl (2.13) 

for whichp = p. = 1 at the turning point, with the equation 
for the Bessel function J, ( pv) : 

Near the turning point we can set a, + , --,J, ( PY) and, 
consequently, to find the value ofp., we can use the condi- 
tion determining the turning point for the Bessel function 
(see Appendix A).  It is not difficult to verify that in this case 
the exact expression, equal to unity, is obtained forp, . 

Thus, the above analysis shows that Braun's semiclassi- 
cal method is applicable in the case of rotational angular 
momentum quantum number values of order unity as well, 
in complete analogy with the well-known case of the har- 
monic oscillator. 

Let us draw attention to the following circumstance. 
The solution found in Ref. 11 for the trinomial recursion 
relations in the vicinity of the turning point is not exact. This 
arises because, in the case of the recursion relations, in con- 
trast to the differential equations, the expansion of the coeffi- 
cients around some point that is not a singular point for the 
equation in question does not lead to a corresponding expan- 
sion of the solution. Only in the vicinity of the turning point, 
where the function is slowly varying, does the expansion of 
the coefficients yield an approximate representation of the 
solution. This assertion can easily be verified for an exactly 
soluble recursion relation. 

In the particular case under consideration we can, by 
expanding the coefficients in Eq. (2.2) around the point 
K = 0, easily find the exact solution of the corresponding 
recursion relation in the form of the function pa + " F ( a  + Y, 
b, c, z),  where Y = 1/2K and F(a,  b; c; z)  is the hypergeome- 
tric function; the parameters p, a, b, c, and z are related in a 
definite manner with the expansion parameters for the coef- 
ficients in Eq. (2.2). After this, we can, by using the condi- 
tion determining the turning points of the hypergeometric 
function (see Appendix A),  obtain approximate numerical 
values for the potential curves Pi and Q i for K = 0. Let us 
note that, for J = 2, the values obtained in this case differ 
from the analogous values found from the formulas (2.10) 
and (2.12) for the D,O molecule by 5.2 and 11.5%. 
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FIG. 1. Potential curves for the second multiplet of the D 2 0  molecule (the 
X' system: y' = C2, z1ll0P, and OPIDOD).  1 ) The semiclassical approx- 
imation; 2) exact computation. 

The above form of the approximate solution of Eq. 
( 2 . 2 )  can be used to compute those levels whose energies are 
close to the P i and Q i values at K = 0 .  For this purpose we 
use the well-known transformation formula for the hyper- 
geometric function in the case when Z > 1 :  

- - r ( c )  r (b-a)  
( - 1 )  .z-"F ( a ,  o+l -c ;  o+l -b;  - 

I' ( b )  P (c-a)  

r ( c )  r (a- b )  1 + (-i)'z-Y ( b ,  b+ i - c ;  b+i-c; -). ( 2 . 15 )  r ( c )  r (c -b)  z 

Taking account of the fact that the phase of the wave func- 
tion can always be chosen so that the coefficients a$=in (2 .1  ) 
at energies corresponding to the asymmetric-top energy lev- 
els are real, we find with the aid of ( 2 . 15 )  the conditions 
determining the level energies: 

The formulas obtained correspond to the approximately 
equidistant sequences of energy levels for systems with a tri- 
diagonal Hamiltonian. l 2  

Let us consider certain consequences that follow from 
the form of the potential curves Pi and Q i .  Let the system 
X' be chosen so that A > B > C.  In the case of the D 2 0  mole- 
cule this implies that they' axis coincides with the symmetry 
axis of the molecule, while the z' axis is perpendicular to the 
plane of the molecule. Figure 1 shows the P i  and Qi 
curves, as computed from the formulas ( 2 . 6 ) ,  as well as 
( 2 . 10 )  and ( 2 . 12 ) ,  with A = 15.383 cm-', B = 7.258 cm-', 
C =  4.849 cm-' (Ref. 4 1 ) ,  and the value J =  2. It can be 
seen that, at definite values of the parameter E, there are two 
classically alowed regions separated by a potential barrier. 
The wave functions for both the levels below the barriers and 
those above it are found to be symmetric or antisymmetric 
combinations of states differing in the sign of K. These super- 

positions arise because of the partial localization in K space 
under conditions of subbarrier and above-the-barrier reflec- 
tion from the potential barrier. Note that the classical or 
quantum nutation of the axis of rotation of the top corre- 
sponds to transmission above the barrier or beneath it. 

An interesting feature of the problem under considera- 
tion is the doublet splitting of the above-barrier levels. It can 
be shown that, forA > B > C, the wave functions of the doub- 
let levels have the same parity in K space: in thew representa- 
tion they are superpositions of D functions either with only 
even, or only odd, values of K, and the corresponding ener- 
gies are equal when the above-barrier reflection is neglect- 
ed.13 Consequently, for the chosen orientation of the system 
Y', the doublet splitting of the above-barrier levels is ac- 
counted for by the above-barrier reflection. 

We should also point out the dependence of the form of 
the potential curves P i  and Q on the orientation of the 
system X' relative to the nuclear core of the molecule. In 
particular, following Braun, let us consider the quantization 
scheme in which A < B  < C. For the D 2 0  molecule this 
means that they' axis coincides with the axis of the molecule, 
while the z' axis is parallel to the plane of the molecule. The 
potential curves for the present case are obtained from 
( 2 . 10 )  and ( 2 . 12 )  by substituting the appropriate values for 
the rotational constants. It turns out in this case that those 
levels which previously were above the barrier levels are now 
subbarrier levels for the "inverted" barrier." Consequently, 
the doublet splitting noted above in the case of the D 2 0  rnol- 
ecule can also be accounted for by tunneling in the direction 
parallel to the plane of the molecule. 

Let us now consider the intermediate case when the z' 
axis of the X' system is perpendicular to the C2 symmery 
axis and makes an anglea with the plane of the molecule and 
they' axis is parallel to the C, axis. For such an orientation of 
the X'  system the rotational Hamiltonian of the molecule 
has the following form: 

I -  (CIB) xZ 
X = A 8  - 

I+xYA-C-ACIB) lB' 

I+ (AIB)  xZ 
C=C 

I+x"A-C-AC/B) IB ' 

where x = sin a. In the angular-momentum representation 
we obtain for the coefficients aiE the equation 

Going over to the variable Z $ = a::, /a;?, , we find 
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For J%1, neglecting the difference between Zi:, < with 
1(J, and Z i E ,  we obtain 

V , , ~ ~ + F ~ - $ ! ' Z ~ J ~ +  (GK"E) (ZKJE) 

+F:':~ (zKJE) ' + v ~ ~ + ~  (ZKJE)'=O. ( 2 . 20 )  

In order to take account of the behavior of the function Z iE 
in the vicinity of the singular points, we transform the coeffi- 
cients in Eq. ( 2 . 20 )  in the following manner: 

+ F;+:~, 
v i * l + v R J ,  FK*I 

(2 .2  1 ) 
(J*K) (J*K+I) -+ (J+i12*K)2. 

Accordingly, in place of Eq. ( 2 . 20 ) ,  we find 

v ~ J + P ~ < ~ z ~ ~ ~ +  ( C I C J - ~ )  ( Z K J E )  '+FKJ ( Z K J E )  

+VK"ZK") '"-0. 

It is well known that the nature of the roots of an algebraic 
equation of the fourth degree changes when the sign of the 
discriminant D of its cubic resolvent is changed. In the case 
under consideration we find 

The curves corresponding to the roots of the equation 
D ( E )  = 0 have the following form: 

In the energy plane they serve as boundaries of certain re- 
gions where the solutions to Eq. (2 .22)  exhibit essentially 
different behaviors. Figure 2 shows the P i ,  H i ,  and Qi 
curves for the D20 molecule in the case when J = 2  and 
a = 45". It is found that the classically allowed regions in the 
case under consideration are the regions designated as A and 
B in Fig. 2. In the region A ( D  > 0 )  Eq. ( 2 . 22 )  has two real 
and two complex conjugate roots with moduli equal to unity. 
In the region B(D < 0 )  Eq. ( 2 . 22 )  has two pairs of complex 
conjugate roots, the moduli of one of the two pairs being also 
equal to unity. In the classically forbidden region Eq. ( 2 . 22 )  
does not possess complex roots with moduli equal to unity. 

It can be seen from Fig. 2  that, for the given orientation 
of the X' system, there are two potential barriers-an ordi- 
nary barrier and an inverted one-separating the classically 
allowed regions. Notice that the vertices of the barriers coin- 
cide at a certain value of the angle a, and, consequently, the 
doublet splitting for this orientation of the X' system will be 
entirely subbarrier transmission. Similarly, there exists an 
orientation of the X' system such that the double splitting is 
determined only by the characteristics of the above-barrier 

transmission. In particular, this obtains in the case when 
A > C > B. In the case of the D20 molecule this means that 
thez' axis of the X' system coincides with the C2 symmetry 
axis. It is easy to verify that, for A > C >  B, the potential 
curves bound a convex figure having two quasibarriers. Ac- 
cordingly, the doublet splitting arises as a result of the above- 
barrier reflection from the quasibarriers. Notice that the 
magnitude of the doublet splitting decreases with increasing 
distance from the vertices of the quasibarriers. The wave 
functions of the doublets in the w representation are super- 
positions of D functions with either only even or only odd 
values of K, each of the superpositions possessing a definite 
parity in K space. The latter is due to the partial localization 
in K space, this localization arising in the present case be- 
cause in the vicinity of the quasibarrier vertices the intersect- 
ing curves have derivatives with opposite signs. 

3. COLLISIONAL STIMULATION OF THE NUTATION OF THE 
ROTATION AXIS FOR ASYMMETRIC-TOP MOLECULES 

It is well known9 that the point-group symmetry of a 
molecule manifests itself in the existence of definite selection 
rules characterizing the nonspherical scattering. But besides 
the point-group symmetry for molecules having no optical 
antipodes, the invariance of the interaction under space in- 
version must be taken into account in the derivation of the 
selection rules. We shall show that the same type of limita- 
tions then arise for molecule-atom collisions as for molecule- 
molecule ones. 

Let us determine the behavior under inversion of the 
matrices D !,,, ( w  ) and the quantities p,, ( a ,  ... a, ) con- 
tained in the generalized multipole expansion of the non- 
spherical intera~tion.~ Let us first of all note that the quanti- 
ties p,, ( a ,  ... a, ), which characterize the shape of the 
nuclear configuration of the molecule may, in the general 
case, be pseudoscalar quantities. An exception is the case of a 
planar molecule, in which the inversion of the nuclei can be 
replaced by rotation through n about an axis perpendicular 

FIG. 2. Potential curves for the second multiplet of the D,O molecule (the 
x' system: y' = C,, QOz', OP = 45", OPIDOD). 
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to the plane of the molecule. Accordingly, if the molecule is 
rotated about the z' axis, only those P,, for which I + k is 
even will be nonzero. 

For nonplanar, noncentrosymmetric molecules,the 
configuration that arises through inversion of the nuclear 
coordinates can be obtained from the original orientation 
through a combination of a rotation through an angle of 21r/ 
n about a given C, axis (the number of rotoinversion axes 
and the values of n depend on the point-group symmetry of 
the molecule) and a specific permutation of the equivalent 
nuclei. In the case when we can neglect the inversion split- 
ting of the levels on account of the tunneling between the 
various nuclear configurations, we can also neglect the 
change that occurs in the interaction potential as a result of 
the transposition of the equivalent nuclei. In this case the 
quantities p,, should be taken to be scalar quantities, and 
the inversion operation should be taken to be equivalent to a 
rotoinversion. 

After these remarks, we can determine through direct 
computation the nature of the limitations that arise when 
allowance is made for the invariance of the interaction under 
space inversion. For example, for the NF, molecule, which 
possesses the C, ,  point-group symmetry, we can show that, 
in the case when the z' axis of the system X' fixed to the 
molecule is parallel to the C3 axis and thez'y' plane coincides 
with a, symmetry plane, the corresponding condition is the 
equality Dl, =Dl, - , , and, what is more, that this condition 
applies both in the case of the molecule-atom interaction and 
in the case of the molecule-molecule interaction. 

It is known from line-width that the 
molecule-molecule interaction has a significantly longer ef- 
fective range than the molecule-atom interaction. Investiga- 
tions carried out by the double-microwave-resonance meth- 
od44 have shown that in the first case the scattering is 
described largely by the dipole selection rules, while in the 
second case transitions are observed of "higher multipole 
order," and the parity selection rules are violated in the cases 
of such molecules as NH,, HCN, and CH30H (molecules 
with internal motion). 

Let us assume that, for the case of asymmetric-top mol- 
ecules being considered, the short-range forces that occur in 
the molecule-atom interaction can lead to the stimulation of 
the subbarrier of above-barrier K o  - K transitions consid- 
ered above. Let us find out the selection rules to which these 
transitions correspond. We represent the multipole expan- 
sion of the interaction terms responsible for the collisional 
stimulation of the nutation in the following form: 

where t ,  is the partial term of the expansion of the nonspheri- 
cal part of the molecule-atom interaction and the operator ? 
is defined by the relation BlK ) = 1 - K ), the symmetriza- 
tion being necessary because of the noncommutativity oft, 
and B. It is easy to show that, in the w representation, the 
asymmetric-top wave functions are the eigenfunctions of the 
operator B, the corresponding eigenvalues being equal to P, 
where P = +_ 1. Using (3.1 ), we can find an additional se- 
lection rule for the collisions stimulating the nutation of the 

axis of rotation of the top'': 

Notice that (3.2) forbids the collisional transitions 2,,4-+2,, 
and 2,,4-+2,,. This enables us to explain the experimental 
result reported in Ref. 8. Let us emphasize that, although the 
values of the index P for a level with a given energy depend 
on the choice of the system X', whether or not particular 
transitions will be forbidden in the nutation-stimulating 
collisions does not depend on the choice of the system X'. 

Finally, let us draw attention to the following circum- 
stance. The operators D k, (a), which are contained in the 
nonspherical part of the molecule-atom interaction, and de- 
termine the nature of the collisional transitions in the rota- 
tional spectrum, form a complete set. In order to describe the 
K++ - K collisional transitions, we must take into account 
the "remote" terms in the nonspherical interaction expan- 
sion, and carry out the summation in accordance with the 
perturbation-theory expansion for the scattering matrix. In- 
stead of this, in Ref. 10 we suggest the use of an equivalent 
operator i having nonzero matrix elements between states 
differing in the sign of K. The rate of convergence of such a 
reduced nonspherical scattering-matrix expansion is similar 
to the rate of convergence of the nonspherical scattering- 
matrix expansion for linear molecules or molecules of the 
asymmetric top type, for which nutation of the axis of rota- 
tion does not occur. Thus, the introduction of the operator ? 
corresponds to an effective regrouping of the nonspherical 
scattering-matrix expansion terms, which allows us to take 
account of the collisional stimulation of the intramolecular 
motion for molecules of the asymmetric-top type. 

4. CHARACTERISTICS OF THE POPULATION DISTRIBUTION 
OVER THE STATES IN A WATER-VAPOR JET 

It is possible that there exists another macroscopic ef- 
fect that owes its origin to the energy-level structure of the 
asymmetric top, specifically, to the presence of roughly equi- 
distant sequences of levels in the rotational spectrum. It is 
well known13 that such sequences are formed by the levels 
located near the extremum points of the potential curve P i  
and Q with J s  1, constituting the edges of the correspond- 
ing rotational multiplets. The exchange RR processes that 
occur between the levels under consideration can lead to a 
change in the relaxation rate of the individual molecular 
states, and this in turn manifests itself in the distortion of the 
Boltzmann distribution of the populations of the states. Let 
us note that the distortion of the shape of the Boltzmann 
distribution of the populations of the states has been ob- 
served in a rarefied water-vapor jet issuing from a supersonic 
nozzle into a vacuum. ' 

An experimental investigation of absorption under the 
conditions of a vapor jet yielded for the parameter character- 
izing the state of nonequilibrium the values 

Here n ,, is the difference between the populations of the pair 
of levels in question and n ,, ( T) is the difference between the 
populations of the same levels under conditions when there 
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TABLE I. 

is equilibrium between the translational and rotational de- 
grees of freedom: 

where E' and E, are the level energies, Q(T) is the rotational 
partition function, and g, is the degree of degeneracy in 
terms of the nuclear spin. Let us, for the purpose of describ- 
ing the data obtained by Bulatov et al.,' assume that the 
rotational temperature of the levels between which the reso- 
nance RR processes do not occur is equal to Trot, and that 
the corresponding temperature in the opposite case is equal 
to Trot. In particular, we shall assume that the rotational 
temperatures of the levels 1, ,, 2,,, 2, ,, 4,,, and 5,, are equal 
to Trot, while those of the levels 3,, and 4,' are equal to 
- T!:: and TI::. Notice that the difference between the 
temperatures T!:,' and Ti:: is due to the existence of a char- 
acteristic transition region. We present the computational 
data in Table I, in which we give the values of the transla- 
tional temperature - Ttr and the effective rotational tempera- 
tures Trot and T !A;,' found from the values of the ratios of the 
nonequilibrium parameters for certain pairs of levels: 

Experiment 

2,206 

3,6186 

1,639 

Furthermore, in Table I we compare the experimental values 
for the ratios of the nonequilibrium parameters for the level 
pairs 

Calculation 

2.206 

3,617 

1,640 

I Nonequilibrium 
remperature values, "K parameter ratios 

with the corresponding values computed from the obtained 
rotational temperatures. The agreement, to within the limits 
of the experimental error, between the computed and experi- 
mental values attests the corrrectness of the assumptions 
made about the form of the parameters characterizing the 
state of nonequilibrium of the populations of the states in the 
water-vapor jet. 

I T,, = 157.79 
T,, = 175.58 
Tj:! = 195.55 
TE)  = 198.56 

5. COLLlSlONAL STIMULATION OF THE FERMl RESONANCE 
FOR THE MOLECULES OF CARBON DIOXIDE GAS 

K(202-212) 
K(33i-422) 
K(Zo2-2!2) 
1<(431-52,,) 

K(331-422) 
f((431-524) 

The rate constants found in CARS-spectrum analyses 
in Refs. 30-32 for the vibrational-exchange processes in- 
volving Fermi-coupled levels of the CO, molecule are given 
in Table 11. It can be seen that, as compared to the character- 
istic rate of the VVexchange in the deformation mode, equal 
to (2-4) x lo5 s-'-Torr-' (reaction C ) ,  the rate of the VT 
process for the levels 10'0 and 02'0 is anomalously small 
[ 2 7  x lo4 s- '-Torr- ' (reaction A )  1, while the rate of the 
analogous process for the levels 10°0,0200, and 02,0, which 
are not coupled by a Fermi resonance, is, on the contrary, 
anomalously high, being roughly equal to (4-7) X lo5 s-'- 
Torr-'. Let us emphasize accordingly that the high rate of 
the VT process involving the 10'0 and 02'0 levels in com- 
parison with the rate of the VT process involving the 10'0 
and 02'0 levels is, contrary to the assertion made in Refs. 30- 
32, not at all connected with the magnitude of the energy 
defect. Estimates also corroborate this assertion. In particu- 
lar, those terms in the potential which contain the combina- 
tion Q i = Q :, , + Q i,, , where Q4, and Q,, , are the nor- 
mal coordinates of the deformation vibration, are 
responsible for the VT relaxation involving the levels 10'0 
and 02'0. Similarly, we can describe the VT relaxation in- 
volving the 10'0 and 02,0 levels if we take into account in the 
potential the terms containing the combination Qicos2 p, 
where cos p = Q,,, /Q, . Using for the estimate the formula 
given in Ref. 45, and setting the coefficients of the indicated 
combinations equal, we find that, at T = 300 K and in the 
case when the constant in the exponential repulsive potential 
has the value 5 k', the rate of the VT process for the 10'0 
and 02'0 levels is even greater than that of the VTprocess for 
the 10'0 and 02'0 levels. 

We should also draw attention to the following circum- 
stances. 

TABLE 11. 
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K (in spl-Torr-'  

6 7 . 1 0 ~  

(4-7) 105 
(2-4) lo5 

Small 

37.105 

A 

c 

Vibrational exchange reactions in CO, 

CO?(ID~ 0) +coz(ooO o)++co2(ozo n)+co2(ooo 0) +lo3 c m l 1  
C02(100 0) +CO2(Oo 0) *C02(0Z2 0) +C02(0Oo 0) +53 cm- 
CO2(0Zo 0) +COz(OOo 0) +-+COz(M@O) +COz(OOO 0)-50 c m l  
co2(022 0) +co2(oo0 O) -coz(oll o)  +coz(ol l  0) +0.3 c ~ I  

C02(100 0) +C02(10° 0) -C02(2Q0 O)+C02(000 0)-33 cm-' 
COz (OZO 0) +COz (OZO 0) ++CO2 (04' 0) +COz (00' 0) +22,5 cmJ 
C02(1@"')+C02(Oi1 0) +-+C02(11' 0 ) + C 0 ~ ( 0 0 ~  0)-22 cm- 
C02(0Z0 0) +COz(Oll 0) c C O ~ ( 0 3 ~  0) +COz(OOO 0) +I9 cm-I 



FIG. 3. Potential curves for the second multiplet of the CO, molecule. 

1.The anomalously small value of the rate constant for 
the reaction A agrees with the value of the rate constant for 
the analogous reaction 

C0, (10°1)+ A r t .  C0,(02°1) +Ar-12 c m , '  

which Finzi and Moore46 have found to have a rate 5 lo4 
s-l-Torr - '. 

2. The value (2-4) x 10' s-'-Torr- ' found for the reac- 
tion Cis close to the result obtained by Seeber34 in numerical 
computations carried out using the well-known SSH the- 
~ r y . ~ '  

3. The rate-constant values for the reactions E are close 
to the corresponding values for the analogous VV-exchange 
reactions 

for which Finzi and Moore46 have found the values 
(4.2 + 0.3) x lo6 and (3.9 + 0.4) X lo6 s-'-Torr-'. Note 
that in the last case the experimentally obtained rate-con- 
stant values are close to the theoretical values computed in 
Ref. 48 with allowance for the long-range attractive forces. 

Let us, for the purpose of explaining the experimental 
data reported in Refs. 30-32, draw attention to the existence 
of intramolecular motion in the CO, molecule, when, be- 
cause of the Fermi resonance, energy initially concentrated 
in a symmetric (deformation) vibration is transferred into a 
deformation (symmetric) vibration. We shall use Braun's 
method in the description. The nonzero matrix elements of 
the anharmonic combination T~ = const xQsQd (where Qs 
is the normal coordinate of the symmetric vibration) re- 
sponsible for the Fermi splitting have the following form 

where w = 50.4 cm- ' is the Fermi-resonance constant49 and 
(Q, ; Qd , p I us ; vd , I ) is the product of the corresponding 
harmonic functions. Using (5.1 ), we obtain for the coeffi- 
cients a, contained in the expansion of the vibrational wave 
function of the molecule in terms of the harmonic functions 
the following equation: 

where 

v = 2, + ud is the vibrational multiplet number, and 
w, = 20, and w, are the frequencies of the symmetric and 
antisymmetric vibrations. The potential curves 
Pus = G + 2Nus+ ,,, and Q, = G - 2NUs+,,, for Eq. (5.2) 
bound a convex figure having two quasibarriers. In Fig. 3 we 
show as an example the potential curves for the second mul- 
tiplet of the CO, m~lecule.~'  Consequently, the appearance 
of the multiplet structure in the vibrational spectrum of the 
CO, molecule is due to reflection from the indicated quasi- 
barriers. Notice that here, as in the above-considered case of 
the asymmetric top, a purely quantum effect occurs: above- 
barrier reflection from the quasibarriers. 

Knowing the form of the potential curves, and using the 
formulas given in Ref. 12, we can obtain approximate analyt- 
ic expressions for the energy levels forming the edges of the 
vibrational multiplet for given values of v and I. For 1 = 0 we 
have 

where N = 0, 1, 2, ... . Note that the formula (5.3) is accu- 
rate to within 11 % in the case when u = 2, and to within 3% 
when v = 4. 

Let us assume that the short-range forces responsible 
for the VT relaxation can lead to the stimulation of the flow 
between the regions of partial localization located in the vi- 
cinities of the quasibarriers. To describe the collisional stim- 
ulation, we shall use an operator .i whose matrix elements 
are nonzero only for the functions of one and the same multi- 
plet, and coincide with the matrix elements of the anhar- 
monic combination T ~ .  Notice that the vibrational wave 
functions of the molecule are the eigenfunctions of the oper- 
ator .i, the corresponding eigenvalues being equal to A /d ,  
where A is the level shift relative to the multiplet center. Let 
us represent the terms in the interaction potential that are 
responsible for the collisional stimulation as follows: 

where t is some function of the normal displacements of the 
atoms. For example, in the simplest case we can set t(Q, , Qd , 
p; Q, ) = cosZp. The form used for the interaction YT leads 
to definite selection rules, according to which Y, does not 
make a contribution to the VT transitions between the levels 
located at distances + A from the multiplet center (these 
levels are coupled by the Fermi interaction, e.g., the levels 
10'0 and 02'0; 10'1 and 02'1, etc. ). It is clear that the selec- 
tion rules obtained allow us to explain the anomalies in the 
values of the rate constants ofthe VT transitions between the 
vibrational-multiplet levels. Using the experimental data re- 
ported in Refs. 30-32, we estimated the order of the terms 
containing the combination .i cos2 p, and responsible for the 
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collisional stimulation of the intramultiplet VT relaxation. 
It was found that the indicated terms are roughly an order of 
magnitude greater than the terms containing the combina- 
tion Q 2 ,  and responsible for the VT relaxation between the 
levels coupled by the Fermi intraction. 

Notice that the collisional stimulation can lead to an 
increase not only in the VT-relaxation rates, but also in the 
VV-exchange rates. The form of the corresponding terms in 
the interaction is similar to (5.4): 

where the subscript 1 pertains to the partner-particle in the 
collision. Indeed, the rate constant for the process C with a 
small energy defect, that occurs between the 0220, 00°0, and 
01'0 levels, whose energies are close to the corresponding 
values computed without allowance for the anharmonicity, 
differs little from the numerical value computed with 
allowance for the short-range repulsive forces.34 At the same 
time the rate constants for the E processes with much greater 
energy defects, in which the levels 10°0, 11 1Q,0200, and 03'0 
"perturbed" by the Fermi interaction participate, have 
anomalously large values. It is possible that this increase is 
due to the short-range forces responsible for the collisional 
stimulation of the intramolecular motion, and not to the in- 
fluence of the long-range attractive forces, which induce the 
vibrational-rotational transitions unaccompanied by distor- 
tion of the trajectory of the relative motion.50 
vibrational-rotational transitions unaccompanied by distor- 
tion of the trajectory of the relative motion.'O 

Finally, let us note that the exchange reactions D indi- 
cated in Table I1 can be described by taking account of the 
potential terms containing Qs or Q 2 .  According to experi- 
ment, the magnitudes of such terms are much smaller than 
those ofthe terms containing the combination Qd cos p ,  and 
responsible for the C and E exchange reactions. 

The author is grateful to V. K. Konyukhov for stimulat- 
ing discussions and to I. M. Pavlichenkov for showing inter- 
est in the work. He also thanks the participants of the semi- 
nars at the Institute of General Physics of the Academy of 
Sciences of the USSR and Moscow State University for a 
discussion of the results of the work. 

APPENDIX A 

According to the well-known WKB rne th~d ,~ '  the 
point where the total and potential energies of a particle are 
equal is called a turning point. Using certain exact solutions 
to the one-dimensional Schrodinger equation, we find condi- 
tions on the indices of some special functions determining 
the boundaries of the characteristic classically allowed re- 
gions, where the solutions to the Schrodinger equation ex- 
hibit oscillating behavior. It is clear that these conditions 
determine the turning points of the special functions in ques- 
tion. 

I. The Bessel function. The solutions to the Schrodinger 
equation in the one-dimensional field U(x) 
= - Uo exp( - Ixl/a) can be expressed in terms of the 

Bessel functions. For x > 0 we have 

where Y = 2xa, E = - f i  2x2/2m, m is the particle mass, 
and f i  is the Planck constant. Using A. 1, we obtain the condi- 
tion determining the turning point of the Bessel function 
J,  (z):  

2. The hypergeometric function. It is in terms of the hy- 
pergeometric functions that we express the solutions to the 
Schrodinger equation in the one-dimensional field 

R 2 a 2  x (x-I) 3t 
U(x) = -- +- 

2m [ sin2 ax cos ax 

We have 

1 
( n -  2 n  +l ; sin2ax}. (A.3) 

In accordance with (A.3), the condition determining the 
turning points of the hypergeometric contribution function 
F(a, b; c; z)  will have the following form 

(afb-c) 2-i/, ( C - I ) ~ - ~ / ~  -- + = (a- b)  '. 
1-2 

(A.4) 
z 

3. The confluent hypergeometric function. The solutions 
to the Schrodinger equation in the one-dimensional field 

are expressed in terms of the confluent hypergeometric func- 
tions. We have 

We can, using (A.5), represent the condition determining 
the turning points of the confluent hypergeometric function 
cP (a; b; z)  in the following form: 

'3 A 

Notice that, in deriving the conditions (A.2), (A.4), and 
(A.6), we took the particle energy E to be a variable. 
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effective also in the case when the values of the number u are comparable 
to unity. 
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