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A problem of nonlinear self-excited oscillations in a beam-plasma system bounded in the 
longitudinal direction by planes held at the same potential (Pierce conditions) is formulated and 
solved. There is no preliminary modulation of the beam. No assumptions of any sort are made 
regarding standing or traveling waves. The eigenfrequencies of the system are found numerically 
from the condition that the nonlinear equations derived here have a solution. The amplitudes of 
the corresponding waves excited by evolving bunches and the axial profiles of these amplitudes 
are calculated. The critical lengths of the system are found. 

There are two standard formulations of the problem of 
the excitation of electrostatic electron waves in a plasma 
penetrated by an electron beam. One formulation deals with 
the time evolution of a perturbation which is specified 
throughout the space at the initial time ( t  = 0).  This formu- 
lation of the problem, for an unbounded plasma with a 
monoenergetic beam, has been studied theoretically in con- 
siderable detail, to the point that the particular features of 
the wave process have been determined in the nonlinear 
stage of the instability, where the beam breaks up into 
bunches.'-3 

The other standard approach deals with the steady- 
state injection into the plasma of a beam which is modulated 
at a given frequency w in the injection plane (z = 0).  In the 
steady state, at nonzeroz, the amplitude of the oscillations at 
each point is independent of the time, and a wave of frequen- 
cy w exists in the system. The evolution of this wave as a 
function of distance is also determined by the bunching of 
the beam.4-6 

With regard to the oscillations which are observed 
when an unmodulated beam is injected into a plasma, the 
situation is not yet clear, although the oscillations in this 
case obviously result from a beam-plasma instability. Exten- 
sive experiments and numerical simulations indicate that the 
waves which are excited are highly regular and that there is a 
steady-state oscillation, which is evidently equivalent to 
neither of these two standard formulations of the problem of 
the collective interaction of a beam with a plasma. This 
steady-state oscillation may be an interesting version of self- 
excited  oscillation^.^ 

An important point is that both the numerical simula- 
t ion~ ' .~  and the actual laboratory experiments usually deal 
with a system which is bounded in the longitudinal direc- 
tion. The importance of this boundedness of the plasma in a 
beam-plasma interaction was recognized quite early in the 
research, even in work on the linear stage." The wavelength 
of the oscillations which grow in the course of the instability 
was linked directly with the length of the system. In con- 
trast, the steady-state nonlinear self-excited oscillations in 
the interaction of a beam with a plasma have not been stud- 
ied theoretically. 

Our purpose in the present paper is to analyze self-prop- 
agation in a bounded beam-plasma system. 

BUNCHING OF AN ELECTRON BEAM IN AN OPPOSITELY 
DIRECTED WAVE 

We know that an electron beam will interact efficiently 
with a traveling wave when the two are synchronized i.e., 
when the phase velocity of the wave is approximately equal 
to the beam velocity. The effect on a beam of waves which are 
not synchronized with it is ignored. On the other hand, it is 
simple to show that such waves can cause significant bunch- 
ing of the beam, providing the feedback required for self- 
excited oscillation. 

Let us assume that a monoenergetic electron beam is 
injected into the half-space z > 0 across the z = 0 plane, in 
the direction normal to this plane. The beam velocity in the 
injection plane is u,. The beam is not modulated here. A 
longitudinal electric-field wave E(z, t )  = E,, cos(wt + kz) 
is propagating in the opposite direction. 

To integrate the equation of motion of the beam elec- 
trons, 

we switch to Lagrangian variables z, to. The variable to is a 
parameter representing the time at which some electron en- 
ters the system (z = 0).  The time t at which this electron 
arrives at the point with coordinate z is given by 

dz z 1 
t=t.  + J = t o + - - - g ( z , t o ) ,  

uo+F(z, t o )  vo 0 (2) 

where 6(z, to) is the increment in the electron velocity 
caused by the electric field of the wave, andg(z, to) is a func- 
tion-unknown at this point-characterizing the degree of 
bunching of the beam. l 1  Everywhere below, we assume the 
case 6/vo( 1. According to (2) ,  we then have 

Substituting (2)  into ( 11, and discarding terms quadratic in 
6/uo, we find the equation of motion 
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dv" 
-=-- 
dz eEO muo ~o~[ot.+(:+h)z] 

Integrating it under the initial condition G(0, to) = 0, we 
find 

where w ,  = w  + uok is the frequency in the coordinate sys- 
tem moving with the beam. We see that electrons which are 
injected into the system at different times drift at different 
velocities. This effect is of the same nature as the drift of 
electrons in a uniform rf field, which is associated with the 
phase at which the electrons are produced,12 but in the case 
of a beam this effect leads to a substantial bunching of the 
electrons-the formation of bunches. Substituting (5)  into 
(3),  we find 

eEooz 2eEoo 
g=nuo201 sin oto - - sin sin( oto + F) . (6)  

nzuoolZ I U O  2u0 

Denoting the beam current density at the points z = 0 
and z by jo and j, (z), respectively, using the charge conser- 
vation condition 

and also using (2) ,  we find 

It can be seen from (6)  and (8)  that the bunching during the 
rf drift increases with increasing z, and at the coordinate 
S,, ~ m v ; w , / e E ~  the density of the bunches which have 
formed approaches infinity. Phase focusing occurs. 

In this discussion we have ignored the inverse effect of 
the beam on the electric field. If the process occurs in vacu- 
um, the space-charge field of the bunches which arises will 
prevent bunching. In a medium with a negative dielectric 
constant (a plasma at frequencies w  < wp , where w p  is the 
plasma frequency), on the other hand, a field which is syn- 
chronized with a bunch arises and intensifies the bunching. 
In a synchronous field, the bunching can quickly become 
dominant. 

EQUATIONS OF THE SELF-EXCITED OSCILLATIONS 

To analyze the self-consistent self-propagation in a one- 
dimensional beam-plasma system we use the linearized hy- 
drodynamic equations of a cold plasma, 

where u, is the velocity of the plasma electrons, po is their 
unperturbed charge density, and j, is the current density of 
the plasma electrons, along with Maxwell's equation for the 
current density, 

where j, is the density of the induced current. This current 
density does not vanish in the case of system of finite size. 

Using (9)  and ( 10) and the known expression for the 
current induced in the external circuit, 

1 
I. = - j (jb+jp) dz, 

0 

(11) 

where L is the length of the system, we find an equation 
which relates the electric field E in the plasma to the convec- 
tion current of the beam: 

L 

We assume that the system is bounded at z = 0 and z = L by 
conducting planes which are held at a common potential, by 
analogy with the approach taken in the analysis of the Pierce 
instability, i.e., S; Edz = 0. Because of the integral on the 
right side of ( 12), the jb dependence of E ceases to be a local 
dependence peculiar to the plasma when the second bound- 
ary is absent, i.e., when L-co. At small z, the field now 
depends on jb at largez. Although this field is not in the form 
of a wave synchronized with a beam, an initial bunching of 
the beam may occur, as we showed above, with the conse- 
quence that a nontrivial solution arises, describing a steady- 
state self-excited oscillation with homogeneous boundary 
conditions at the injection plane: 

We thus assume that self-excited oscillations, periodic in 
time, are established in the system. At this point we do not 
know the fundamental frequency w  of these oscillation. 
Without making nay assumptions regarding the phases or 
velocities of the waves, we can then write the beam current 
density as the Fourier series 

Ca 

jb(z, t)=jo + (A.(z)sin not+B.(z)cos not) (14) 
n-i 

with the coefficients 
2n/o 

o 
A. (z) = - j fi (z, t) sin not at, 

0 (15) 
2x/u 

0 
B. (z) = - j h (z, t) cos not dt. " 0 

Substituting ( 14) into ( 12), we find the steady-state alter- 
nating electric field 

DD 

E = (I. (z) sin not+q. (z) cos not), 
n=l 

Changing the notation in (2)  to correspond to our case 
of self-excited oscillations, i. e., changing g tog, and finding 

2 2 '  

from the equation of motion, we obtain a closed system of 
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CALCULATED RESULTS AND DISCUSSION 

FIG. 1. The eigenvalues versus the dimensionless length of the system, 
L. 

equations: (2) ,  (7),  and (15)-(17). 
We further assume that w is close to w,, so that the 

second and higher-order harmonics are far from resonance. 
Under this condition, even though j, may be very anhar- 
monic, the electric field will be dominated by the fundamen- 
tal frequency, and we can discard all terms with n# 1 in 
( 16). The condition that the process be periodic in time al- 
lows us to seek the unknown function g, in the form (see 
Appendix 1 ) 

g, ( 2 ,  t o )  =x ( z )  sin oto+y ( z )  cos o t ,  (18) 

Substituting ( 18) into (2),  and using (7) ,  we can express the 
coefficients A ,  (z) and B,  (z) in terms of the Bessel functions 
Jo and J, ofx and y. We then use ( 16) and ( 17) to construct a 
system of ordinary nonlinear equations for x(z)  and y(z),  
which we write as follows, denoting wz/vo by z, and wL /vo 
by L ,  (for convenience, we omit the indices onz and L every- 
where below) : 

+I0 ( x )  10 ( y )  sin z)I1 ( L )  , (19) 

where 
L 

1 
I, ( L )  = (1. ( x )  h (y) sin z - l l  ( y )  lo (x) eos 2 )  d l ,  

0 

1 
I, (L) = -t J (1, ( x )  Jo (y) cos z+J1 ( y )  Jo ( x )  sin z )  dz. 

0 

Here y2 = w ; / ( w ~  - w2) where w;  = 4 ~ j ~ e ~ / r n v ~  is the ei- 
genfrequency of the beam. Eqs. ( 19) must be solved under 
the initial conditions 

Because of the functionals I, (L)  and 12(L) in ( 19), our 
problem is converted into an eigenvalue problem. The eigen- 
values y for a given L and the corresponding solutions x(z) 
and y (z) are found numerically (Appendix 2).  

Figure 1 shows the functional dependence of y on L 
found from the calculations. We see that this is generally a 
multivalued function. At a fixed L, there can be a self-excited 
oscillation at various frequencies corresponding to different 
branches of the function y(L) .  The oscillation frequencies 
are given by 

where s in the index of the branch of y(L).  On each branch, 
the frequency of the self-excited oscillation thus increases 
only slightly with increasing L. At very small values 
L < L,, ,, there are no eigenvalues y and thus no nonvanish- 
ing solutions of Eqs. ( 19): no oscillation is possible. 

The terminations of the curves at the right were deliber- 
ately introduced; they mean that the calculations were pur- 
sued no further. For branch l ,  the calculation was carried 
out for only rather small values ofL since our approximation 
that the plasma oscillations are linear is equivalent to the 
requirement y2g1, and it is totally unjustified at values 
y2 2 1. Branches 2 and 3, on the other hand, are terminated 
at the right because of the limitations on computer time. For 
the same reason, we did not search the branches with index 4 
or higher, which lie below branch 3, although we would fully 
expect such branches to exist on the basis of an extrapolation 
of the data in Fig. 1. 

The theory predicts that the possible oscillation fre- 
quencies will form a discrete spectrum, and this conclusion 
is in agreement with the experimental data. As an example, 
we show in Fig. 2 an oscillation spectrum which we mea- 
sured with the help of an S4-5 spectrum analyzer. The oscil- 
lations were detected by an rf probe inserted into the beam- 
plasma interaction zone. A ribbon-shaped bearn with 
cross-sectional dimensions of about 10X 0.4 cm was injected 
without preliminary modulation into the interior of a copper 
cylinder, along the diameter of the cylinder.13 The beam- 
plasma discharge produced a plasma. We see that that the 
spectrum of the oscillations which are excited is choppy; the 
frequency interval between the lines is, as follows from (2 1 ) , 
far smaller than the oscillation frequencies themselves, 
which lie near the plasma frequency. 

The results of these calculations also furnish, in princi- 

FIG. 2. Measured spectrum of self-excited oscillations in a beam-plasma 
discharge. The beam current is 1 = 200 mA; the plasma frequency is 
f ,  = 1700 MHz; and the beam energy is eU, = 400 eV. 
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P, arb. units 

I 

FIG. 3. Measured axial profiles of the oscillation intensity P for I = 200 
mA and& = 2500 MHz. 1-f = 2130 MHz, eU, = 100 eV, L = 450; 2- 
1980 MHz, 200 eV, 300; 3-2100 MHz, 400 eV, 220; G I 8 6 0  MHz, 1000 
eV, 120. 

FIG. 5. Solutions of Eqs. ( 19). 1-L = 12.57; 2-25; 3-300. 

ple, an explanation for such a well-established experimental 
fact as the disruption of the self-excited oscillations as the 
length of the beam-plasma system is reduced to a critical 
~ a l u e . ' ~ . ' ~  On the other hand, we must not fail to note that 
under beam-plasma discharge conditions the physical situa- 
tion is actually far more complicated, since the plasma den- 
sity, which is determined to a large extent by the diffusion of 
particles, also depends on L. Furthermore, the onset or dis- 

FIG. 4. Calculated axial profiles of the amplitude of the first harmonic of 
the beam current ( a )  and of the electric field (b) .  1-L = 12.57; 2-25; 
3-300. 

ruption of oscillation is accompanied by corresponding 
sharp changes in the ionization rate. For this reason, it 
would hardly make sense to attempt a quantitative compari- 
son of the measured and theoretical values of the critical 
length for self-excited oscillation. 

There is also a qualitative agreement between experi- 
ment and theory in terms of the axial profiles of the intensity 
of the oscillations which are excited. Figure 3 shows corre- 
sponding experimental curves which we measured in the ap- 
paratus mentioned above for various effective lengths of the 
beam-plasma system. The effective length was varied, with- 
out changing the geometry, by varying the velocity of the 
beam and the frequency which was excited. Theoretical re- 
sults on the amplitudes ja = (A,' + B, ' )~ / ' ,  Ea 
= (6,' + 17~') are shown for various values ofL in Fig. 4. 

These curves are plotted for branch 2 on the basis of the 
solutions of Eqs. ( 19) shown in Fig. 5. We see that the oscil- 
lations are typically localized in a relatively short region, 
whose position varies only slightly as L is varied. The results 
for the other branches are similar, but the coordinates of the 
oscillation zone are different. For branch 1 they are in the 
region z~4-5, while for branch 3 they are in the region 
zz 16-17. Comparing these results with Fig. 1, we see that 
for self-excited oscillation on any branch the corresponding 
oscillation zone must lie nearly entirely within the length of 
the system. The distance to the zone increases with increas- 
ing index of the branch because of both a decrease in the 
spatial growth rate and a decrease in the amplitude of the 
modulating field at the injection plane (Fig. 6 ) .  
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FIG. 6.  Amplitude of the varying field at the injection plane ( z  = 0) ver- 
sus the length L of the system. For clarity, the value of E, for curve 2 has 
been increased by a factor of three, and that for curve 3 by a factor of five. 

The existence of a localized oscillation region is a conse- 
quence of the phase focusing and defocusing of the beam, 
just as in the case of steady-state injection of a premodulated 
beam into a plasma. The spatial evolution of the bunches 
which form during the self-excited oscillation is illustrated 
in Fig. 7. 

CONCLUSION 

In summary, the nonlinear process of self-excited oscil- 
lation in a beam-plasma system of finite length which is 
usually observed and which has not previously been ex- 

FIG. 7. Temporal profiles of the current-density wave of the beam in the 
coordinate system moving with the center of a bunch at various values o f s  
for branch 2 (L = 25). 

plained satisfactorily may proceed as follows: A longitudinal 
rf electric field consisting of two components is established 
in the system. One component is a wave, synchronized with 
the beam, which evolves over distance. The amplitude of this 
wave increases from zero at z = 0 to a maximum at some 
point and then decreases. This behavior results from the dy- 
namics of the bunches which are formed, as in the injection 
of premodulated beams into a plasma. The other component 
of the rf field is in phase over the entire space and is small in 
comparison with the maximum value of the first component. 
Despite the fact it is not synchronized with the beam, how- 
ever, it does cause bunching of the beam at small values of z, 
thereby exciting a growing synchronized wave. 

In turn, the oscillation amplitude of the asynchronous 
field is determined by the variable beam current, in an inte- 
grated fashion over the entire volume, so that the process is 
self-consistent. Self-consistent oscillation phases and ampli- 
tudes are possible only for the relation among the param- 
eters which was found in this study and which determines 
the frequencies of the self-excited oscillations. 

APPENDIX 1 

Generally speaking, the functiong, should be sought as 
the series 

ca 

r ( z ,  t o )  = [ x i  ( z )  sin i o t o + y i  ( z )  cos i w b ] .  (22) 
2=0 

Seeking a solution in the form in ( 18), on the other hand, is 
an approximate approach. If we substitute ( 19) into ( 17) 
anduse (2 ) ,  (7),and (16),wefindontherightsideof(17), 
along with the first-harmonic terms x sin a t ,  and y cos a t o ,  
second, third, and zeroth harmonics, whose amplitudes 
(x2,y2,y3, and yo) are given by 

+ sin zJi  ( x )  JO ( y )  I d z ,  
z z 

x ,  = 1 d z  J ( X  cos Z-I) sin z )  J ,  ( x )  J ,  ( y )  d z ,  

y3 = d z  j ($ cos z-n sin z )  I ,  ( x )  1. ( y )  d z ,  

where 

I2 
$=2y2 (cos z J ,  ( x )  Jo ( y )  + sin 1.7, ( y )  Jo (i) - x) , 

I ,  
x=-27' (sin zJ1 (r) lo (y) - cos zJi  ( Y )  JO ( x )  - T )  
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tions, x"' (z,) and y"' (s, ). We then constructed a trial 
function 

FIG. 8. Axial profiles of the amplitudes of the fundamental (x, y) and 
additional (x2,y2,x,,y3,y,) harmonics for L = 12.57. 

This simplification is justified if the values of 
Ix21, Iy21, Ix31, Iy31, JyOJ for the solutions x and y found are 
far smaller than the larger of Ix 1 and ( y  ( over the entire inter- 
val of z. 

Figure 8 makes the corresponding comparison for 
L = 12.57. We see that in this case, even at z = L, each of the 
additional harmonics is smaller in magnitude than 30% of 
the fundamental (the ordinate scales in this figure are differ- 
ent). At L = 25, according to the calculations, the situation 
is worse, especially at large values of z, but again in this case 
the maximum value of the second (and largest) harmonic 
does not exceed 50% of the fundamental. Roughly the same 
relative sizes are found for the harmonics at L = 300. Ap- 
parently, therefore, the use of approximation ( 18) for 
g ( z ,  to)  correctly conveys the basic features of the self-prop- 
agation. 

APPENDIX 2 

Equations (19) have been solved numerically for a 
fixed length L of the system by the following method.  the^ 
initial values y"' , I iO ' ,  IF' of the parameter y and of the 
integrals I ,  and I ,  are generated in an arbitrary way. The 
corresponding values of x"' (zj ), y"' (zj ), j = 1, are 
found by an iterative procedure, where N is the number of 
partitions of the segment [0, L] along the z axis. Knowing 
x"' and y"' , we calculated new values of the integrals, I I" 
and I :I) ,  which we then used to find new values of the func- 

Here k is the index of the iteration; for the first step of the 
iteration procedure we have k = 1. We then use the mini- 
mum of the trial function F to alternately optimize the pa- 
rameter y at fixed values of I i k ' ,  I ik' and calculate the opti- 
mum values of I::;, and I::; , ,  corresponding to the 
optimum value yo,, which has been found. The process of 
choosing the best value of y (in the k-th iteration) at the 
optimum values of I ,  and I, [calculated in the (k-1 )st iter- 
ation] and the calculation of the best values ofI, andI, at the 
optimum value found for y are terminated when the condi- 
tion JPk' 1 <lo-' becomes satisfied. 

'I. N. Onishchenko, A. R. Linetskii, N. G. Matsiborko, and V. D. Sha- 
piro, Pis'ma Zh. Eksp. Teor. Fiz. 12, 407 (1970) [JETP Lett. 12, 281 
( 1970)l. 

'T. M. O'Neil, J. H. Winfrey, and J. M. Malmberg, Phys. Fluids 14, 1204 
(1971). 

'B. A. Al'terkop, A. S. Volokutin, V. B. Rosinskii, e ta / . ,  Fiz. Plazmy 3, 
173 ( 1977) [Sov. J. Plasma Phys. 3, 100 ( 1977) 1. 

4N. G. Matsiborko, I. N. Onishchenko, Ya. B. Fainberg, etal . ,  Zh. Eksp. 
Teor. Fiz. 63, 874 (1972) [Sov. Phys. JETP 36,460 (1973)l. 

'K. Jungwirth and L. Krlin, Plasma Phys. 17, 862 (1975). 
6V. P. Kovalenko, Usp. Fiz. Nauk 139,223 (1983) ISov. Phvs. Uso. 26, - .  
116 (1983)l. 

'M. I. Rabinovich and D. I. Trubetskov. Vvedenie v teorivu kolebanii i 
voln (Introduction to the Theory of oscillations and waves), Nauka, 
Moscow (1984), Chapter 21. 

'J. A. Davis and A. Bers, in: Proceedings of the Symposium on Turbu- 
lence of Fluids and Plasma, Brooklyn, 1968, p. 87. 
90. Fukumasa, H. Abe, and R. Itatani, Phys. Rev. Lett. 40, 393 (1978). 
'OM. V. Nezlin, Dinamika puchkov v plazme (Dynamics of Beams in 

Plasmas), Energoizdat, Moscow, 1982, p. 126. 
"V. A. Solntsev, Izv. vuzov. Radiofizika 17,616 (1974). 
12G. E. C.  Francis, Ionization Phenomena in Gases, Academic, Orlando, 

1960 (Russ. transl. Atomizdat, Moscow, 1964). 
13V. S. Gvozdetskii, V. P. Kovalenko, and I. M. Parneta, Pis'ma Zh. Tekh. 

Fiz. 10, 1398 (1984) [Sov. Tech. Phys. Lett. 10,590 (1984)l. 
141. F. Kharchenko, Ya. B. Fainberg, R. M. Nikolaev, et a/ . ,  Zh. Eksp. 

Teor. Fiz. 38,685 (1960) [Sov, Phys. JETP 11,493 (1960)l. 
15V. P. Kovalenko, Ukr. Fiz. Zh. 18, 514 (1973). 

Translated by Dave Parsons. 

19 Sov. Phys. JETP 63 (1), January 1986 Gvozdetskil etal. 19 


