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A simple scheme is given for solution of the three-body problem in a correlated basis for states 
with arbitrary L. An effective correlated basis is proposed, consisting of a generalized exponential 
expansion. It is shown that the corresponding system of functions is complete. For arbitrary L 
simple analytic formulas have been obtained for the matrix elements of the Hamiltonian and other 
typical operators in correlated bases. A reduction of the problem to a system of three-dimensional 
radial equations of simple form is carried out. The rate of convergence of the expansions in 
correlated basis functions is studied for muonic-molecule systems. General methods of increasing 
the accuracy of the variational calculation are pointed out. The usual formulas for the matrix 
elements of irreducible tensor operators are modified. 

1. INTRODUCTION 

In Refs. 1 and 2 the levels of three-particle muonic mol- 
ecules were calculated, including the states responsible for 
the resonance mechanism of production of ddp and dtp. The 
properties of the latter states include extremely weak bind- 
ing, L #O, and stringent requirements on accuracy of the 
calculation. As a result it was necessary to devote attention 
to the selection and development of a method for solving the 
problem. In the present work we present for solution of this 
problem a simple self-consistent scheme of solution of the 
three-particle problem (with a non-operator interaction) in 
a correlated basis for states with arbitrary orbital angular 
momenta L. 

In Section 2 we propose an effective three-particle cor- 
related basis-a generalized exponential expansion. It is 
shown that the corresponding system of functions is com- 
plete. We use suitable functions of the three-particle Euler 
angles Re3 In Section 3 we obtain for arbitrary t general 
formulas for the matrix elements of the Hamiltonian, corre- 
sponding to expansion in such functions. In the Schrodinger 
equation we have separated the angles S1, and in the general 
case it is reduced to a system of three-dimensional radial 
equations. These equations are much simpler than the analo- 
gous equations obtained previously4 with use of the three- 
particle D functions D iM, (a). 

In Section 4 we calculate in general form the matrix 
elements over R of the Hamiltonian and other typical opera- 
tors for arbitrary L. We note in this connection also Refs. 5 
and 6. The remaining radial matrix elements are calculated 
analytically in Section 5 for the basis from Section 2 and for a 
generalized Hylleraas basis. 

In Section 6 we discuss the rate of convergence of the 
expansions from Section 2, and in particular those for 
muonic molecules. We indicate general methods of increas- 
ing the accuracy of the variational calculation. 

In Appendix 2 we indicate the necessary changes of the 
usual formulas for the matrix elements of irreducible tensor 
operators. In Appendix 3 we give simple explicit formulas 

for all matrix elements of the three-particle Coulomb Hamil- 
tonian in states L = I-. (These states determine the effi- 
ciency of muon catalysis of dd and dt reactions.) 

The rapid convergence and, of special importance, the 
possibility of simple analytical calculation of the matrix ele- 
ments make the expansion given in Section 2 in many cases, 
apparently, the most effective way to solve the three-particle 
problem with adequate accuracy. Previously the S and P 
states of three-particle systems have primarily been consid- 
ered in the literature, but recently there has been a tendency 
to study states with larger L values (see for example Ref. 7) .  
Discussion of such states in a correlated basis with an appro- 
priate formalism, however, is extremely difficult, and in this 
respect the results of the present article are very timely. The 
results presented are necessary also for solution of the prob- 
lem of dtp* (L = 1 ) , which is important for muon catalysis. 

2. GENERALIZED EXPONENTIAL EXPANSION 

Consistent inclusion of two-particle correlations for 
small rU = /ri - rj/ frequently is the basic condition for 
achieving high accuracy. For this purpose one requires a 
quasifactorized dependence of the basis functions on r g - a  
correlated basis. The widely used functions of the Hylleraas 
type satisfy this requirement. For a long time they were the 
only means of solution of the Coulomb problem with spec- 
troscopic accuracy. In several studies, however, initially for 
muonic  molecule^,^^^ a competitive exponential S-wave basis 
was used: 

cpi=exp [-ai (i) rzs-aa (i) r13-a3 (i) rlz] . ( 1  
In Ref. 8 the great technical simplicity resulting from the use 
of Eq. ( 1 ) was demonstrated, and in Ref. 9 it was shown that 
the resulting expansion converges rapidly. It has no less 
flexibility than the Hylleraas functions for describing short- 
range correlations. The rate of convergence depends to a 
certain degree on the choice of the arguments a, (i) from Eq. 
( 1 ). It is possible'0 to make choices which are more efficient 
than was done in Ref. 9. We note some additional related 

5 SOV. Phys. JETP 63 (I), January 1986 0038-5646/ 86/01 0005-09$04.00 @ 1986 American Institute of Physics 5 



calculations. '.2."-'3 The basis ( 1 ), as is easy to understand, 
is better suited than the Hylleraas polynomials for describ- 
ing weakly bound states. Therefore we have also applied this 
basis to the problem of the weakly bound molecules 
ddp*(L = 1) and dtp*(L = I ) ,  generalizing it to L > 0.' 

For the purpose of generalizing Eq. ( 1 ) to states with 
any orbital angular momenta L, we propose the expansions 

X exp [ -all ( i )  r23-azI (i) rl ,-asl  ( i )  r , , ] , .  

L .v 
(2a) 

Here C,(i)  are the coefficients of the expansion, 
rij = ri - rj , and 

9:; (x, y) = z 1 l y ' z ~ : :  (q, n,), 

where 

The functions (2a) and (2b) correspond to states of parity 
( - 1 ) and ( - 1 ) + '. The convenient variables for the 
work below will be rij and the Euler angles f l  of the system. 
The dependence on 0 is contained in the functions YyM-' 
and YYM+'-I from Eq. (2) .  For a given L, M has 2L + 1 
such functions. As was shown in Ref. 3, these functions form 
a complete system of functions of fl  and therefore can re- 
place 2L + 1 D functions D LM, (f l ) .  Functions of the type 
yyM-1 I L + I - l  , Y iM were used previously for the lowest L val- 
ues in combination with Hylleraas polynomials in calcula- 
tions of the atom "He. Whereas with use of D kM, (0) after 
integration over 0 a three-particle singularity arises in the 
remaining matrix elements over rij,4 SO that these matrix 
elements cannot be calculated analytically, when YyM- ', 
Y kf ' - is used the corresponding matrix elements are re- 
gular, and below we have calculated them analytically. We 
note also that in Ref. 14 in the problem of two particles in a 
force field in the case of P states of negative parity, basis 
functions corresponding to (2a) were constructed; however, 
we introduced the basis (2)  in muonic-molecule calcula- 
tions" before we learned about Ref. 14. 

Elucidation of the general properties of the basis from 
Eq. (2) is not the subject of the present work. We shall prove 
only the simplest property of completeness. Let the argu- 
ments of the exponentials used in (2)  satisfy one of the fol- 
lowing conditions. We use the notation P,, (i) = a,, (i) 
+ a,, (i) ,  etc. Assume 1 ) that there is an infinite number of 

Dp, (i) ,  such that Pp, (i)  > C, where C is some positive con- 
stant, and 

Alternatively 2) let the values of the arguments depend also 
on N: 

There exist positive constants C, and C2 such that the num- 
ber of PP, (i, N) lying between them rises without limit as 
N+w. Then the system of basis functions of the form (2)  
[and ( 1 ) ] is complete in L ( R  6 ,  : an arbitrary normalizable 
function +hLM (r,,, r,,) can be approximated as accurately as 
desired by sums of the functions (2)  in the sense of smallness 
of the integral 

-*. j1 dri3 ~ ~ Z S [ $ L M  (rj3, r23) - Y L M ( ~ $ S ,  r23) 1'. (4)  

The structure of the proof is as follows. Without loss of 
generality we can consider +hLM to be falling off exponential- 
ly at large rij. Using an expansion of the type ( 10) of such 
$,, in Y" and taking into account (12), we integrate the 
expression (4)  over d o .  We obtain an expression of the form 

whereFf,, is defined below in ( 14) and f L is from Eq. ( 10). 
It is sufficient [cf. Eq. (33) ] to establish that it is possible to 
make the integrals 

[ L  - , x p . .  ] z r , i r 2 i r , 2  d r d (6)  

arbitrarily small. We shall separate from f and the set of 
exponentials exp(. . .) the factor x = exp ( - y2rU ); f L - 
= fLx, exp(. . .) =exp(. . .")x, so that 7; and all exp 
( . . ." ) nevertheless fall off exponentially at large rij . This is 
possible in view of the statement above regarding f L  and 
Ppl (i). We use the notation w = <:+ ' ~ :+  ' rI2x2. Below we 
shall use the bounded nature of w. In order to make the 
'integrations independent of each other,I6 we shall go over in 
addition to the well known parametric coordinates 

(The limits of integration in the variables ro consist of the 
three planes rij + rjk = rik . In the transition to the variables 
ui these limits according to Eq. ( 7 )  go over into three bound- 
ary planes ui = 0, which makes the integrations over ui inde- 
pendent.) As a result we shall rewrite the expression (6)  in 
the form 

rn m rn N S 

(8)  
whereb; =Op, - 2y. 

Let us consider first the integrals of the form (8)  with 
w = 1. (This is equivalent to narrowing the class of permissi- 
ble?: .) In the case w = 1 the completeness follows from the 
Miintz approximation theorem. Its three-dimensional for- 
mulation which we need is obtained as follows. Let us con- 
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sider the approximation integral 

where@& = @;, - 1/2. The quantities P i ,  satisfy the same 
conditions as indicated above for @,, . These conditions guar- 
antee the possibility of arbitrarily accurate approximation in 
the one-dimensional case corresponding to (9)  (see Appen- 
dix 1 ) . We shall establish the same property in the case (9)  
by using successive one-dimensional approximations. Since 
t f t  ,"t ," is a closed system of functions in a unit cube, from 
this the completeness of the system of basis functions 
nt "' follows from (9) .  The usual substitution of varia- 
bles ti = e "' establishes the completeness of the system of 
exponentials from (8)  in the sense of the integral (8)  with 
w = 1. 

However, from this, as usual,16 a similar property fol- 
lows also for any bounded w.  The essential idea is that it is 
possible as a first step to approximate?; by a functionTso 
that the integral of the form (8) with replacement of Xy= , ... 
byfis arbitrarily small, and on the other hand so that ( 3 )  is 
integrable with w = const. In view of the boundedness of w 
the latter permits the question of approximation, which 
arises in the integral of the form (8)  with?:+? to be re- 
duced to the question for o = 1 discussed above. 

James and coolidge16 established the completeness in 
the sense of (4) of the S-wave Hylleraas basis. Writing for- 
mulas of the type (5 )-( 8 ), we obtain an analogous com- 
pleteness property in the case of the basis ( 10) and (38). 

3. STRUCTURE OF THE MATRIX ELEMENTS; RADIAL 
EQUATIONS 

The Schrodinger equation (H - E)$ = 0 goes over 
into a system of algebraic equations for the coefficients of the 
expansion (2). Below we calculate the matrix elements 
which give these equations. The calculations will be carried 
out for a more general expansion which includes the case 
(2): 

L 

Here and below for brevity we shall use the following nota- 
tion: E = 0 and E = 1 respectively in the cases .rr = ( - 1 ) 
andn-= ( - 1 ) ~ + ' , 1  = L + E  -1. Thedesiredmatrixele- 
ments are 

The expression for dr, as is well known, can be written as 

d ~ ~ = r ~ ~ r ~ ~ r ~ ~ d r ~ ~ d r ~ ~ d r ~ ~ ,  &=sin 0cl0&+3d$, ( 13) 

where 8, p ,  $ are angles giving the orientation of the coordi- 
nate system rigidly attached to the triangle formed by the 
three particles, relative to the laboratory system. (The ex- 

pressions ( 13) can be obtained as follows. We carry out the 
integration over dn,, in ( 12), choosing n13 as thez axis. Then 

dr13dr23=r12dri3 sin 0i3d0i3dqisr23zdr2Sdcp23dx, 

where x is defined below in (32). Writing dx 
= (r13r2,) -lrI2drl2 and choosing B,,, p,,, p2, as the Euler 

angles, we obtain ( 13 ) . Here thez' and x' axes corresponding 
to the movable coordinate system lie in the plane of the trian- 
gle formed by the three particles. Other corresponding 
choices of the Euler angles give the same result (cf. Ref. 
171.1 

In this section we shall reduce the integration in ( 11 ) 
over dfl  to standard integrals, 

11 
, r  2 = J Q ( 3 r 3  l 3 , ( 14) 

and the matrix elements (1 1) to integrals over dr,  from 
( 13). The Hamiltonian in the center-of-mass system has the 
form 

H = ~ , ~ A , , , + ~ ~ ~ A , . , + ~ ~ ~ V ~ ~ ~ V ~ ~ ~ + V ( ~ ~ ,  r i 3 ?  ~ 2 3 ) .  ( 15) 

Here and below we use the notation 

ki=-fi2 ( 2 m i )  -', kij=ki+kj. (16) 

We take into account that 9 are homogeneous harmonic 
polynomials: 

(Y VY)YLM?X, Y )  =i%'~~1'(~7 Y )  I (17) 

and we shall also use the following properties: 

A ( 1 ,  2) =I[ ( 1 - E )  ( t f l - E )  (21+1) ( 2 i i - 3 )  (20) 

Equation (18) follows from the fact that the action of the 
operator from ( 18) on 9ih (x,y ) obviously gives hL = 0, 
Al, = A12 = - 1. However, in the cases 1, + I, = L or 
I, +I2  = L + 1, as in (18), this would give 1; + 1; <L, so 
that w e  obtain zero. The relations ( 19 ) are obtained from 
similar considerations, and the quantity (20) is calculated 
below. 

We next introduce the notation 
1 a a2  2 a a i j = - -  E . . = -  + ---- - . 

r i j  d r i j  ' ' ar i j z  r i j  dr i j  

If we write ( 15 ) as ̂ T + V, then straightforward calculations 
with inclusion of Eqs. ( 17)-( 19) give 

~ + i . i - i  
= ( 6 1 l j ~ l )  Y L ' ~  + ( 6 z r f ~ l )  v;~l'l+*+ ( 6 3 l f ~ l )  Y L M  , (21) 
where the operators are 

Ol1=O,+2 [kisldi,+ kz,id,s+ (k i l+kzi )  Biz], (22) 
? I , ' = ~ A  (I,  t )  (k,dz3-kiaiz), Oa1=2A ( i ,  1 )  (ksBfi3-k~Bs2) (23 
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In Eq. (22), 0, is the well known operator for the S state: 

Using (2 1 ) and the definition ( 14), we obtain for the desired 
matrix elements ( 11 ) the following expression: 

The quantities ( 14) entering into (25 ) are given in Section 4; 
the final calculation of the matrix elements (25) is carried 
out in Section 5. The expression (25) has been obtained in a 
form which does not reveal explicit symmetry in 1 and 1 ', 
which is dictated by the requirement of simplicity of the an- 
swer. Symmetry in 1 and 1 ' can be used as a test in the numeri- 
cal calculations. 

We note also that the calculations which have been 
made permit reduction of the Schrodinger equation to a sys- 
tem of simple (L - E )  three-dimensional "radial" equa- 
tions. For this purpose we equate to zero the coefficients of 
the expansion of the quantity ( H  - E )  Y,, in 5YL: using 
(21 1-(23). We obtain the following equations: 

(26) 
Here in (26) f," = 0 foril < E  andil >L. Solving (26), it is 
convenient to go over ig the operators (22) and (23) to the 
coordinates (7). (For 0, in (24) see Ref. 18.) 

If particles (1A and (2) are identical: ( l ? ) ~ , ,  
= f YLM, where ( 1 2) is the transposition of the particles, 

then when the relation 

is included in the treatment we should have 

This permits representation of ( lo) ,  for example, in the form 

where [. . .] is the integral part of the number and f:, in 
contrast to ( lo) ,  already do not obey the requirement of 
symmetry. In (25) instead off L ' F , ~ ,  and f LrF,';,,*, we 
have respectively 

and the same expressions with 1-1 * 1. Here I( [ l  (L + E )  1, 
11<[4(L + & ) I .  

4. ANGULAR MATRIX ELEMENTS 

Together with the quantities (14) and (20) we shall 
consider also the matrix elements of other typical operators. 
A quantity of the form (14) was calculated in Ref. 5a and 
partly in Ref. 6. In Ref. 5b more general angular matrix 

elements containing the operator Y22(nl3,nZ3) were also 
calculated. [Here the Y were defined as in (3)  .] We shall 
present expressions for these matrix elements in a somewhat 
different form. The method of derivation (of the type in Ref. 
5a) is substantially simpler than that in Ref. 5b. 

Let us consider the quantity 

d Y n S  n Y n ,  2 3  Y n 3  , (29) 

which contains all three of the Ysymmetrically. The desired 

matrix element contains ( Y :fL, ) * and is obtained from 
(29) by the substitution M '+ - M' and multiplication by 

li+li+L'-M' 
( - 1) . Let us expand the product 
Y;!L, Y k b  of bipolar harmonics from (29) in series in 
YA,A, ,,,,+ ,, (see the formulas in Ref. 19). We expand the 

products arising as a result Yz:, + , , Y 22 again in series in 

Y'&r. However, of the latter series only the terms with J = 0 
can give a nonzero'contribution to the integral (29). These 
terms have the form YE, i.e., A " = il in them, They arise 
only from the contributions with L " = K. These terms them- 
selves do not depend on a: 

Yo," (m, n) = (4n)-' (-1)'(2li.+1) '"PA (mn) 

As a result, 9j symbol with a zero element simplifies and we 
obtain for the quantity (29) the expression 

where [ p ]  = 2p + 1. In (30) and below we use the notation 

x=nlsnzs= (2rtsrzs) -' (r1~2+rzs2-r122). (32) 

DrakeSb used a diagram technique to obtain an expression 
which, if we take it in the form (29) and take into account 
the symmetry properties of the 3j and 9j symbols, is obtained 
from (30) and (31) by interchange of the set of four 
numbers 1 ; , 1 ;, L ', M ' and k,, k,, K, Q. In view of the sym- 
metry of (20) this substitution is permissible. Expression 
(29) includes a matrix element of the operator P, (n13,n2,) 
oo YE (n13,n,,). For this case (3 1 ) can be simplified, for 
which the form (31) is particularly convenient, and not the 
form given in Ref. 5b. Setting K = 0 in (31), we have, as 
should be the case, L ' = L, ill =A2, and the 9j symbol re- 
duces to a 6j symbol.lg For the quantity (14), in particular, 
wehave (herek, =k ,=K=O,R ,  =R2=A)  
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Here the 6j symbol is degenerate.I9 To simplify a formula of 
the type ( 3  1 ) in the case of the operator Y,, (n,,) co Y it is 
convenient to use the form given in Ref. 5b. In the expression 
of Ref. 5b for the matrix element of this operator it is neces- 
sary to omit the factor (2k + 1 ) 'I2. 

The matrix elements of a number of operators which 
depend on the momenta were discussed in Ref. 5b, but there 
functions of the form Y i& (n, ,n, ) were used, where I, and I, 
are arbitrary, and not the functions 9:' (x,y). This greatly 
complicates the formulas, since the properties ( 17)-( 19) no 
longer hold. To obtain (20) we shall use Appendix 2. We 
write, corresponding to (A.2), 

Here 

ml=m+p, Vlrn ( r )  =rlY1,, (n) . 
By means of (A.7), taking into account that xV, 
= (x'". Vi"), we directly calculate (20). We can proceed 
similarly in the other cases. For example, for the operator 
[r,,V,,, 1, which enters into the Breit interaction, there is a 
formula of the same structure as ( 19), but the coefficient in 
this formula is calculated by means of (34) and (A.6). In 
addition to this operator and the operators from (17)-(19) 
in calculation of the matrix element from the Breit interac- 
tion it is necessary to consider the spin-orbit term 
r ,  3r,2(r12Vr13 )VrZ3. The resulting contribution to the ma- 
trix element is easy to calculate if we rewrite this term in the 
form 

r , ~ - ~ [  (r iSV~,s-r t~Vrrs- l )  (ri3Vrll-r23Vrnr) 1, (35) 

acting successiveQ with both factors enclosed in the brack- 
ets of (35) on 9:, f;, and using (17) and (19). 

5. RADIAL MATRIX ELEMENTS 

In the case in which ( 10) is the basis (2) ,  the contribu- 
tion to (25) of the kinetic energy and the contribution pro- 
portional to E, when (22), (23), and (33) are taken into 
account, reduce to integrals of the form 

where the powers n , and n, take the values I + I ' and7 + ' or 
values greater by unity, and N - n, - n, is equal to zero or 
unity. The contribution of V from (25) also reduces to inte- 
grals of the same form if Vis the sum of the Coulomb interac- 

tions of the particles or, for example, the sum of short-range 
pairing interactions of the form" 

The matrix elements also reduce to integrals of the form 
(36) in the case in which in (10) the f are polynomials of 
the Hylleraas type: 

jL1 = exp ( -a , lr23-a21r,3-a31r,2)  c (m,  n, p )  ri3mr2snr,2p. 
m s n , p  (38) 

The expansion ( l o )  and (38) generalizes the two-electron 
basis used in problems of the " He type to the three-particle 
problem. 

The values of R in (36) are smaller than L + E. In the 
case of the lowest L, calculation of (36) is easily carried out 
by expanding PA (x)  in powers of x and using ( 32). Since in 
(36) R<n, and R <n,, as a result we have an integral of a 
polynomial in rg of low degree, multiplied by the exponential 
from (36). Such integrals are easily calculated analytically 
[see (40) and (4  1 ) below I .  This also completes the calcula- 
tion of the matrix elements ( 14). In Appendix 3 we have 
given explicit formulas for these matrix elements in the ex- 
tremely important case L = 1, rr = - 1. 

In the case of higher L, the method described above for 
calculation of (36) is cumbersome. Furthermore, the gen- 
eral method from Ref. 5b when applied to (36) gives a recur- 
rence relation with coefficients which depend on a, b, c, and 
with a number of terms which increases in each step. We 
shall give a simpler method. In (36) we write 

and then use (32). Using the notation 

we obtain the recurrence relation 

z:~) ( n l ,  n, )  =h-'[  (h- ' /J  61::; (n , ,  n , )  - ( h - l ) I f ;  ( n l ,  n,) 1, 

where R > 1 and 

Equation (39) permits expression of the integrals (36) in 
terms of a set of 4 ( N  + 1 ) ( N  + 2) integrals with R = 0: 

[In the case of the basis (2)  we need N = 2(L + E )  + 2 and 
N = 2(L + E )  + 3.1 Going over to integration over the par- 
ametric coordinates (7) ,  the integrals (40) are easily repre- 
sented in the form6 
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FIG. 1. Calculated binding energies E ( N )  of the ddp molecule in states 
with L = 1 as a function of the number of basis functions N. We have given 
the values E ( N )  - c,, where c,=,  = 226.7 eV and c,_ , = 1.97 eV. The 
solid lines are the generalized exponential expansion (2a), and the dashed 
lines are the basis of the Hylleraas type from Ref. 21 of the form from Ref. 
4. 

A simple recurrence method of calculation of the set of 
quantities (41 ) is given in Ref. 20, which completes our cal- 
culation of the matrix elements ( 14) ." 

6. APPLICATIONS, MUONIC MOLECULE SYSTEMS 

The possibilities of the method discussed are partly 
demonstrated by the results of Refs. 1 and L3' We shall 
therefore confine ourselves to a few remarks. In Fig. 1 the 
rate of convergence of the expansion (2)  for the ddp system 
with L = 1- is compared with the same thing for a basis of 
the Hylleraas type4 from Ref. 21. The results for the weakly 
bound state ( v  = 1) were calculated by. Frolov in a supple- 
ment to the data in Ref. 2, and those for the ground state 
( V  = 0) were taken from Ref. 1. The nonlinear parameters 
determining the argument of the exponentials from (2)  (cf. 
below) were taken here to be the same for all N. 

In Table I we have given the tpp binding energies ob- 
tained by Frolov in the basis (2),  which are considerably 
more accurate than the earlier ones.' The mass values are the 
same as in Ref. 1. The case of tpp was chosen because it is one 
of the most unfavorable for this method. The "final" results 
were obtained by doing additional calculations for the same 
N (cf. Ref. 2), and the extrapolation to N = oo was as in 

Refs. 2 and 9. The results for L = 0 are considerably more 
accurate than the corresponding result from Ref. 21 of the 
Hylleraas type 213.829 eV with N = 440 (and all others in 
the literature). The results for L = 1 are less accurate than 
the result2' 99.119 eV with N = 440, but their extrapolation 
shows that comparable accuracy will be achieved here. The 
results of Refs. 9 and 12, like the calculations of Frolov, 
show that the basis ( 1 ) provides high accuracy not only for 
the energy, but also for other typical observables, including 
the accuracy with which (S(rij ) ) is calculated. 

The arguments a,, (i) of the basis exponentials from 
(2) can be chosen as follows. A finite region {a,,, a,,, a,,) 
is chosen in three-dimensional space, and the arguments are 
given quasirandomly inside this region, while its boundaries 
are optimized. A similar choice was used for the "He 
a t ~ m ' ~ - ' ~  and was carried over to the basis ( 1) with L = 0 in 
Ref. 13. The number of optimized parameters was six. In 
Refs. 1 and 2 a similar selection was used with a number of 
parameters reduced basically to three. In the case of the He 
atom this is roughly equivalent to merely doubling the num- 
ber of basis functions (cf. Ref. 2 with Ref. 12). Previously9 a 
regular selection of the parameters in (1)  was made: 
a, (i) = c, i. For the ground states these selections give com- 
parable results, but for the weakly bound states the quasiran- 
dom selection is preferable (the calculations of Frolov). 

In our muon-molecule  calculation^,'^ which were car- 
ried out at the beginning of 1983, all a,, (i), following the 
well known method, were optimized by means of random 
search. However, with reasonable calculation times this op- 
timization is illusory and this method is not effective. 

The arguments a,, can also be negative, provided only 
that a,, + a,, > 0 for allp and q. This can be seen if one goes 
over to the variables (7 ) . 

The rate of convergence of expansions of the type ( 1 ) 
and (2) [or ( 10) and (38) 1 is well known to drop rapidly 
when we go over to adiabatic systems4' such as H ,+. The 
reason is that the distribution in r,, in this case has a sharp 
peak near the point r,, = (r,,), corresponding to an equilib- 
rium configuration of the nuclei. Since (r,,) ,# 0, to describe 
this peak it is necessary to have many basis exponentials. 
This applies also to muonic molecules.22 The convergence 
can be accelerated in the following way. The following for- 
mal scheme of taking into account correlations was suggest- 
ed in Ref. 23. The expansion Y = Bcip is replaced by wY,  
where w is some function and w = BjajFj. This is equivalent 

TABLE I 

Note. The final results are: L = 0,213.841 + 0.001 eV; L = 1,99.120 + 0 
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to going over from a basis pi to the basis ( Z j a j j  )pi. In our 
case we can take as w = w ( r , , )  a function which describes at 
least crudely the adiabatic motion of the nuclei, approximat- 
ing it by exponentials: 

u =z a, exp (-y,ri2). 

As a result the basis exponentials in ( 2 )  are replaced by the 
functions 

A limitation on the increase of the number of basis func- 
tions N used in the calculation is imposed by loss of stability 
in solution of the system of algebraic equations which arise. 
Methods of the inverse-iteration type used in Refs. 1 and 2, 
as in Ref. 2 1, permit an advance to larger N but do not re- 
move the difficulty completely. The following scheme may 
be useful here. If pi are the initial basis functions and one 
obtains 

w 

i=i  

then instead of a further increase in the number of functions 
pi in the expansion we find 

N N 

where a and c ! ~ )  are the desired expansion coefficients and 
p jM' #p !M') are the basis functions of the type entering into 
( 2 ) .  In this way all new basis functions are connected and 
the result is improved without increasing the dimensions of 
the energy matrix. 

The authors thank A. M. Frolov for carrying out the 
numerical calculations involved in Section 6. A question 
from L. D. Faddeev stimulated our discussion of the proper- 
ties of the basis ( 2 ): 

APPENDIX 1 

A proof of the completeness of the system of functions 
p( i) - "' in the region [O, 1 1, for the case in which the P ( i )  

satisfy a condition such as the condition ( 1 ) from Section 2, 
can be found for example in Ref. 24. We shall establish the 
completeness of this system for the case of the condition ( 2 )  
from Section 2 (which occurred in the numerical calcula- 
tions; see Section 6 ) .  Between the constants C, and C, deter- 
mined in Section 2 let there be arguments with numbers 1 ,  
2 ,  . . . , M ( N ) .  The completeness of the corresponding sub- 
system of functions is equivalent to fulfillment of the condi- 
t i ~ n , ~  

M ( N )  

lim [n+'/.-B (i, N) ]'[nit12+!3 (i, N) ]-2=0, ( A .  1 )  
N - -  i= (  

where n>O is any integer. Each factor from ( A l )  can be 
majorized by the quantity 

[n+i/2-C]2[n+1/2+C] - '<I,  
where Cis one of the limiting values C, > 0 and C, > 0. From 

this equation (A1 ) also follows. 

APPENDIX 2 

The standard formulas for the matrix elements of tensor 
operators which are irreducible with respect to three-dimen- 
sional rotations can be represented in a form which is some- 
what more general than in the usual handbooks and which is 
necessary for our calculations. For example, let pj',:, (Ax)) 
andgj2Z2 ({ y ) )  be functions with fixedjand m, and let P 
and P be irreducible tensor operators acting respectively 
on the variables {x )  and { y ) .  Let x;,":({x))  and -.  . 
x:;,); ({ y) )  be functions defined by means of the expansions 

We use the further notation 

Then, for example, the following relation is valid: 

In particular, if we define 
( 1 )  (2) 

( P k  . P k  ) = ( - 1 ) ' :  ( 2 k f  1)'" {P!!" p:' 

then we have 

Usually, assuming the basis of the type (A.3) to be orthonor- 
malized, a relation for the matrix elements of the operator 
(A.5)  is given in this basis. It is a particular case of (A .6 ) .  
The metric properties of the functions (A.3)  and (A.4)  for 
validity of relations such as (A.6)  are obviously unimpor- 
tant in reality. 

APPENDIX 3 

For the case L = 1 ,  n- = - 1 we shall give explicit for- 
mulas for the matrix elements of the nonrelativistic Cou- 
lomb Hamiltonian of three particles in the basis ( 2 )  ." Here 
there are only two types of states: with I = 1 and with I = 0. 
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We shall denote them respectively as $;I3' and $j23). The 
functions $j ,'' used below differ from the corresponding 
basis functions from (2a) by numerical factors 
12-1/2( - 1)l-I. 

The matrix elements are expressed in terms of polyno- 
mials of quantities of the form 

xp= [aq ( i )  +aq ( i t )  +a, ( i )  +a, ( i f )  I-'. 
Here and below the numbersp, q, and rare any permutation 
of the numbers 1, 2, and 3. Notations of the form 
a, (i),a, (i') replace notations of the form a,, (i),a,,. (i') 
from (2); a, (i)  are arguments corresponding to the func- 
tions $,!13's'23', and a, (i'), are arguments corresponding to 
the functions $:,'3'.'23'. For brevity we shall use also the no- 
tation 

For the overlap integrals we obtain the expressions 
( P  = 192) 

To write the further formulas we shall use the auxiliary poly- 
nomials 

F ( q )  =,/, [2~:2692' + ~ x ~ ~ x ~ ~ + ~ x ~ ~ x ~ ~ + ~ x ~ ~ x ~ ~ + X ( ~ X ~ + ~ ~ ~ ~ )  I ,  
G ( p ,  q ,  r )  =I / ,  [xp3xqr+x13 (3xp+xq)  +4xr4+2xp2xrZ+Xxp,] ,  

H ( p ,  q ,  r )  =1/,[3xr3xpq+2x~z(xp2+2x~) 

+3x: ( x r - x p )  - ~ X ~ ~ X ~ ~ + X ( X ~ + ~ X ~ )  1.  (A.8) 

For the matrix elements of the Coulomb energy 

i <j 

we obtain the expressions ( p = 1,2) 

h 

To write the matrix elements of the kinetic energy T from 
( 15) we use the additional notation 

(''1 - 
Y P P = ~ P - ~ ~ ,  Y P ~  -xPn-xqn. 

BP= ( 2 m p )  -' (aq ( i1) ,a,  ( i )  +,aq ( i )  a, ( i ' )  ) , 
C,,=ap ( i t )  +'ap ( i )  , 

A='/ ,  (ml-'A23+m2-'A13+m3-'A,,), 

APq=aP ( i r ) , a P  ( i )  +aq ( i f ) ~ ( i ) .  

In addition to (A.8) we use the polynomials 

F, ( p ,  q, r)  = 6 x p 4 x , ~ + 6 x , l y p q + 3 x ~ y ~ ~ ~  

( 2 )  ( 3 )  Hi ( p ,  q )  = ~ x , ' Y P ~ +  ~ x ~ ~ Y P ,  + X ~ ~ Y P P  

and also the notations k, and k,, from ( 16). For the "di- 
rect" matrix elements we obtain ( p = 1,2) 

The formulas for the crossing matrix elements are as follows: 

1 Ti 1 $~23))=tf+~(tl'+t2'+t3'+t4r+t5'), (A. 10) 

( 2 )  + X ( ~ X ~ ~ - ~ X , X ~ - ~ X ~ ~  +x3xlZ)  1, 
t4'=k13a2 ( i )  H ( 1 , 2 , 3 )  +k2,al ( i ' )  H ( 2 , 1 , 3 ) ,  

t 5 1 = k 3 [ a l ( i ) F ( l ) +  a z ( i 1 ) F ( 2 ) ]  

--kla3 ( i )  H ( 1 , 3 , 2 )  -k,aa(i')  H ( 2 , 3 , l ) .  

The formulas gixen were obtained with the matrix elements 
of the operator Tin contrast to (25 1, written in the form of 
the product of the gradients of the basis functions. Here in 
(A.9) the quantities t, t,, and t, correspond to terms with 
derivatives only of the exponentials, and t, corresponds to 
terms with derivatives only of q,,, t,, t,-the crossing 
terms. The same terms correspond to the quantities from 
(A. 10). Here the relation of the form (33) is reduced simply 
to 

~ d ~ x ~ * y ~ = ~ / ~ r y  (821'). 

"A convenient method of approximation of an arbitrary pairing interac- 
tion by sums from (37)  as is follows. First we carry out an approximation 
by one exponential, choosing the argument y,, for example, from the 
integral condition of the best mean-square approximation. Then we 
choose y, from the condition of best approximation of the difference 
V ( r )  - c I  exp( - y,r), and so forth. Here the linear parameters c, in 
each step are determined from solution of a system of linear equations 
corresponding to the condition mentioned above of the best approxima- 
tion or its discrete analog. 

"We note, however, that, for example, in the case of the spin-orbit contri- 
bution to the Breit interaction the radial matrix elements which occur do 
not have the form of a product of an exponential and a polynomial in r,, 
and the analytic method of this section for calculating them is inapplica- 
ble. 

3'See also Ref. 25. We note that only the results of specific calculations 
refer to the original results of the article.25 

4'S. I. Vinitskii kindly called our attention to this. 
"A. M. Frolov contributed to the derivation of these formulas. 
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