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We construct a theory of quasi-one-dimensional superconducting materials starting from a gap- 
less model for weak tunneling of electrons between chains. We find for conservation of coherence 
(CCC) of Cooper or electron-hole 2kF pairs for interchain tunneling the conditions which are 
necessary for the formation of superconducting or dielectric states, respectively. The CCC de- 
pend on the symmetry of the crystal and on the external fields. Commensurability effects produce 
CCC for 2kF pairs. Essentially new effects are the occurrence of CCC for Cooper pairs when the 
equivalence of neighboring chains is violated and for 2k, pairs when the magnetic field is strong. 
These effects are caused by the mechanism, determined in this paper, of pair attraction in jump 
transfers under conditions of gradient phase shifts between the wave functions of electrons on 
different chains. The theory developed here enables us to describe the phase diagram of organic 
superconducting compounds (Bechgaard salts) in such a way that the sequences of electron 
states are mainly determined by the changes in the anion superstructure. We consider the thermo- 
dynamics of the superconducting phase. 

I. INTRODUCTION 

Recently the quasi-one-dimensional organic conduct- 
ing compounds M2X, where M is a TMTSF or a TMTTF 
molecule and X various monovalent anions (PF,, Clod,  Br, 
and so on) have been studied intensively. These materials 
display an extraordinarily rich set of electron states in con- 
junction with various kinds of structural ordering of the an- 
ions. The following are observed: normal and dielectric 
phases, a Peierls-type dielectric (with charge density 
waves-CDW), an antiferromagnetic dielectric (apparent- 
ly with spin density waves-SDW), a paramagnetic dielec- 
tric phase without magnetic ordering, an unusual semimetal 
phase with an antiferromagnetic ordering arising only fol- 
lowing superconductivity in strong magnetic fields and, fin- 
ally, the superconducting phase itself ( a  singlet-SS-or, 
possibly, a triplet-TS-phase). The present state of the ex- 
perimental data and of the theoretical ideas is reflected in 
review articles'-3 and in the proceedings of recent confer- 
e n c e ~ . ~ ~ ~  

The study of these materials was stimulated by their 
specific properties: superconductivity and intrinsic antifer- 
romagnetic effects. At the same time old unsolved problems, 
typical for an entire class of organic metals, were also accen- 
tuated by this study. Among those problems are the compe- 
tition between the band picture with lattice 2kF-deforma- 
tions (Peierls effect) and the picture of strong interelectron 
interaction with Mott-Hubbard effects, the relation between 
quasi-one-dimensional and three-dimensional regimes, and 
many others. The interrelation between theoretical and ex- 
perimental studies of organic conductors remains up to the 
present necessarily eclectic. Whereas the basic phenomena 
in other classes of quasi-one-dimensional compounds are 
qualitatively described on the basis of different variants of 
the Peierls-Frohlich model, it has so far not been possible to 
formulate a general picture for the class of organic conduc- 

tors. For instance, to get agreement between the theory of 
one-dimensional models with the observed properties (see 
Ref. 1 ), it has been proposed that a qualitative change of the 
basic electron-electron interactions take place when secon- 
dary parameters (pressure, replacement of selenium in 
TMTSF by sulphur in TMTTF, and the kind of anion X )  are 
altered. 

The band theory based upon a model of strongly aniso- 
tropic metal with open Fermi surfaces satisfactorily de- 
scribes many p r ~ ~ e r t i e s . ~ . ~  One should mention especially 
the successful explanation2 of the oscillations of the mag- 
neto-resistance in strong magnetic fields. However, there are 
several phenomena which this theory cannot explain as a 
matter of principle including, in particular, phenomena 
which are characteristic for the whole class of organic met- 
als, such as the paramagnetic dielectric phase and the high- 
temperature 2k, anomaly. In the band theory there remain 
unexplained also the strong magnetic field dependences of 
the resistivity and of the tunneling and optical spectra (see 
Refs. 1 and 2 and also D. Jerome's paper in Ref. 5)  at  tem- 
peratures higher than the superconducting transition tem- 
perature by an order of magnitude. 

The as yet unsolved contradictions between the differ- 
ent theories of organic conductors indicate that the usual set 
of data for a selected form of a single substance is insufficient 
to identify the model. We show in the present paper that a 
change in the structure of the anion subsystem exerts a 
unique and controlled influence on a subsystem of conduct- 
ing molecular stacks. The symmetry of the anion subsystem 
in that case determines uniquely the electron state of the 
system. 

As a result we can formulate a general model to describe 
at least a selected group of compounds. We assume that for 
the electron states there exists a general phase diagram 
whose details are mainly determined by a change in the sym- 
metries of the crystal due to the anion ordering or to the 
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effect of external fields. 
The particular significance of the action of ion poten- 

tials on conducting chains in materials with a total charge 
transfer was formulated as an effect of weak twofoldh com- 
mensurability for Peierls-type systems and as the effect of a 
weak single commensurability7 for systems with dimerized 
monovalent or bivalent ions (see also the formulation of 
transitional models in Ref. 8 ) .  These effects were studied in 
experiments on platinum complexes as "non-Peierls super- 
structures".' An attempt to apply the idea of weak twofold 
commensurability to explain the properties of (TMTSF),X 
was undertaken at the very beginning of the study of these 
materials in Ref. 10 and developed in more detail in Ref. 11. 

The structure of the present paper is the following one. 
We give the necessary information about the theory of one- 
dimensional systems in Section 2. In Section 3 we study the 
structure of the perturbation-theory series with respect to 
interchain tunneling of electrons. For systems with a simple 
crystalline symmetry we shall distinguish two regimes, one 
of which leads to the band picture for an anisotropic Fermi 
liquid, and the other to an essentially one-dimensional re- 
gime characterized by the coherent tunneling of electron or 
electron-hole pairs. We shall consider in Section 4 the same 
problems for systems with a symmetry lowered by the effects 
of a weak twofold commensurability, incommensurability 
between neighboring chains, an external magnetic field, or 
internal slowly changing random potentials. We shall show 
that these effects reduce the coherence of either the exciton, 
or the magnon, or the Cooper pairs in the process of tunnel- 
ing between the chains. This conclusion is the main methodi- 
cal result of the present paper. We derive in Section 5 the 
Ginzburg-Landau functional for the superconducting phase 
in a system with incommensurability between neighboring 
chains and we find the form of the anomalous Green func- 
tion near the transition point. We suggest in Section 6 an 
empirical classification of the observed states in M,X com- 
pounds according to the type of their lattice symmetry. We 
shall on the basis of the results of Sections 3 and 4 give a 
microscopic explanation of the phase diagram of the elec- 
tron states for these materials. We shall also compare the 
results of the theory of Section 5 with experimental data 
about the thermodynamic properties and critical magnetic 
fields for superconductivity for M2X compounds. 

The main results of the present paper were briefly ex- 
pounded in Ref. 12 and in conference proceedings.' 

2. CHOICE OF MODEL 

We shall consider quasi-one-dimensional systems, as- 
suming that the following two interactions are sufficiently 
weak: the integrals t ,  of the interchain tunneling and the 
backward scattering amplitude g, for electrons in different 
chains. ' I  

The interactions on a single chain and also, apparently, 
the three-dimensional long-range (Coulomb and deforma- 
tion) forces do not have to be assumed to be small (as com- 
pared to the total bandwidth W) in the substances consid- 
ered. We should therefore choose the most suitable 
description for the initial approximation: t ,  = 0, g, = 0. 

The present-day picture of one-dimensional models is 
built up from the results of a whole number of approaches. 
These various points of view (see Ref. 15) are the summa- 
tion of "parquet" diagrams for weak interactions,lh*" the 
complete summation for models with long-range forces," 
the strong attraction approximation,'Y the strong repulsion 
appro~imat ion, '~  and the retardation approximation." A 
special place is occupied by the "bosonization" methodZ2 
(see the review article, Ref. 23) which reproduces nearly the 
whole set of results of other approaches. When one makes a 
natural generalization of the type used in Ref. 19 and in- 
cludes three-dimensional long-range forces,24 the bosoniza- 
tion method gives us the most adequate approach to the sys- 
tems considered. 

The following basic results have been established for the 
low-temperature properties of the one-dimensional models: 

1 ) A separation of the c and s channels connected with 
the excitations of the charge ( c )  and spin (s) degrees of 
freedom. 

2)  The acoustic nature of the c and s spectra or the 
formation of gaps in the s channel (in the case of an effective 
attraction) 16.19.21,23.25 and/or in the c channel (in the case of 
an effective repulsion for a half-filled band). ' 720323-'5 For 
instance, in the model of weakly interacting fermions, which 
has been named g-ology (see Ref. 25) the conditions for the 
formation of gaps have the form: in the spin channel g ,  < 0, 
in the charge channel g , /  + 2g2 - g ,  > 0. Hereg,, gZ, g, are 
the backward, forward, and umklapp-including scattering 
amplitudes of the fermions. 

3)  The power-law behavior (at T = 0 )  of all or, when 
there are gaps present, several correlation functions. 

We introduce a complex coordinate z = x + iu,r where 
x is the coordinate along the chain, and T the Matsubara 
time; we use a system of units in which f i  = 1, u, = 1, a = 1, 
W- 1, where a is the period of the crystal along the chain 
and W the width of the conduction band. To  simplify the 
problem we shall also assume that the speeds of ordinary and 
spin sounds are the same and equal to u,. For what follows 
we need an expression for the two-particle correlation func- 
tion of the one-dimensional electrons, in the form" 

The indexes + indicate here electrons with momenta close 
to + k,; a and a' are spin indexes; the index zero of the 
averaging sign of Eq. ( 1 ) indicates that it is taken neglecting 
coupling between the chains. We shall consider in our paper 
only such systems in which there is no gap in the s channel 
and no spin anisotropy. In that case K j,:, contains only slow- 
ly varying logarithmic functions. 17." When there is no gap in 
the c channel the function K, has the formZ'." 

(11 const . exp  [ i  arg (z,-2,) -i arg (z,-z,) ] 
KP (zI, Zz, Zs, z') = I s (z1-zs) s (22-2') ( " 
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The exponents 7, and v can be expressd in terms of the 
electron interaction constants for specific models. For in- 
stance, in g-ology (for the case when g, = 0 )  we have 

Q F =  ( ~ + Y + Y - ' )  14, %'= (Y-Y-') 14, 

In the general case when the amplitudes of the electron- 
electron interaction are not small and have a momentum and 
frequency dispersion, it is necessary to assume that 7, and v 
are arbitrary phenomenological constants characterizing 
the system considered. For non-interacting electrons 

We also write down an expression for the single-particle 
Green function for the gapless case: 

const , exp[* i (arg z+n/2) ] 
Go,* (z) =(Qo,+ (z)QgT+ (0) )O = 

Is(z) I "  
( 5 )  

In the case of a gap in the charge channel in the region of 
most importance for what follows 

we have the following expression2": 

,;I1'.= - const . exp (- I zlAzl ( /E,- I zz-z3 I /E,) , (7 )  
I E e l Z m - i I ~ ( ~ )  I 

where &, -A, ' is the correlation length, A, is the magni- 
tude of the gap in the c channel, and const > 0. 

We also consider a system with impurities which lead 
only to forward scattering. In that caseZX 

K ~ I ' ' )  (zl, z*, z3, z') 

(1) 
= K~ (zi, ZZ, 23, ZJ exp {- ( ~ i + x ~ - z ~ - x s  I /Eim,) ,  (8  

where g,,, is the mean free path due to impurities. 
As usual we introduce a set of order parameters'0325 

where the a:,:. are the Pauli matrices. One can use Eq. ( 1) to 
obtain the correlation functions of these operators, by con- 
tracting appropriately pairs of points. 

In the gapless case 

where 

i= SS, TS: q,=2(qF-v), C,>O, 

, i=SDW , TS, 
-V2, i=CDW, SS. (12) 

The logarithmic factor in Eq. ( 10) is connected with the fact 
that there is no gap in the s channel.26 

In the case of a gap in the c ~ h a n n e l ' ~  

Ki (~)mexp(- lz l IE , ) ,  l z l ~ E , ,  i=TS, SS. (13)  

3. PHASE DIAGRAM OF SYSTEMS WITH A SIMPLE CRYSTAL 
SYMMETRY 

We study in this section the effect of tunneling of elec- 
trons between chains on the properties of a quasi-one-dimen- 
sional system in the gapless regime. One usually assumes'." 
that the phase diagram of a three-dimensional system with 
weakly coupled chains corresponds to the conventional 
phase diagram of a one-dimensional system determined 
when the various susceptibilities diverge: ylO' ( T)- w as 
T+O. For the order parameters (9 )  we have according to 
(10) 

X:O) (T) = j  d%Ki (z) mT-8f+ const, 

The divergence of XIo' ( T) occurs under the condition 

We assume for the sake of simplicity that the chains are ar- 
ranged in a rectangular lattice with periods b and c and are 
numbered by integer two-dimensional vectors m,n 
= (n,,n, ). One expects that for suitable coupling between 

the chains 

S,= 5 bzh$ o,+ (z, m) 0, (z, n),  h i = x  hi". , ( 16) 

characterized by the constants A,, the total susceptibility 
X, ( T )  will diverge at a finite transition temperature T:": 

(0 
X i  (T, ) =Q), T:" - (hi) (18) 

The last equality in (17) corresponds to the widely used 
(see, e.g., Refs. 1, 19) self-consistent field approximation in 
the interaction ( 16).  The problem is that in all cases except 
i = CDW, the interaction ( 16) is not contained in the origi- 
nal action of the system. We show that condition (15) is a 
necessary but not sufficient condition for the susceptibility 
of the three-dimensional system to diverge at a finite tem- 
perature. 

The coupling between the chains can be of three types. 
None of the constants A,  is determined by the scattering with 
a small transfer of longitudinal momentum. It leaves all in- 
terchain correlators equal to zero2' and retains for the sin- 
gle-chain ones the form (2 ) ,  ( 10). The forward scattering by 
different chains assumes directly the form (16) for 
i = CDW and determines only this type of ordering (Ref. 
24) .*' In the other cases i = SDW, SS, TS the parameters A, 
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can arise only due to the tunneling of electrons between the 
chains, which is described by the action 

The index a = f describes electrons with momenta + k,. 
We shall use perturbation theory to evaluate the effect 

of ( 19), developing in the standard way the series in powers 
oft,.  We consider the zeroth and first terms of the series in 
powers oft, for one of the susceptibilities~, . They are repre- 
sented by the diagrams in Fig. l a  for i = SS, TS and in Fig. 1 b 
for i = CDW, SDW. The shaded squares indicate two-parti- 
cle correlation functions ( 1 ), the dashed lines the matrix 
elements t, - given in ( 19). In the case when there are no 
gaps either in thes  or in the c channel, we get, using ( 2 )  and 
neglecting logarithmic and phase factors, 

=xjO' ( T )  

i=SS, TS, (20) 
2 r f 2  { i=CDW, SDW. 

The function f (u,u) describes effects of a special crystal 
symmetry which are considered in the next section; in this 
section f ,  (u,u) = 1 everywhere. Considering the series (20) 
we can distinguish two cases A and B differing in the conver- 
gence of the integral over u - u in (20) at the upper limit. 

A. Let the convergence of the integral over u - u in 
(20) at the upper limit be determined merely by the tem- 
perature cutoff - T - I, i.e., let the following inequality hold: 

In that case the second term in (20) turns out for any i to be 
of order E*( T)  T --'I, where 

Similar estimates of the next terms in the series show that for 
any of the susceptibilities the series (20) has the form 

xi ( T )  =Xto)  ( T )  ( I + c 2 ( T )  + c b ( T )  + . . .) , (23) 

i.e., the expansion is in powers of an undefined (i-indepen- 
dent) expansion parameter E ( T ) .  The hypothetical expan- 
sion ( 17) in powers ofX,'" ( T) is thus not corroborated and, 
hence, the one-dimensional phase diagram is not reproduced 
at a finite temperature. Instead, at a temperature T- T,, 
when E ( T )  - 1 and the series (23) diverges there occurs a 
transition to a three-dimensional behavior by electrons 
which have an open Fermi surface. When T 5  T,, the con- 
clusions of the band theory of metals are apparently applica- 
ble. Indeed, using Eq. (5)  and a perturbation theory in t, - 

one can easily show that the series expansion for the single- 

FIG. 1. Expansion of the susceptibility in powers oft, for superconductiv- 
ity ( a )  and for CDW, SDW ( b ) .  

particle Green function is also in powers of E (  T)  . Hence it is 
clear that T,, is nothing but the effective width of the single- 
particle band for transverse motion renormalized using Eq. 
(22) to take interactions into account. We note that T,, - t ,  
for free particles according to (22) and (4) .  In the case of 
weak interactions g, when 8, - 1 ag2, the transition from 
the one- to the three-dimensional regime and the renormal- 
ization of the bandwidth were studied in detail in Ref. 14. 

B. We consider the case when for any i the integral over 
u - u in (20) converges at some upper limit 6 such that 
T i .  The range of integration variables 
ju - uj -&( 121- T - I  is then the important one for the inte- 
gral in (20) which is transformed into 

Considering similarly the ladder diagrams of higher order in 
t ,  we see that the series ( 17) is reproduced with Ai from (25) 
as the effective constant. We get from ( 18) and (25) 

For the self-consistency of the theory it is necessary to satisfy 
the condition 

which is equivalent in view of (26) to the condition 

Whenf. (u,u) = const, the fast convergence of the inte- 
gral over u - u in (20) can be guaranteed only by the 
inequality 

In that case 6- 1, i.e., when jumping between the chains the 
electrons are bound into a pair of molecular size. Condition 
(29) is equivalent to the inequality 2 0, < Di from which it 
follows by virtue of (26),  (28) that 

T:') BTSd. (30) 

Equation (30) means that under condition (29) there is re- 
alized in the system a regime which can naturally be called 
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quasi-one-dimensional in contrast to the band regime (case 
A ) :  when the temperature is lowered the phase transition 
occurs before the band corrections to the single-particle 
Green function become important. Condition (29) is not 
satisfied for noninteracting electrons [see ( 4 )  ] so that for 
the realization of the quasi-one-dimensional regime in a sys- 
tem with a simple crystal symmetry a strong electron-elec- 
tron interaction is necessary (generally speaking, compara- 
ble with the bandwidth W).3' 

We discuss the approximations made in reducing the 
power expansion (19) to the series (17).  First, we selected 
only those diagrams in which both particles jumped to one 
and the same chain. This is valid because these diagrams 
have an expansion parameter t :/T "and diverge by virtue 
of the quasi-one-dimensionality condition (30) faster than 
diagrams with independent jumps for which the expansion 
parameter is E (  T) from (22).  Second, we neglected correc- 
tions which arise when in the jumps a pair of particles turns 
up several times on a single chain. In that case one should use 
for that chain a multipoint one-dimensional correlator in- 
stead of ( 1 ), ( 2 ) ,  or ( 10). One can show that taking these 
corrections into account is equivalent to considering the 
critical fluctuations of the order parameter. They are impor- 
tant only close to T, and are not of special interest to us. 

We note yet another point. The ordering for T < T, can 
take place nonuniformly and have some transverse wave 
vector. If we assume that t ,  _ is non-vanishing only for 
nearest neighbors, we must in the equation analogous to 
( 17) for X, (q, ,T) introduce instead of (25) the quantity 

h (ql) - ( t b 2  cos qbb+te2 cos q,c) gZRp-Pl, (31) 

where q, = (q,,q,) is the wave vector at right angles to the 
direction of the chains. Since according to ( l o ) ,  ( 1 1 ), ( 14) 
~ 1 ( ' )  > 0 for i = SS and TS, and xjO' <O for i = CDW and 
SDW (we bear in mind that we are working in the Matsu- 
bara technique), it follows that the pole in (17) occurs, 
when we use ( 3  1 ), at q, = 0 for superconductivity and at 

for dielectric transitions. The band theory with a cosine 
transverse dispersion law for the elt ctrons leads to the same 
result. If, however, we take into account jumps between 
next-nearest neighbors, the ordering wave vector may differ 
from the value (32) .  

4. PHASE DIAGRAM UNDER CONDITIONS OF SPECIAL 
CRYSTAL SYMMETRY OR UNDER THE ACTION OF 
EXTERNAL FIELDS 

In this section we study how various actions, external to 
the electron subsystem, affect the coupling between the 
chains: 1 )  a crystalline field with wave vector 4k,; 2)  
nonequivalence of neighboring chains; 3) a magnetic field 
perpendicular to the chains; 4 )  the presence of impurities 
from which forward scattering takes place. We show that all 
these actions lead, when well defined conditions are satis- 
fied, to the behavior of the system corresponding to case B of 
section 3, although inequality (29) is not satisfied. The 
jumps of electron-hole pairs between chains become coher- 

ent in cases 1 ) and 3 ) and of Cooper pairs in cases 2)  and 4 ) .  

4.1. A system with a gap in the charge channel 

We consider a system with one electron per elementary 
cell in a regime with a gap A, in the charge channel and no 
gap in the spin channel (see Section 2) .  As in Section 3, we 
use perturbation theory with respect to t , .  We consider the 
diagram of Fig. l b  for i = SDW, CDW. Assuming that 
A, > T and using (7 )  we get easily the following expression 
for the susceptibility: 

Equation (33) is analogous to Eq. (24) (neglecting a few 
differences in the indexes) and the next terms in the expan- 
sion in t ,  reproduce the series ( 17). We see that the presence 
of a gap in the charge channel leads to the occurrence of a 
factor h ( u  - u )  = exp( - lu -u1/{,) for i = S D W  or 
CDW, which guarantees the convergence of the integral 
over u - v on the length {-6, -A, ' ( T  - '. The situation 
considered thus corresponds to case B of Section 3. The gap 
in the charge channel guarantees the coherence of the jumps 
of the singlet and triplet electron-hole pairs and the quasi- 
one-dimensional regime of behavior. From Eq. (26) we get 

T:" -A,(TJdIA,)ZB', i=CDW, SDW. (35) 

For self-consistency of (33) it is necessary to satisfy the con- 
dition 

which by virtue of (35) is equivalent to the inequality 

i.e., the gap A, must be appreciably larger than the trans- 
verse bandwidth. 

Taking the logarithmic corrections ( l o ) ,  ( 12) into ac- 
count shows that an SDW has a higher transition tempera- 
ture than a CDW. As to superconductivity, it is clear from 
( 13) that it is suppressed when there is a gap in the charge 
channel. 

Similar results were obtained in Ref. 24 for the case of a 
gap A, in the spin channel. It was shown that the presence of 
A, leads to the coherence of the jump of singlet pairs, thus 
leading to Eqs. (33)-(35) for SS and CDW, but suppressing 
the TS and SDW. 

4.2. Systems with nonequivalent neighboring chains 

We consider a system in which there is a crystalline field 
oscillating along the transverse b axis with a period 2b. Be- 
cause of this the potential energies of neighboring chains will 
differ by some amount 2%. The condition that the Fermi 
energy be constant leads to equilibrium Fermi momenta that 
alternate along the b axis alternating: 
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If k ,  = rr/2a, i.e., the system was twofold commensurate 
when x  = 0 ,  the transition into the incommensurate state 
( 3 8 )  occurs under the condition 

The gap in the charge channel then vanishes. 
We shall reckon the longitudinal momenta of the elec- 

trons in each chain from the equilibrium value ( 3 8 ) ;  all one- 
dimensional correlators will then, as before, be given by Eqs. 
( I ) ,  ( 2 ) ,  ( 1 0 ) .  Changes occur only in the action ( 1 9 )  de- 
scribing the jumps of electrons between chains: 

We use again perturbation theory with respect to t , .  We 
consider the diagrams of Fig. l a  for i = SS, TS. Using ( 2 ) ,  
( 4 0 ) ,  and (41 ) we find easily that the expressions corre- 
sponding to them reduce to ( 2 0 )  while for the jumps 
between non-equivalent chains (m, - n ,  odd),  for instance, 
between neighbors, we have 

f i ( u ,  IU) =COS [2r .  ( x u - x u ) ] ,  i=SS, TS. ( 4 2 )  

Here x u  = Reu,x,, = Rev. We shall assume that 

The oscillating factor ( 4 2 )  then improves strongly the con- 
vergence of the integral over u - u in ( 2 0 )  in the region 
x - ' 4  / u  - ul4T - I .  For convergence it is now sufficient that 
the condition v > 0  be satisfied. This is realized even for weak 
interactions [see ( 4 )  1 .  Indeed, the integral ( 2 4 )  over u - v 
can be evaluated exactly: 

cos 2r.x 
I= j d 2 z -  

I s ( z )  I Z V  

- - 1 s i n [ n ( v / 2 - i x / 2 )  ] 
( 2 n T )  '-" sin n v  

When condition ( 4 3 )  holds, it equals 
( 4 4 )  

which means convergence of the integral over distances 
[ - x - ' ( T - ' .  Thus, if we sum diagrams with jumps 
between nonequivalent chains only, the behavior of the sys- 
tem considered corresponds to case B of Section 3. From 
Eqs. ( 2 6 ) ,  ( 2 5 )  we get 

where A,, is the effective Josephson coupling constant 
between chains. 

For the self-consistency of the theory it is necessary that 

a number of conditions are satisfied. First of all, it is neces- 
sary that conditions ( 2 1 )  and ( 15) for the exponents are 
satisfied 

2>v>O, qi<2, i= SS, TS . ( 4 7 )  

These conditions are not stringent, since they are satisfied 
even for weak interactions [see ( 4 )  1. According to ( 3 )  they 
mean that there is an effective attraction in the charge chan- 
nel. Second, the condition 

is necessary, and guarantees the coherence of the jump of the 
electrons of a Cooper pair: in jumps they remain bound over 
distances 6-x -  I .  By virtue of ( 4 6 ) ,  condition ( 4 8 )  is equi- 
valent to the inequality 

i.e., the difference between the potential energies of the 
chains must be appreciably larger than the width of the 
transverse band at ?t = 0 .  

The evaluation of the single-particle Green function in 
the framework of the ladder approximation in t ,  - shows 
that when x  # O  and under condition ( 4 9 )  the effective width 
of the single-particle band of transverse motion equals 

Yet one more condition for the applicability of the theory: 

guarantees the quasi-one-dimensional nature of the transi- 
tion. It allows us to neglect diagrams with jumps of the elec- 
trons of a Cooper pair on different chains. It follows from 
( 4 6 ) ,  ( S O ) ,  ( 2 7 )  that condition ( 5 1 )  is equivalent to the 
inequality 

qi<qp, i=SS, TS. ( 5 2 )  

We note that ( 5 2 )  is not satisfied for weakly interacting par- 
ticles, so that for the applicability of our theory it is neces- 
sary to have sufficiently strong interactions although 
inequality ( 5 2 )  is weaker than ( 2 9 ) .  

There is an important difference between conditions 
( 4 8 ) ,  ( 4 9 ) ,  and ( 5  1 ), ( 5 2 ) .  Condition ( 4 8 )  is necessary for 
the very existence of the effect that the electrons contract to a 
pair as they jump. However, condition ( 5  1 ) is a procedural 
restriction which allows us to obtain explicit formulae by 
selecting diagrams of a well-defined form. Apparently, 
inequality ( 5 1 )  is the condition for the applicability of the 
theory propounded here, but not the condition for the exis- 
tence of the very effect of stimulation of superconductivity 
via nonequivalence of neighboring chains. 

The inequalities to which our theory leads can be sum- 
marized as follows 

We note that both T, and T T, decrease with increasing x. 
Due to the absence of a gap in the spin channel, the 

logarithmic corrections ( 1 0 )  and ( 1 2 )  lead to the triplet 
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superconductivity having a higher transition temperature 
than the singlet superconductivity. 

We now consider the SDW and CDW channels. In this 
case we get instead of (42) for jumps between alternating 
chains the factor 

f i (u ,  v )  =cos [2r, (x ,+x, ) ]  , i=CDW, SDW, (54) 

which does not lead to convergence of the integral over u - v  
of to coherence of the jump of electron-hole pairs. 

The difference between the Fermi momenta on neigh- 
boring chains leads thus to coherence of the jump of the 
electrons in a Cooper pair, to formation of an effective 
Josephson coupling between chains, and to transition into a 
superconducting state in the quasi-one-dimensional regime. 
In contrast to the models of quasi-one-dimensional super- 
conductivity considered usually, in our theory there is no 
gap in the spin channel and the role of the coherence length 
of a Cooper pair is played by x -  I .  

We note that different electron densities on neighboring 
chains can in principle be guaranteed not only through inter- 
nal crystalline fields but also through an external electric 
field perpendicular to the chains, for instance, in field-effect 
transistor structures. This opens up a tempting possibility of 
controlling the superconductivity. 

4.3. Influence of a magnetic field 

We consider the behavior of a quasi-one-dimensional 
system of equivalent chains ( x  = 0)  in a gapless regime 
(A, = A, = 0)  in a relatively strong magnetic field H at 
right angles to the direction of the chains. Let, for instance, 
Hllc. Performing on each chain a gauge transformation 

4% a ( 2 ,  n) -+go, a (2, n)  e s p  [ i qnbx l ,  q= (e/c) b H ,  

we see that changes occur only in the action ( 19) that de- 
scribes the jumps. It will have the form (40) with 

Studying the diagrams of Fig. l b  for the CDW and SDW 
channels we get Eq. (20) with 

f , ( z ~ ,  V )  = e s p  [ - i q ( m b - n b )  ( x u - x , ) ] ,  i=CDW, SDW. (56) 

For nearest neighbors this expression is analogous to Eq. 
(42) obtained for superconducting channels, with replace- 
ment of 2% by q. The difference from the magnetic case is 
that all chains must be assumed to be nonequivalent. Using 
the same arguments as in the preceding subsection we con- 
firm that the behavior of a system in a magnetic field corre- 
sponds to case B of Section 3 for i = CDW and SDW with a 
characteristic length 6-q-I .  Of course, for this it is neces- 
sary that the conditions 

-2<v<O, q,<2, i=CDW SDW (57) 

on the exponents are satisfied, which mean that there is an 
effective repulsion in the charge channel. 

For the TS and SS channels in a magnetic field there 
appears a factor 

f, ( u ,  V )  = e s p  [ i q  ( m b - n b )  (x,,+x,) 1, i=SS, TS , 

analogous to (54) and suppressing the superconductivity. 
A magnetic field at right angles to the chains thus con- 

tracts into pairs; the electron hole jumps and induces a tran- 
sition of the system into a state with SDW or CDW. Com- 
paring this with the results of subsection 4.2 we see that there 
is a peculiar duality: electric vs magnetic field, supercon- 
ducting vs electron-hole pairing. 

For the applicability of our theory it is necessary that 
the condition q g  T,, which is equivalent to q )  T,, , be satis- 
fied. The effect of stimulating SDW or CDW by a magnetic 
field was deduced earlier in Ref. 30 in the framework of band 
theory which is applicable when qgT, , .  This effect exists 
thus in a broad region of the parameter values of the prob- 
lem. 

We note that both from a theoretical and from an ex- 
perimental point of view the case of a magnetic field against 
the background of a structure with alternating chains is of 
special interest. 

4.4. Effects of scattering by impurities 

We consider a system in which there are chemical-po- 
tential inhomogeneities which vary slowly along the chains, 
or impurities from which only forward scattering takes 
place. Using Eq. (8 )  we find that there are the following 
functions in Eq. (20) : 

exp  ( - 2  I xu-x ,  1 / E i m p ) ,  i= SS, TS, 
i i  (u, { 

e x p ( - 2  ] x u +  x,l /Ei , , ) ,  i=CDW SDW. 
(58) 

According to the theory of item B of Section 3 we find at once 
that there occur coherent jumps of Cooper pairs with an 
effective coherence length {-limp, 

~ 1 ~ '  -CAP ( T ~ & ~ , ~ )  2 ~ ~ 1 ~ ~ ,  i= SS, TS. (59) 

The necessary conditions for the existence of the effect are: 

The second condition in (60) differs from the analogous 
condition in (47) of subsection 4.2 as the exponential cutoff 
is less effective than the oscillating one. This condition is 
necessary to guarantee the convergence at the upper limit at 
distances much less than T ;  ' of the integral (24) over 
d(r, - T, ). Impurities leading to forward scattering thus 
stimulate superconductivity but suppress [see (8)  1 SDW 
and CDW. Similar results were obtained in Ref. 31 but there 
the conditions for the applicability of the quasi-one-dimen- 
sional theory were not indicated. 

We consider the system described in subsection 4.2 for 
the case when there is disorder in the crystalline fields, so 
that ( x )  = 0. One must average Eq. (42) over the spatial 
fluctuations of x .  We assume that the anions which produce 
the crystal field are completely disordered. Performing the 
averaging with a Gaussian weight we return to Eqs. (58) 
with 

where a is the distance between the anions and coincides 
with the lattice constant, and x,, is the potential produced by 
a single anion. Disordered crystal fields thus stimulate su- 
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perconductivity in the same way as ordered ones. 

5. SUPERCONDUCTING PHASE IN A SYSTEM WITH 
NONEQUIVALENT CHAINS 

In this section we consider the superconducting state 
described in subsection 4.2 near the transition t empera t~ re .~ '  
To simplify the exposition we drop the spin indexes, i.e., the 
entire derivation is for spinless fermions. 

To derive the Ginzburg-Landau functional we add to 
the action of the system a term with a generalized field 
h (zl ,z2,n),  which produces Cooper pairs: 

The first term in the expansion of the free energy in powers of 
h has the form 

9 { h }  -9 {O} 
T m - = - L z J  T 2 m,n C z 1 k z 2 b z 3 h z ,  

X h * ( z ~ ,  2 2 ,  m) h ( z 3 ,  z4, n)Km,.(zi ,  zz,  z,, z l ) ,  (63)  

where the correlation function is 

The mean value is evaluated here for h = 0, but t,  $0. 
We change to the conjugated potential @ ( F ) :  

n 

The connection between h and F is given by the formula 

m 

The first term in the expansion of @ ( F )  in powers of F has 
the form 
a)"' 1 
- m = J d2z ,  d2r ,  d2z3 d2z,Fm' (a, ,  a,) KG (a, ,  h, a,, z,) 

where K - '  is the kernel which is the inverse of ( 7 ) .  
The operator K satisfies in the ladder approximation 

the following equation which corresponds to a summation of 
diagrams of the kind shown in Fig. la: 

Here, KO is given by Eqs. ( 1) and ( 2 ) ;  w by Eq. (41 ); the 6 
are two-dimensional vectors which connect nonequivalent 
chains. In deriving (68) we selected only diagrams with 
jumps between alternating chains, in as much as according 
to the conclusions of Sections 3 and 4 jumps between equiva- 

lent chains lead to indefinite corrections of order E ( T) from 
(22) .  

We find the eigenfunctions e, and eigenvalues A - ' of the 
operator K, which are defined as follows 

m 

Substituting (69) into (68) we get 

We introduce new variables: 
RI= (z1+z2) 12, ri=zi-zz, R2= (z3+zL) /2 ,  r2=z3-zl. 

(71) 
Using Eq. ( 2 )  for KO we can rewrite Eq. (70) in the form 

where 
r ( R ,  r i ,  r 2 )  

r - r  -% X S ( R - - ) I  2 . 
We introduce a new variable 

Fourier-transforming with respect to R in (72) using the 
definition 

f (Q.  r )  = j d f f  (8, r ) e x ~ [ - i ~ ~ , ~ + i o . ~ l .  Q= (0.; q, , ) ,  (75) 

we get 

Yn (Q,  r ~ )  = hi 5 dPrzfn (12) Yn+6 (Q ,  1 2 )  / s ( 4  
b 

r  Y (Q,  rz) Is (rz)  I-" (Q ,  T I ,  rz). x r  (Q .  r l ,  rr) + ( Q )  di z n 

(76) 
Using (41 ) and the condition v > 0 the first integral in (76) 
converges at distances /r2 I - x -  I ,  i.e., lr21 ( /Q / - ' for charac- 
teristic /Q  / - T,. Hence, we can in that term put 
r(Q,r , ,r2)  zT(Q,r, ,O) up to terms of order T / x < l .  

I t  is now clear from (76)  and (73)  that Yn (r)  is an even 
function of r, so that the first integral in (76) contains only a 
symmetric part 

f ( r )  = ' / ?  [/. ( r )  +/. ( - r ) ]  =COS 2 x x ,  (77) 

which is independent of n. Fourier-transforming with re- 
spect to n we get 

= t 2 ( q d  r ( Q ,  r l ,  0 )  d2r2f  (r.) Y ( Q ,  ql, r 2 )  I s (r.) 1 -'. 
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Close to T, the eigenvaluesil are small so that the eigenfunc- 
tions Y can be looked for by iterating Eq. (78) with respect 
to A: 

Y ( Q ,  9 1 ,  r l )  = C ( Q ,  q l )  [ t 2  ( q l )  r ( Q ,  r l ,  0 )  

We find the self-consistency condition for the constant C by 
substituting (79) into (78) .  To first order in A it is sufficient 
to consider only the first term on the right-hand side of (78) 
and we get 

h ( Q ,  q , ) = [ l - t 2 ( q l ) r ( Q ,  0 ,  0 ) I l / [ t 2 ( q - ) I S d 2 r r ( Q ,  0 ,  r )  

xr(Q, r ,  0 )  l s ( r )  (80) 

where I i s  given by Eq. (45).  Clearly T(Q,O,O)=T(Q) is the 
generalized susceptibility of the one-dimensional system. 
Close to T, small values of the momentum q !  (T, ,  w ,  = 0 
are important. In that case we get from (73) 

where $'(u) is the trigamma function and 7 = 2 (7, - v ) .  
Estimating the integrals in Eq. (80) we get 

We find the form of the anomalous Green function 
F, ( z , ,~ , ) .  To do this we expand it in terms of the eigenfunc- 
tions q, of the operator K - ' of (69) using (74).  Close to T, 
we can neglect in Eq. (79) the second term on the right-hand 
side and neglect the rl-dependence in the first term when 
l r , /<T; ' .  Hence 

(83) 
where the function Yn (R ) [the inverse Fourier-transform of 
the function in (79) ] plays the role of the wave function of 
the center of mass of the electron pair. Its modulus is deter- 
mined by the next terms of the expansion (67) .  We draw 
attention to the fact that the anomalous Green function (83) 
at small distances has a power-law dependence on the rela- 
tive distance between the electrons. Substituting (83) into 
(67) we get 

We now find the next term in the expansion of the free 
energy in powers of h:  

x $-+ ( z ~ ' ,  n) )-($+ ( z l ,  k) $- ( z l ' ,  k) $++(zb,  n) $-+ ( z ~ ' ,  n) ) 

x($+ ( z 2 ,  1)$- (z2 ' ,  1) $++(z3 ,  m)$-+ (z,', m) >. (86)  

Here all averages are evaluated for h = 0. We shall evaluate 
Eq. (86) also using perturbation theory in t,. The summa- 
tion is over all trajectories of the meandering two electron 
pairs in the two-dimensional system of chains. If these two 
trajectories do not intersect, i.e., if the two particle pairs do  
not land on the same chain, expression (86) vanishes. We 
consider trajectories with only a single intersection on the 
chain p. Using (66),  Eq. (85) takes in this case the form 

; 3  (2) 
-- 1 - 

klmnpb, j=i i=i 

where 

Expression (88) is the correlator (86) ofeight electron oper- 
ators pertaining to a single chain. We can evaluate it using 
the bosonization method. In the region Izi - z;i 
4 /z, - z, 1 ,  i f j ,  which is important for what follows, it has 
the form 

4 

where 

Substituting expressions (83) and (89) into (87) and 
assuming Y, ( x )  to be a slowly varying function we get where 
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We now perform in (91) and (84) the substitution 

after which we find finally 

T-T, m{w=Z I W ~ )  1 2 ( ~ + a : ~ , , z +  tL2 
q 

The Ginzburg-Landau type functional (92) was de- 
rived by us assuming rare intersections of Cooper pair trajec- 
tories on a single chain. We got the first term in the zeroth 
approximation and the second one in first order in such in- 
tersections. Taking a larger number of intersections into ac- 
count is equivalent to considering critical fluctuations. It is 
clear that the neglect of critical fluctuations can quantita- 
tively be justified only for models with a large number Z of 
interacting chains. As usual in phase transition theory, Eq. 
(92) is a qualitatively correct extrapolation to the region 
Z- 1. An additional complication arises from the fact that 
the materials of interest to us are not only quasi-one-dimen- 
sional, but also quasi-two-dimensional, i.e., t '(q, ) depends 
weakly on one of the components of q,. In that case we must 
consider (92) as the approximate functional of the problem 
for the phase transition in a lamellar superconductor. The 
specific nature of such phase transitions is discussed in Refs. 
33 and 34 although the final results for the vicinity of the 
phase transition point are not known. 

6. APPLICATION OF THE THEORY TO ORGANIC 
SUPERCONDUCTING COMPOUNDS 

6.1. Phase diagram 

We consider the phase diagram of the (TMTSF) ,X and 
(TMTTF),X compounds, which can have highly diverse 
forms (see the Introduction). The key to its interpretation 
is, in our opinion, given by a study of the types of ordering of 
the anions (see the review papers 2 and 3) occurring at a 
temperature To, and characterized by superstructure wave 
vectors Q = (Q, ,Q,,Q, ) measured in terms of the initial in- 
verse lattice vectors. The types of ordering are apparently 
determined by the Coulomb interaction of the anions, their 
chemical properties, and other factors, which we assume 
given.5' We show that the electron states of the compounds 
considered can naturally be classified according to the anion 
superstructure wave vector. In the list given below we are 
dealing only with the behavior at atmospheric pressure, 
since x-ray structural measurements under pressure have 
not been made at sufficiently low temperatures.35 

1. Q, = (J,i,i). Almost all compounds with non- 
spherically symmetric anions belong to this type of ordering. 
It is characterized by the fact that the first component of the 
vector Q ,  equals 2k,, so that the potential produced by the 

anions opens a gap on the Fermi surface causing transition of 
the substance into a dielectric state. The phase diagram takes 
the form of a metal-dielectric transition at the temperature 
To,, and is a trivial effect that folIows both from the quasi- 
one-dimensional and the band pictures. A special case are 
the compounds with X = NO, where Q; = (t,O,O) rather 
than Q, is realized. Here (TMTSF),NO, changes into an- 
other, also metallic, state which persists all the way to dielec- 
tric transition at T = 12 K. Such a behavior forces us to 
assume that the anion displacement amplitude is anoma- 
lously small. 

2. Q, = (O,t,$). The main property of this structure is 
the nonequivalence of the TMTTF molecules which are 
neighbors along the longitudinal a axis. It is realized in only 
one compound, (TMTTF) ,SCN ( To, = 160 K )  . The phase 
diagram is3': T >  To,-metal, To, > T >  T, = 7 K-para- 
magnetic dielectric, T,+, > T-antiferromagnetic. In the 
paramagnetic-dielectric phase the substance has a conduc- 
tivity activation energy A, - 10% while at the same time 
the magnetic susceptibility retains its metallic nature. 

3. Q, = (O,t,O). The main property of this structure3' is 
the alternation of the crystalline fields on neighboring mo- 
lecular stacks (along the b axis). The only example is 
(TMTSF),ClO, in the R phase (relaxed state) To, = 24 K. 
The phase diagram is: a metal-superconductor transition at 
T, = 1.3 K.  In strong magnetic fields (H > 50 kOe) a specif- 
ic phase with a magnetic ordering is realized.' 

4. Q, = (0,0,0). This is an undeformed structure which 
is retained, when the temperature is lowered, by all com- 
pounds with spherically symmetric anions. An important 
property of this structure is the alternation of distances 
between the TMTSF molecules along the a axis. Assuming 
the anions to be monovalent, we see that in the cases 2 and 4 
the crystal structure is such that there must occur umklapp 
processes by a vector 4k, when two electrons collide. When 
the temperature is lowered these compounds go through the 
following phases: metal-paramagnetic dielectric-antifer- 
romagnetic (presumably SDW) .'I An intermediate phase is 
observed in TMTTF salts where T,w, = 200 K,  T,v =. 10 K, 
A, ~ 6 0 0  K." On the other hand, in TMTSF salts the tem- 
peratures of these transitions are practically the same: 
T,, = T ,  =: 10 to 20 K . '  To this class may also belong 
(TMTSF),ClO, in the Q phase (quenched state). This 
phase is obtained by fast cooling when the anions remain in 
the disordered state, so that on average they produce a po- 
tential with the vector Q,. 

We now attempt an interpretation of the phase transi- 
tions described above from the point of view of the theory 
developed in the preceding sections. The existence of a para- 
magnetic dielectric phase in cases 2 and 4 indicates the split- 
ting up of the spin and charge channels which is most ade- 
quately described using the bosonization method. In that 
case it is necessary to assume that there is no gap in the spin 
channel which is also one of the reasons for the SDW domin- 
ating over the CDW (see Section 4 ) .  In the framework of the 
g-ology model (see Section 2)  this means that g ,  > 0. We 
note that our ideas differ from the ideas developed in Ref. 1, 
where essentially the presence of a pseudo-gap in the spin 
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channel was assumed. As to the charge channel, it is neces- 
sary to assume that the umklapp amplitude is sufficiently 
large and guarantees the presence of a gap A, in the charge 
channel. In the framework of g-ology this means that 
Ig,/ + 2g2 - g ,  > 0. The presence of the gap A, guarantees 
dielectric behavior at T <  T,, and also, in accordance with 
the results of subsection 4.1, coherence of the jump of mag- 
non pairs and three-dimensional SDW ordering at a tem- 
perature T,  < A c .  From this point of view there is only a 
quantitative difference between the superstructures Q, and 
Q,. In case 2 the additional dimerization of the molecules in 
the stack leads, apparently, to an appreciable increase in g, 
as compared to case 4. 

A weakness of the proposed interpretation is that the 
paramagnetic dielectric phase is not clearly observed in the 
TMTSF salts. From the point of view of the theory of subsec- 
tion 4.1, these compounds must be on the borderline of the 
applicability of the quasi-one-dimensional theory 
A, - T,, - T, = 10 to 20 K. Nonetheless, the qualitative 
role of the weak two-dimensional commensurability re- 
mains, since the SDW phase vanishes upon transition of 
(TMTSF),ClO, into the incommensurable state (the R 
phase) produced by an anion ordering of the type Q, consid- 
ered below.40 

Of most interest is the structure Q,. In that case the 
alternation of crystal fields in the transverse b direction 
leads, for a sufficiently small transverse bandwidth, to an 
alternation in the electron densities on neighboring chains. 
Because of this the values of the Fermi momentum (38) 
alternate. As a result, firstly, the commensurability of the 
wave vector of the dimerized anion potential and of the Fer- 
mi momenta k p' on each chain is violated. If condition (39) 
is satisfied, the gap in the charge channel vanishes as a result 
of the transition to an incommensurate phase and does not 
guarantee a large coherent jump of magnons (see subsection 
4.1 ). The vanishing, not explained by the band theory, of the 
instability to the formation of SDW in the incommensurate 
phase, indicates that this effect is essentially quasi-one-di- 
mensional. Secondly, the difference of k p' on neighboring 
chains leads, as we described in subsection 4.2, to a coherent 
jump of Cooper pairs and, thus, also to superconductivity. 

As we discussed in subsection 4.2, for our theory of su- 
perconductivity to be valid when the structure Q, is present, 
it is necessary that a number of conditions are satisfied. Con- 
dition (47) in the g-ological model means that 

2gz-g,>O, (93) 

i.e., there is an effective attraction in the charge channel. As 
to the energy scales of the problem, we have for them Eq. 
(53). According to experimental data, T, - 1 K. If we use 
for estimates (see below) the optical data 2%-40 K, 
T,, z 10 K from the transition temperature of commensur- 
ate SDW (see above), and TT, from Eq. (50),  we find that 
inequality (53) is satisfied as to order of magnitude. The 
estimates made for the transverse bandwidth do not agree 
with those generally accepted in the band picture2s3 but do 
not contradict any direct measurements whatever. Another 
possibility is that the region where the effect exists is broader 

than the region where the quasi-one-dimensional theory is 
applicable, so that one can forgo some of the inequalities 
(53).  As we discussed in subsection 4.2, to contract the elec- 
trons when they jump one needs only satisfy the condition 
x>T, which is certainly satisfied in the compounds consid- 
ered. In such a case inequality (52) also drops out; strong 
interactions are required to satisfy that one. However, this 
possibility needs to be studied further. 

The effects of SDW restoration in strong magnetic 
fields also have a unique character when there is structure of 
the type Q, present. These effects, especially the oscillatory 
behavior, require a more detailed study than the analysis of 
the simplified model with x = 0, g, = 0 in subsection 4.3. 
Here we mention merely that the period of the oscillations of 
the magnetoresistivity can be determined by the condition 
Hbl = 24,/n, where n is an integer, 4, is a flux quantum, 
1 = fivF/tt is the complete period of the structure along the 
chain with (38) taken into account. One can show that when 
a magnetic field and the structure Q, are present at the same 
time, SDW exist even when condition (93) is satisfied, i.e., 
in the case of an effective attraction. 

We showed in subsection 4.4 that a disordered anion 
potential also stimulates superconductivity, so that ,the 
problem arises why (TMTSF) ,ClO, is not superconducting 
in the Q phase. However, this mechanism is less effective 
than the formation of the Q, structure. From the estimates 
using Eqs. (61 ), (39) and taking the values of% and A, given 
above into account, we find easily that g,,, - W x P 2  
> 6, -A; ' > x-I so that a substance in the Q phase is in the 
commensurate dielectric phase whereas in the R phase the 
commensurability is lost. We note that according to the band 
theory nonmagnetic disorder must strongly suppress SDW 
but not affect the superconducting transition temperature; 
this is in complete contradiction to the Q and R phases of 
(TMTSF) ,C10,. 

The presence of a superstructure of the Q,-type has 
been finally established only for the compound 
(TMTSF) ,Clod. For the compounds (TMTSF) ,ReOd4' 
and (TMTSF)2FS0,43 it has been ascertained that at a cer- 
tain pressure the type of anion ordering changes, and at the 
same time superconductivity appears. The type of the new 
structure has not yet been elucidated. Our assumption is that 
a structural transition of the type Q, occurs in these and all 
other compounds where superconductivity is observed only 
under pressure. 

The results of the present paper may turn out to be use- 
ful also for an interpretation of the properties of the quasi- 
one-dimensional conductors MX, ( M  = Nb, Ta; X = S, Se) 
in which CDW and superconductivity compete. Under well 
defined conditions superconductivity is observed in TaSe,, 
NbSe,, and NbS,,' while in all these substances there are two 
or three (in NbSe,) different kinds of chains.,, Thanks to 
the development of CDW the quantities 2k p' have been 
measured experimentally in these substances; for instance, 
in NbSe, ?r = 0.02 kF.,, In NbSe, a selective effect of each of 
the structural instabilities on the NMR signal of the Nb 
atoms which are positioned on different kinds of chains was 
e~tablished,,~ which indicates the validity of the inequality 
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x(T,,  assumed in subsection 4.2. An important distinction 
of the MX, compounds is the presence of a gap in the spin 
channel. In that case the effects of the interchain non- 
equivalence are not the only but rather additional supercon- 
ductivity mechanisms. The transitional region from CDW 
to superconductivity corresponds probably to the theory of 
Ref. 46. It is interesting that it has recently been shown for a 
new class of organic superconducting compounds4' 
(BEDT-TTF),I, that the superconducting transition pre- 
cedes the structural transition into the incommensurate 
phase.48 On the basis of the data and the theory given in 
Section 4 we conclude that incommensurability is a neces- 
sary condition for the superconducting transition. 

6.2. Superconducting properties 

In this subsection we compare the results of Section 5 
with the observed properties of the superconducting phase of 
Bechgaard salts. To study the Ginzburg-Landau functional 
(62) we must specify the form of t '(q, ). It is natural to 
assume that in the compounds considered the jump ampli- 
tude is maximal between nearest neighbors along the b axis. 
There is also a small jump amplitude along the vector c but 
these transitions take place between equivalent chains and 
can be neglected. However, it is clear from the structure of 
the compound (see, e.g., Ref. 3) that the amplitude for 
jumps along the vector b + c may be of the same amplitude; 
those occur between alternating chains. In the strong cou- 
pling approximation we then get 

Expanding expression (94) for small q, and q,, and neglect- 
ing cross terms under the condition t, )t,, we get the follow- 
ing expression for the functional (62) : 

T-T, m (Y) =x I Y (q) 1 2 (  + I ~ , ; + E ~ Z ~ ~ ~ + E ~ Z ~ : )  
'4 

+ -$.z d r  1 Y. ( r )  / ', E~=CI /T . ' ,  b 2 = b 2 / 2 ,  

One can easily determine from the form of the func- 
tional (95) that fluctuation effects must be large. The ex- 
perimental information about critical fluctuations is am- 
biguous. On the other hand, according to calorimetric 
measurements the width of the transition is small: . r ~ 4 % . ~ ~  
On the other hand, according to resistivity measurements it 
is appreciably larger: several tens of per cents.50 One deduces 
easily from Eq. (95) that the jump in the heat capacity is 
AC- T,, i.e., in dimensional units AC/C, - 1, where C, is 
the heat capacity of the normal state at T = T, ,  which qual- 
itatively agrees with the experimental data.49 

We now evaluate the upper critical fields of the super- 
conductivity. I t  is well known that it follows from the Ginz- 
burg-Landau theory for an anisotropic superconductor that 

where i j , k  indicate the a,b,c axes. To get an estimate we take 
in Eq. ( 8  1 ) 77 = 1 and use the data of Ref. 49 for the density 
of states. Using (95) we get in dimensional units 

The estimate (97) agrees in order of magnitude with the 
experimental value 1 kOe.5' Further we get from Eq. (96) 

Starting from the experimental value5' H:,b)'/H:,"' = 16 one 
must take t,/t, = 16. Using that value we get from (96) 

H(~)-O- c2 - ' tb 6 .104kOe .  
nbc t, 

(98) 

The value (98) does not agree at all with the experimental 
value 47 kOe.5' The functional (95) thus gives the correct 
order of magnitude for H :;' and, for a reasonable value of 
the fitting parameter t,/t,, for Hl,b', but is in complete dis- 
agreement with the experimental value for H 2; ) .  The reason 
for this disagreement may be the appreciable quasi-one-di- 
mensionality of these systems which was not taking into ac- 
count by us when deriving (95).  Because t, (t, the relative 
fluctuations in the order parameter in different planes are 
much larger than in a single plane. The Ginzburg-Landau 
theory (95) with fluctuations neglected can thus give results 
which are correct as to order of magnitude only for motion in 
the ab plane, i.e., for a magnetic field along the c axis. 

We note that the Josephson coupling between chains 
using the mechanism described in subsection 4.2 manifests 
itself in fact when To, ) T, . The presence of such a coupling 
explains those effects which in Ref. 1 were ascribed to the 
presence of a superconducting pseudo-gap: the large magne- 
toresistance and the temperature dependence of the resistiv- 
ity (see the theory in Ref. 52). At the same time there are no 
anomalies in the heat capacity of the system which would 
show up if there were a pseudo-gap present. The pseudo-gap 
in the optical spectra of the compounds considered with an 
energy wo = 3.8 meV can also be ascribed2 by the direct tran- 
sitions of electrons between two subbands having the same 
superstructure Q,: wo = 2%. In that case thesensitivity ofthe 
optical absorption to the magnetic field is explained by the 
fact that it is connected with electron transport between dif- 
ferent chains, and the matrix element of the transport de- 
pends on the magnetic field. 

"Systems with small t ,  , but strong g,, were studied in Ref. 13. In that case 
s s  a rule the CDW instability must develop at relatively high tempera- 
tures which does not correspond to the observed effects in the materials 
which are of interest to us. The case of weak electron-electron interao; 
tions for intermediate (see Section 3 )  values oft ,  was considered in Ref. 
14. 

"It was shown in Ref. 29 that, generally speaking, there exists also an 
interaction (16) for i = SDW. It is given by backward scattering pro- 
cesses with an inversion of the electron spin on different lattices, i.e., by 
relativistic effects: dipole and spin-orbit interactions. For this reason 
L ,,, is relativistically small and, as compared to tunneling effects, can 
be neglected. 

"We note that for yet stronger interactions the condition 7, > 2 may be 
satisfied from which it follows [see (22) ]  that T,, = 0, i.e., the band 
regime is not satisfied under any conditions. We shall not consider that 
case, assuming everywhere that 7, < 2. 
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"This problem was considered in Ref. 32 for the case of a gap in the s 
channel. Our results differ from the results of Ref. 32. 

"A model describing the competition of different kinds of anion ordering 
was proposed in Ref. 53. 

"An exception are the compounds (TMTTF),PFb3' and, possibly, 
(TMTTF)?AsF,,~ in which CDW at low temperatures rather than SDW 
are observed. 
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