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An experimental and theoretical study is made of the quasi-two-dimensional antiferromagnet 
(NH,), (CH, ),MnCl,. It is shown that this crystal exhibits a substantially noncollinear (canted) 
four-sublattice magnetic structure due to the weakness of the interlayer exchange interaction. 
Two spin-orientation phase transitions (H,, = 24.6 kOe, H, = 98 kOe) are detected and studied 
for magnetic-field orientations along the b axis of the crystal. It is shown that these transitions 
have a number of peculiar features. The frequency-field curves of the four branches of the antifer- 
romagnetic resonance and the features of the rf magnetic susceptibility tensor are investigated at 
frequencies in the range 15-200 GHz and in fields up to 150 kOe. By a comparison of the theoreti- 
cal calculations with the experimental results the magnetic structure is deciphered and values are 
found for the effective fields characterizing (NH,), (CH,) ,MnCl,. 

I. INTRODUCTION 

The overwhelming majority of antiferromagnets are 
many-sublattice systems. Nevertheless, many of their prop- 
erties can be described well in the two-sublattice model. This 
is true of antiferromagnets whose magnetic structure is col- 
linear in the exchange approximation and in which the ex- 
change interactions are substantially stronger than the rela- 
tivistic interactions. However,there exists a wide class of 
low-dimensional magnets in which the interplane (for quasi- 
two-dimensional magnets) or interchain (for quasi-one-di- 
mensional magnets) exchange H i  is comparable in magni- 
tude to the relativistic interaction H A .  As we show in this 
paper, such a circumstance leads to a number of peculiar 
features in the rf and static properties of these systems. The 
features of the rf properties of many-sublattice antiferro- 
magnets with low-dimensional magnetic structures are due 
to the emergence of additional low-lying branches in the 
AFMR spectrum, while the features of the static properties 
are due to the intercoupling of the layers (or chains). 

It is known that in addition to the acoustic modes f the 
AFMR, the spectrum of a four-sublattice a n t i f e r r ~ m a ~ ~ i e t  
should contain optical (or exchange) modes with frequen- 
cies comparable to the energy of the exchange interactions of 
the antiferromagnet. This circumstance was apparently first 
pointed out by Joenk,' who considered the problem of the 
optical modes in a magnetic structure of the plane cross 
type-a structure characterized by two antiferrornagnetism 
vectors L and I, with L)I. In such a model the square of the 
frequency of the optical mode is proportional to the product 
H tFH :of the exchange fields which give rise to the magnet- 
ic structure of the system, and the intensity ratio of the lines 
of the optical and acoustic modes goes as - H  i / H t F H  :. 

Estimates made for a three-dimensional antiferromag- 
net on the basis of the expressions obtained in Refs. 2 and 3 
explain why most of the properties of three-dimensional an- 
tiferromagnets having a large number of sublattices are de- 
scribed well by the two-sublattice model. The most impor- 

tant difficulties preventing observation of the optical modes 
in three-dimensional antiferromagnets in AFMR experi- 
ments are: 1 ) the frequencies of the optical modes of typical 
antiferromagnets correspond to energies in the exchange re- 
gion ( -  100 K, submillimeter wavelengths), where, first, 
until recently there were no high-power radiation sources 
and, second, there are strong electric-dipole phonon absorp- 
tion bands; and 2)  the intensity of the optical modes is low. 
Nevertheless, the optical modes have recently been detect- 
e d , ~ ~  in the three-dimensional antiferromagnet CuC1,.2H20. 

These difficulties do not arise in a study of the optical 
modes in an antiferromagnet of lower dimensionality. As we 
show in this paper, the presence of weak exchange interac- 
tions in low-dimensional antiferromagnets can bring about a 
situation in which, first, the frequency of the optical modes is 
small, comparable to that of the acoustic modes, and second, 
the intensity of the absorption by the optical modes is large, 
comparable to that of the absorption by acoustic modes. It is 
for this reason that the exchange modes in the antiferromag- 
netic resonance were first detected6 in the low-dimensional 
antiferromagnet (NH,) ,(CH,),MnCl,. 

Because of the decrease in the frequencies and the in- 
crease in the intensity of the optical modes of the spin-wave 
branch, the optical modes take on the same status as the 
branches of the usual acoustic modes and determine the dy- 
namics and thermodynamics of low-dimensional systems. In 
other words, the optical modes are an integral and extremely 
important property of many-sublattice low-dimensional 
magnets. 

The presence of a weak exchange interaction H  :, -HA 
enhances the role of the relativistic interactions. Then, if the 
symmetry class of the layers (chains) is lower than the sym- 
metry class of the crystal, the magnetic structure of the sys- 
tem turns out to be substantially noncollinear ( a  relativisti- 
cally canted structure). This causes a number of peculiar 
static properties of low-dimensional magnets. For example, 
the picture of the spin-reorientation phase transitions, such 
as the spin-flop transition, changes substantially; at T = 0 a 
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longitudinal susceptibility appears, having a magnitude 
comparable to the transverse susceptibility; there is a 
marked increase in the "twisting" susceptibility-an exter- 
nal field imposed along the direction of the weak magnetic 
moment causes not only a bending of the magnetic moments 
of the sublattices toward the direction of the field but also a 
rotation of the moments about the field direction. 

Typical representatives of the class of low-dimensional 
many-sublattice magnets are compounds with the general 
formula 

which are two-dimensional Heisenberg ferromagnets and 
antiferromagnets. The structure of these crystals is made up 
of practically square layers of magnetic ions in an octahedral 
chlorine environment, with long alkyl-ammonium groups 
between them. The small value of the superexchange on ac- 
count of the large distance between spins on neighboring 
layers leads to a quasi-two-dimensional behavior of these 
systems. The possibility of changing the number of methy- 
lene groups in these compounds makes it possible to change 
the degree of their magnetic two-dimensionality over very 
wide limits. According to the experiments of several auth- 
ors' the ratio of the interlayer to intralayer exchange interac- 
tions can be of the order of lo-'. Unlike the majority of 
known cases, where practically ideal two-dimensional mag- 
nets are obtained by intercalation of previously grown single 
crystals, generally to the detriment of their crystal structure, 
the compounds under study permit one to do this correctly 
[sic]. 

The present paper is devoted to the study of the rf prop- 
erties and magnetic phase transitions in one of the members 
of this family: ( NH, ) , ( CH, ) ,MnCl,-propylene diam- 
monium tetrachloromanganate, or PDAMnC1,-over a 
wide range of frequencies and magnetic fields. As we show 
below, this compound exhibits a four-sublattice relativisti- 
cally canted magnetic structure and displays the aforemen- 
tioned features of the static and dynamic properties of low- 
dimensional systems. 

II. STRUCTURE AND MAGNETIC PROPERTIES OF PDAMnCI, 

The crystal-chemical cell of PDAMnCl, is illustrated in 
Fig. 1. It contains four formula units ( z  = 4 )  and exhibits 
the layered structure of this antiferromagnet. The organic 
molecules NH,-( CH, ) ,-NH, which separate the nearly 
square two-dimensional networks of manganese ions are sit- 
uated vertically in the cell; for simplicity they are not shown 
here. According to the data of Ref. 8, the parameters of the 
crystal lattice are a = 7.17 A, b = 19.0 A, c = 7.36 A, and 
the space group is Imma. The distance between nearest- 
neighbor Mn2+ ions is 5.2 A within a layer of 9.5 A for 
neighbors belonging to different layers. Studies' of the mag- 
netic properties of PDAMnCl, have determined that T,, = 
43 K, that the intralayer exchange interaction constant is 
J = 4.6 K (corresponding to an exchange field 2H, = 1360 
kOe), that the easy axis of anisotropy is b and that the spin- 
flop transition field is H,, = 24.2 kOe and have detected the 
presence of a weak ferromagnetic moment along the b and c 

FIG. 1. Crystal-chemical cell of PDAMnCl, 

axes. Jumping ahead, we note that the finding of a weak 
magnetic moment in the entire bc plane was puzzling to the 
authors of Ref. 9 and was evidently due to the poor quality of 
the samples. 

After commencement of the present studies on the mag- 
netic resonance in PDAMnCl,, it became obvious that sam- 
ples thicker than 0.3-0.5 mm contained crystallites in which 
the c and a axes were rotated by an angle close to 90" (this 
was clearly seen in the AFMR studies in a transverse field 
perpendicular to the easy axis). In addition, it is clear that in 
crystals with rhombic symmetry, if one ignores the possibil- 
ity of screw structures or inhomogeneous states, the weak 
ferromagnetic moment should be oriented along one of the 
crystallographic axes. 

More-serious contradictions arise if one attempts to ex- 
plain in the framework of the previously8 established space 
group Imma the presence in PDAMnCl, of both weak ferro- 
magnetism and a four-sublattice structure, which is indicat- 
ed by the exchange modes which we detected in this antifer- 
romagnet ( a  preliminary report of our observation of optical 
modes is given in Ref. 6 ) .  We therefore made an x-ray dif- 
fraction study of PDAMnCl, at room temperature. We used 
single crystals with a mass of 0.5-1 mg and monitored for the 
absence of twins by means of AFMR. Since the analogous 
salt with Cu2+ as the magnetic ion, PDACuCl,, has space 
group Pnma, it was natural to conjecture the presence of 
Pnma in PDAMnCl,." Studies done on a Syntax diffractom- 
eter confirmed this conjecture. In a data block of 700 reflec- 
tions we did not observe a single reflection whose extinction 
law was inconsistent with Pnma. Therefore, we shall assume 
in the following that the space group of PDAMnCl, is Pnma. 
In view of the absence of structural phase transitions 
between room temperature and TIv, we can extend this as- 
sumption to the low-temperature region as well. 

Ill. EXPERIMENTAL TECHNIQUES 

The studies of the resonance properties of PDAMnCl, 
were done using a pulsed millimeter-range spectrometer 
which permitted studying the angular and temperature de- 
pendences of the resonance field at  liquid-helium tempera- 
tures. 
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The spectrometer was assembled in a reflected-wave 
scheme. The microwave power sources were either reflex 
klystrons (in the 1.5 cm-4 mm range) or backward wave 
tubes (in the 4-1.5 mm range), and a hybrid (magic) tee was 
used in the microwave bridge of the spectrometer. At wave- 
lengths A =.4 mm and shorter the power was transferred by 
oversize waveguides. Standard waveguides were used at 
wavelengths A >8 mm. 

Unlike the pulsed spectrometers of the familiar designs, 
in which a shorted segment of the waveguide is used as the 
measurement cell, our spectrometer used a resonator, which 
gave a sharp increase in the sensitivity of the spectrometer 
and permitted observation of weak absorption lines with in- 
tegrated intensities three orders of magnitude lower than 
that of the ordinary AFMR. 

The sample was placed in a silver-plated German-silver 
resonator of the reflection type, with a loaded Q of - 1000. 
The sample was mounted on a turntable which permitted 
changing the direction of the external field with respect to 
the axes of the crystal with an error of + lo or less. The 
power absorbed by the sample was detected in an arrange- 
ment consisting of a detector, wide-band amplifier, and stor- 
age oscilloscope. 

Magnetic fields up to 250 kOe were produced by dis- 
charging an IM5-140 capacitor bank (35 capacitors) 
through a solenoid impregnated with an epoxy compound. 
The magnetic-field pulse had a rise time of 10 msec. During 
its operation the solenoid was cooled to liquid-nitrogen tem- 
perature. 

The frequency of the microwave oscillators was mea- 
sured to an accuracy of 0.01 % by VST frequency meters for 
the corresponding ranges. The field was calibrated by the 
ESR and AFMR signals of MnF, and diphenyl picryl hydra- 
zyl (DPPH) crystals. The total uncertainty in the determin- 
ation of H,,, was 2%. 

The PDAMnCl, crystals were grown by the slow evap- 
oration at room temperature of a saturated solution of 1.3- 
propylene diamine hydrochloride and MnC1,.4H20 in wa- 
ter. Single-crystal samples with a mass of 1-5 mg were used 
in the experiments. In Figs. 3-6 below we show the antiferro- 
magnetic resonance frequencies as a function of the magnet- 
ic field H for different orientations of H with respect to the 
crystallographic axes. Let us now turn to a discussion of the 
results. 

VI. THEORY. COMPARISON WITH EXPERIMENT 

1. Space group of the crystal. Hamiltonian of the system 

As we have mentioned, the crystal-chemical unit cell of 
PDAMnCl, contains four magnetic atoms Mn2+. For such 
an antiferromagnet the linear combinations of spin opera- 
tors which realize the irreducible representations of the sym- 
metry group of the paramagnetic phase are of the form 

Here, in accordance with the layered structure of the 
crystal, we have introduced the antiferromagnetism and fer- 
romagnetism vectors 

for the first and second layers, respectively. 
As we have mentioned, the existing data in the litera- 

ture8 puts PDAMnCl, in the space group Imma ( D  :: ). 
However, in the framework of this space group one cannot 
explain the entire body of experimental data on the field de- 
pendence of the AFMR frequency. Table I gives the classifi- 
cation of the components of vectors ( 1 ) according to the 
irreducible representations of the group Imma. We note that 
the translation t(1/2, 1/2, 1/2), representing atoms from 
different layers, is nontrivial, and the vectors ( 1) transform 
according to representations which are even with respect to 
inversion. 

We see from Table I that depending on the sign of the 
interlayer exchange, the space group Imma admits the exis- 
tence of either a two-sublattice antiferromagnet with weak 
ferromagnetism (the phase C,, F, or the phase F,, C, ) or a 
four-sublattice antiferromagnet, but with a plane structure 
of the cross type (the phase A,, G, or the phase G, , A, ) . 
Therefore, we shall assume from here on that PDAMnCl, 
has the space group Pnma D :6, ) (see also Sec. 11). 

By acting on the components of the vectors ( 1 ) with the 
symmetry operations of space group Pnma, one can classify 
them according to the irreducible representations of this 
group (see Table 11). Using Table 11, one can easily write an 
invariant expansion of the Hamiltonian in the irreducible 
spin operators of the group. 

TABLE I. Magnetic configurations irreducible with respect to space group Imma ( D  :: ) 
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- 
+ 
+ 
- 
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r, 
rz 
r3 
r, 
r5 
re 
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- 
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+ - 
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+ 
+ 
+ 
+ 
+ 
+ 
+ 
+ 

+ 
- 
+ - 
+ - 
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- 

Fr 
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A ,  . 
. A,, cZ 
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+ 
- 
- 
- 

+ + -  
+ - + -  

- 
- 
- 
+ 

- + + -  

+ + + + c , .  

- 
- 
+ 
- 

- 

+ - 
- 
+ 



TABLE 11. Magnetic configurations irreducible with respect to space group Pnma ( D  :: ) 

For analysis of the role of the weak interlayer interac- 
tion in a quasi-two-dimensional magnet, it is convenient to 
represent the Hamiltonian of the system not in terms of the 
operators of the entire system ( 1 ) but in terms of the opera- 
tors which refer to a single layer (2 ) .  Analysis of the experi- 
mental data and the results of subsequent calculations show 
that for describing the features of the AFMR and phase tran- 
sitions in PDAMnCl, it is sufficient to choose a system Ha- 
miltonian of the restricted form 

In this Hamiltonian the only interlayer interaction which is 
taken into account is the isotropic exchange. We have also 
neglected the Dzyaloshinskii interaction, which gives rise to 
a component F,, in the layer. The validity of these assump- 
tions will be justified by the results of our subsequent analy- 
sis. 

The constants of the effective magnetic interactions in 
(3)  are expressed linearly in terms of the intrasublattice and 
intersublattice exchange interaction constants and the an- 
isotropy constant. Here the parameters J ,  and I, (a  = x, y, 
z )  include the isotropic exchange interaction and part of the 
anisotropic interaction between spins within a layer; p i s  the 
intralayer anisotropy interaction of monoclinic symmetry; 
the parameters D ,, and D ,, are due to the Dzyaloshinskii 
interaction within a layer. Everywhere below we assume the 
following relationships among the parameters: 

J I ,  I ,  Dl,. DLx>jJa-Jaf/ .  P. (4 )  

which correspond to the experimental data.'.' In Eq. ( 3 )  the 
g factor for the divalent ion Mn'+ in the state ' s S i 2  is as- 
sumed isotropic. 

2. Hl/z. The r, phase (A,, D,, F,) 

a.  Theground state of the system. In  the low-dimension- 
a1 magnet PDAMnCl, the symmetry class of the layers is 
lower than the symmetry class of the crystal as a whole. The 
weakness of the exchange interaction between layers sub- 
stantially enhances the role of the relativistic interactions, 
and the magnetic structure of such a system turns out to be 
substantially noncollinear ( a  relativistically canted struc- 
ture). 

Earlier studies9 of the magnetic properties of 
PDAMnCl, have shown that in this compound: 1 ) the mag- 

netic moments in the layers are ordered antiferromagnetical- 
ly (s ,  t is,, S,T LS,); 2)  the easy axis ofanisotropy is they axis; 
3 )  the system has a weak ferromagnetic moment F #O. The 
first condition implies that the configuration of the magnetic 
moments in the ground state can be either the C or A type. 
The second condition implies that it is either C, or A,.  The 
third condition, together with Table 11, implies that the prin- 
cipal antiferromagnetism vector can only be C,, since there 
is no magnetic moment in configuration A, .  

Thus, the magnetic configuration in the ground state of 
PDAMnCl, is A , ,  C,, F, ,  which pertains to the representa- 
tion r,. Its magnetic class D,(C,) contains the transforma- 
tions E, C ;, , C ;,, and C,, ( 1' is the operation of time rever- 
sal). The configuration of the magnetic moments in the 
layers is illustrated in Fig. 2. Using ( 3  ),  one can show that 
each layer is characterized by the following nonzero average 
values of the vectors: 

Ll,=Lzu--2sl,, L,,=-L,,--2sl,, 
( 5 )  

and the angle 0 between the axis of easy magnetization y and 
the projection of the vector L, onto the xy plane is deter- 
mined from the relation 

tan 20=HA,  (HA,-fiAz+21~,'+HDi2/2H,) -'. ( 6 )  

In formulas ( 5 )  and (6 )  we have used the following nota- 
tion: H, =s(J  + I )  y-  ' is the intralayer exchange field; 
H:=2sJ3y-' is the interlayer exchange field, HA, 2 s  
(J, - J,  ) y l  is the uniaxial anisotropy field, which stabi- 
lizes the magnetic ordering along the y axis; 
HA, =2s(Jx - J, ) y- ' is the rhombic anisotropy field: 

FIG. 2. Orientation of the spins of sublattices s , ,  sz, s,, and s, in the 
magnetic cell and their relative disposition in neighboring layers. 
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TABLE 111. Classification of AFMR frequencies by symmetry types 

Symmetry of Symmetry of Components of 
magnetic Type of magne- homogeneous 
ordering tic ordering I vibrations 

r14 2 (AM + 011) x z z  
re3 2 (AM + OM) Xis, XUU? X q  
r13 2 (ARI + OM) xuu  
r21 2 (Ah1 + 011) Xrx, X . 2 ,  X x :  

Cz, C, r13 2 (AM + ORI) XIIII 
rzl 2 (AM 4 011) x u ,  X Z Z .  XI. 

HA, r2s.2,Oy-' is the monoclinic anisotropy field; 
HDl =2s.Dlx y- '  is the Dzyaloshinskii field in a layer; 
Y = ~ P B .  

For our chosen magnetic structure of PDAMnCl,, with 
principal antiferromagnetism vector C,, we have I, >I, 
even though, as we see from (6 ) ,  the angle 0 is not small for 
H: - H A ,  i.e., the component I, is of the same order of mag- 
nitude as I,, and the magnetic configuration of the system is 
substantially noncollinear (see Fig. 2).  

The imposition of an external magnetic field directed 
along the z axis does not alter the symmetry of the ground 
state of the system. The equilibrium state is determined, as 
before, by components ( 5 ) ,  but now the ferromagnetic mo- 
ment is due to to the Dzyaloshinskii interaction and the field 

while the relationship between I, and I, is determined by the 
equation 

We note that in accordance with general symmetry consider- 
ations,'' the r, phase will be stable at arbitrarily large fields, 
i.e., for Hllz there is no spin-flip transition in the system. 

b.  Frequencies of homogeneous vibrations. The AFMR 
frequencies were calculated by the method proposed in Ref. 
11. In this approach the equations of motion are written for 
irreducible (with respect to the group of the paramagnetic 
phase) linear combinations of spin operators ( 1 ). The classi- 
fication of the frequencies of the homogeneous magnetic res- 
onance by symmetry types is easily done using Table I1 with 
allowance for the role of unitary operations in this classifica- 
t i ~ n . ' ' . ' ~  The corresponding results for different directions 
of the external field are given in Table 111. The T, phase 
corresponds to the first row of this table. 

The oscillatory parts of the magnetic moments of the 
sublattices transform in this phase according to the two 
mixed representations r14 and (see the third column of 
Table 111). The frequencies of vibrations with symmetry TI, 
are given by 

Two frequencies with symmetry r2, are described by the 
expressions 

Here, besides the parameters already introduced, we have 
used the notation: HD2 =2sD2, y - '  is the Dzyaloshinskii 
field in a layer. Results (9 )  and ( 10) are given to an accuracy 
up to terms of order H and He HA . 

For H: -He formulas (9 )  and ( 10) go over to the fa- 
miliar expressions for the frequencies of a four-sublattice 
antiferromagnet with weak ferromagneti~rn.~.' '  Here, as we 
see from (6 )  or (8  ), I, (I,, i.e., the magnetic structure of the 
system is slightly canted. Further, Eqs. ( 9 )  and ( 10) imply 
that o,,, , 02,, ( w , , ~ ,  a 2 3 0  and sensibly divide the vibra- 
tions into acoustic and exchange modes. The frequencies of 
the first go as - (He HA ) 'I2, the frequencies of the second go 
as - (HeH: ) ' ' 2 -H  e .  

For H: - H A ,  as we have mentioned, one has I, -I,, 
and the frequencies of the acoustic and optical modes be- 
come equal in order of magnitude, and neither of the pairs of 
frequencies can be obtained in the two-sublattice model. 
Thus, in the case of low-dimensional antiferromagnetic sys- 
tems it is in principle impossible to describe the antiferro- 
magnet in the two-sublattice model and to formally divide 
the frequencies into acoustic and optical modes. 

The field dependence of the frequencies w,,, and w,,, 
are determined by the parameter HDl , which is easily found 
from the slope of the experimental AFMR curves, while the 
field dependence of the frequencies w,,, and w2,, permit 
determination of the parameter HD2. It  also follows from 
( 9 )  and (10) that the differences of the squares of the fre- 
quencies are 

and are independent of the field in this approximation. The 
left-hand side of expressions ( 1 1 ) and ( 12) are determined 
experimentally. The ratio of the quantities in ( 1 1 ) and ( 12) 
determines the angle of inclination of the antiferromagne- 
tism vector of the layer from the easy axis. 

Knowing HD, , H D 2 ,  I,, I,, and He (the latter is deter- 
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FIG. 3. Frequency-field diagram of the AFMR for H//z .  The solid lines 
are the theoretical curves ( 9 ) ,  (10); the points are experimental data. 
Here and in Figs. 4-6: 0 )  Hlh, 0) H / h ,  T = 4.2 K. 

mined from independent measurements of the susceptibil- 
ity'), one can use formulas ( 9  ) and ( 10) to find the remain- 
ing parameters of the system: HA , , H,, , , H A , ,  and H :. The 
values (in kOe) found in this way for the effective param- 
eters of the magnetic susceptibility in (NH,), (CH,),MnCl, 
and the AFMR frequencies at H = 0 are: 

NA,=0.54, H,2=0.09, H,3=0.31, 

2He'=0.'32, HD1=1.7, HD2=1.3, 

Thus the presence of experimental data on all four frequen- 
cies permits a unique reconstruction of the magnetic struc- 
ture of the compound under study and a determination of the 
values of all the effective magnetic interactions solely from 
the AFMR spectrum. The solid lines in Fig. 3 show the theo- 
retical curves for the field dependence of the AFMR fre- 
quencies as calculated by formulas ( 9 )  and (10) with the 
above values of the effective fields. 

c. The tfmagnetic susceptibility tensor. According to the 
symmetry classification of the frequencies of the homogen- 
eous resonance, the symmetry of the rf magnetic susceptibil- 
ity tensor is determined by the magnetic symmetry class of 
the crystal and not by the symmetry class of the individual 
layers. The last column in Table I11 indicates which of the 
components of the rf magnetic susceptibility tensor x , ~  ( w )  
have a pole corresponding to vibrations of the given symme- 
try. As we know, a homogeneous rf field excites those reso- 
nance modes whose vibrations are accompanied by oscilla- 
tion of the magnetic moment of the system. Table I11 gives 
the classification of the resonance modes and indicates 
which components of the rf susceptibility tensor have poles 
corresponding to these modes. 

The components of the rf magnetic suceptibility tensor 
in the r, phase (Hllz) are determined by the following ex- 
pressions: 

xsu (o) = - xVs (to) = iuy ( H  Ho.1,) 

where 

Ki= (HDzlx) '- [H+ (HDi+Hnz) L u ]  21,"2He [ (HA2-2He') 2%' 

+'/zHaslrly], (14) 

Kz=2He [Hazl,Z+'/zHa~1,1,] + (H+HDil,) 

xo=2sy/He uo; u,, is the volume of the magnetic cell. 
Let us briefly discuss these expressions. The optical 

mode corresponding to the symmetric vibration with fre- 
quency w,,, is excited only for hllz. We see that the intensity 
of the absorption is practically independent of the field and is 
determined by two factors: 1 ) the degree to which the mag- 
netic structure is canted-the ratio I ,  / l ,  ; 2 )  the value of the 
Dzyaloshinskii interaction within a layer. The asymmetric 
optical mode with frequency w,,, is excited for h l z  and has 
a substantially higher intensity than the symmetric optical 
mode. In this case the highest absorption intensity in weak 
fields H( (He  HA ) '" is for hJly, and for H 2 (He  HA ) the 
intensity of the absorption is practically independent of the 
direction of h in the xy plane and is proportional to H '. This 
picture corresponds completely to the experimental results. 

The specific features of low-dimensional magnets are 
also manifested in the static susceptibility. To obtain the 
static susceptibility one must set w = 0 and expand ( 13) in a 
series in the field after making the replacements 

As a result we obtain2' 

where a,,, , w,,,,, , K , ,  and K ,  are determined by formulas 
( 9 ) ,  ( l o ) ,  (14),  and (15)  for H = 0. 

Expressions ( 16) demonstrate the two characteristic 
features of the systems under study. First, we see that the 
static longitudinal susceptibility x,, ( 0 )  becomes compara- 
ble in magnitude to the transverse susceptibility x,, ( 0 )  or 
xZZ ( 0 ) .  This is a direct consequence of the substantial cant- 
ing ofthe system. Another manifestation ofthe canting is the 
difference of the transverse components of the static suscep- 
tibility tensor from the usual value x,, = 2sy/He u,,. This is 
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due to the appearance of the so-called twisting susceptibility 
in a four sublattice canted antiferromagnet. 

In the case ofx, ( 0 )  an external field imposed along the 
magnetic moment of a monoclinic layer causes not only a 
bending of the magnetic moments of the sublattices toward 
the direction of the field but also a rotation of these moments 
about an axis along the field direction [as is seen from an 
analysis of expression ( 8 ) ,  the canting angle 8 decreases 
with increasing field]. For such a field direction the symme- 
try of the initial phase is not broken. In the three-dimension- 
al case H :  - H e ,  this effect is very small, of order 
H  ; H z  / H  f .  In the low-dimensional case the antiferromag- 
netism vectors of the layers are weakly intercoupled and the 
twisting effect is enhanced, having an order of magnitude 
H i / H , H : .  

3.HlIy. Phase transitions 

An external magnetic field directed along the y axis 
gives rise to a nonzero magnetic moment along this axis and 
thus to nonzero antiferromagnetism vectors Gx and C, (see 
Table 11). As a result, the system exhibits a mixed magnetic 
configuration described by the irreducible representation 
r,, [magnetic class C2 (C,  ), with elements E and C ;, 1 .  As 
we know, an external field which breaks the magnetic sym- 
metry of a system induces magnetic phase transitions in it. 
The classification of magnetic phase transitions in low-di- 
mensional magnets is no different from the corresponding 
classification in three-dimensional systems. However, as we 
shall see below, the physical picture of the transition can be 
substantially different. 

The experimental curves for the AFMR frequency ver- 
sus the field in PDAMnCl, (Fig. 4 )  show that this low-di- 
mensional four-sublattice antiferromagnet exhibits a first- 
order phase transition at H  = 24.6 kOe as the field is 
increased along the easy axis. We see from Table I1 that, 
depending on the relationship of the anisotropy constants, a 

field along the easy axis can induce a transition either to the 
r3 phase [magnetic class D,(C,), with symmetry elements 
E, C ;, , C,, , and C ;, ] or to the r ,, phase [magnetic class 
C2(C2) ,  with elements E and C, ] or to the r,, phase [mag- 
netic class C2(C2),  with elements E and C, ] or to the r,, 
phase [magnetic class C, (C,  ), with elements E and C ;,I. 

Wesee from Table I1 that the transition to the T,, phase 
involves the destruction of the principal antiferromagnetism 
vector. At such a phase transition there should be a softening 
of an optical mode. In PDAMnCl, the experiments reveal 
the softening of an acoustic mode, so that the phase transi- 
tion in the system at H  = 24.6 kOe must be either to the T3 or 
r,, phase. 

Experiments reveal yet another mode softening at a 
field H  = 98 kOe, indicating the presence of a second-order 
magnetic phase transition. We note that they axis is an odd 
axis for the vector C (the vector C changes sign under the 
operation C, ,  ). Since the magnetic structure is even with 
respect to inversion, there is no spin-flip transition in the 
system at arbitrarily large fields parallel to the odd axis." 
We also note that the spin-flip transition in this compound 
should occur at much higher fields H-H, .  At the same 
time, a second-order spin-orientation phase transition can 
occur if the system enters the r13 phase as a result of the 
spin-flop transition. Then the following sequence of phase 
transitions is possible. When H  reaches the villue H,, there is 
a discontinuous reorientation of the principal antiferromag- 
netism vector from they axis to a direction close to thex axis. 
Then, in the field interval H,, < H  < H, , the presence of an 
interaction of the form D,, (Ll,F,, + L2,F2, ) will cause the 
principal antiferromagnetism vector to rotate from the di- 
rection close to the x axis toward alignment with the z axis. 
At H>H, the system undergoes a transition to the T, phase. 

a. Spin-Jop transition. To study the spin-flop transition 
in the given system we shall start from Hamiltonian (3 ) ,  
which neglects the Dzyaloshinskii interaction within the 
layers. Such an approximation corresponds to a four-sublat- 
tice antiferromagnet with a structure of the plane cross type. 

In the equilibrium state this plane cross model gives 

( 1 7 )  
for the r,, phase and 

11X=L2X=1X, lly=-lZY-I,, m~lx=-m2x=mrr m,,=m,,=m, 

(18)  

for the r,, phase. Here we are neglecting the projections of 
the vectors 1 and m onto the z axis: for m because m, is due 
solely to the Dzyaloshinskii interaction and is small; for 1 
because I, exists only in the T, phase, and we are assuming 
that the admixture of this phase is still small. These relation- 
ships allow us to reduce the calculation of the equilibrium 

0 100 751 
H, kOe 

potential of the rhombic system to a calculation of the equi- 
librium potential of a monoclinic layer. For example, in the 

FIG. 4. Frequency-field diagram of the AFMR for H/Jy. The region en- r3, we have 
closed in the dashed lines is shown in Fig. 5. The solid lines at fields 
H < H, are drawn through the experimental points, while for H >  H,  they (2s)  -ZCp3,=-Jxl,Z-1u1,2+ IDm2+ zumY2+13 (m;-m,2) -2P1,1, 
were given by the formulas y-2w:,, = A2 + y-2w2( H ) ,  where w2 ( H )  are 
the theoretical curves (34). -2yHmU(2s) -'. (19) 
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We introduce the angle 6' giving the deviation of the 
antiferromagnetic moment of the layer from the easy axis. 
Then 

I,=-l sin 0 ,  l,=l cos 0 ,  m,=m cos 8, m,,=m sin 0. (20) 

Relation (20) already incorporates the orthogonality condi- 
tions ma1 = 0; substituting them into the potential and taking 
into account that 1 = 1 - m2, we have with accuracy to 
terms of order HA m2 

( 2 s ~ )  -'@,,=- (H,+H,') +2H,' sinZ 0+2H,m2 

-2Hm sin 0-k (HA,-HA,) sinz &HA, sin 0 cos 0 ,  (21 ) 

where for convenience in the calculations which follow we 
have converted to the effective interaction fields introduced 
earlier. 

Potential (21)  is still inconvenient for analysis, since 
the magnitude of the magnetic moment m of a layer is a 
function of the angle 8. However, in this case, when the rela- 
tivistic interactions are much weaker than the exchange in- 
teraction, the dependence of m on H can be found by the 
method of successive approximations. In the leading ap- 
proximation we find from the minimum of (21 ) 

m=I! sin 8/28, .  (22) 

Substituting (22) into (21) ,  we obtain for the thermody- 
namic potential 

( 2 ~ y ) - ' @ ~ , = -  (H,+H,') + (HA,-H,,+2Her-HZ/2H,) sin2 t3 

-1/211A3 sin 20. (23) 

The subsequent analysis of expression (23) is done in the 
standard way. 

The equilibrium value of the angle 6' in the T,, phase is 
described by the expression 

By making the replacement Hi+ - H :  in (23) and (24),  
we obtain the relations describing the behavior of the system 
in the TI ,  phase. The thermodynamic potential ofthe phases 
become equal in a field 

HsI2=2He (Hal-HA,). (25 

Curiously, expression (25 ) does not depend on H : and coin- 
cides with the value H,, for a two-sublattice rhombic antifer- 
romagnet. 

To determine the stability boundaries of the phases we 
must actually repeat the same calculations but now for the 
nonequilibrium potential, with each layer being described by 
its own vectors 1 and rn in ( 19).  It can be shown that the r,, 
phase is stable in fields H < H,,, where 

and the T I ,  phase is stable starting at fields H >  HI,: 

Formulas (26) and (27) are valid for H: >HA,. For 
Hi < H A ,  the r,, and TI ,  phases are stable in all fields. 

From these results we can infer the following physical 

FIG. 5. Frequency-field diagram of the AFMR in the vicinity of the spin- 
flop transition. The dashed lines give the extrapolation of the experimen- 
ta! w ( H )  curves tow = 0. 

picture of the spin-flop transition. As the field along the easy 
axis increases, there is an increase in the angle between the 
antiferromagnetism vectors of the layer. This occurs at  a 
cost of interlayer exchange energy. However, if H: > H A ,  
then one of the antiferromagnetism vectors of the layer can 
overcome the potential barrier due to the anisotropic inter- 
action. Then, by abruptly changing its direction by almost 
180", it wipes out the cost in exchange energy-the principal 
antiferromagnetism vector rotates 90" and a spin-flop tran- 
sistion occurs in the system. Clearly, if H: is not much 
greater than the anisotropy parameter, the stability region of 
the phases can be rather wide, but finite. 

If, on the other hand, the energy of the interlayer ex- 
change is insufficient to overcome the potential barrier of the 
anisotropic interaction, H :  < H A , ,  then the two phases are 
stable over the entire field interval H < He. 

In  PDAMnCl, we have H: > H A , ,  and a spin-flop 
transition is observed, with indications that the antiferro- 
magnetic and spin-flop phases are stable over a wide region 
of fields beyond the point H,, (Fig. 5 ) .  Substituting into 
(26) and (27) the numerical values of the parameters ob- 
tained in part 2b of Sec.IV, we find that H,, = 28.2 kOe and 
HI, = 20 kOe. These values are in good agreement with the 
values obtained by extrapolating the experimental w (H) 
curve t o w  = 0 (Fig. 5 ) .  

Near the spin-flop transition field, finite antiferromag- 
netic samples exhibit a so-called intermediate state.13 This 
state has its origins in the presence of demagnetization in 
magnets of finite dimensions, and the field interval in which 
it exists is proportional to the jump Am in the magnetization 
between the spin-flop and antiferromagnetic phases. A sim- 
ple calculation using formulas (22) and (24)  and the param- 
eters of the effective fields from part 2b of Sec. IV shows that 
Am - lo-' in PDAMnCl,, i.e., the existence region of the 
intermediate state is extremely narrow. 

b. Spin-reorientation transition. In the r,, phase the 
equilibrium values of the antiferromagnetism vectors and 
magnetic moment of the layers satisfy the condition (see 
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Table 11) 

1 1x- - 1  27L- =L, l ly=-lzu=ly,  l lz=lzz=lz ,  

Using these conditions, the thermodynamic potential of a 
four-sublattice rhombic antiferromagnet can be reduced to 
the potential of a two-sublattice antiferromagnet; the latter, 
to terms of order HA m2, is of the form 

( 2 ~ 7 )  -'cD13=- ( H , + H e r )  -H,z1,2+ (2Her-AAi) 1, 

+H,m2-2HDl~,m,-2HD2~zmu-HA3~x&-2Hmy (28) 

Potential (28) corresponds to the potential of a two-sublat- 
tice antiferromagnet of monoclinic symmetry, where the 
only operation C,, is odd. In this case a field along they axis 
induces only a single phase transition of the spin-reorienta- 
tion type. 

As in the analysis of the spin-flop transition, we use 
condition (4) to eliminate the vector m from the thermody- 
namic potential. We note that at the given spin-reorientation 
transition the magnetic moments of the sublattices execute a 
rather complicated motion in space. Therefore, we write the 
expression for m which satisfies the minimum of the thermo- 
dynamic potential in vector form1,: 

The field H appearing in expression (29) is the effective field 
which gives rise to m. In our case (Hlly) 

We introduce for the vector I a spherical coordinate 
system with polar axis z and azimuthal axis x .  Then a polar 
angle 8 = 0 will correspond to the T, phase, and the order 
parameter of the given second-order transition will thus be 
the angle 8. 

Using ( 2 9 ) ,  we can easily find the values of the compo- 
nents of the vector m. Substituting them into the thermody- 
namic potential and minimizing with respect to the angle p, 
we have near the phase transition point 

( 2 ~ y ) - ' @ ~ ~ = c o n s t + . \  ( H ,  9 , )  02+ . . . , 
(30) 

+ H + H D z  ( H + H D z + 2 H D l )  ] s i n 2  q o - i / 2 H A 3  sin 2 q 0 ,  
2He 

and the equilibrium value of the angle p = p, is determined 
by the expression 

tan 29.=H,. { ~ H . ' + H , , - H , ,  

The value of the phase transition field H, is found from the 
condition A (H, , p,) = 0. Substituting ( 3  1 ) into this condi- 
tion we have 

Using the values of the effective magnetic interactions in 
PDAMnCl, (see part 2b of Sec. IV),  we obtain for this crys- 
tal the value H, = 98 kOe, in good agreement with experi- 
ment. The agreement, however, must to a certain degree be 
regarded as accidental. In fact, as we see from (32) ,  a change 
in the value of H A , ,  for example, by only 10 Oe ( 10% of 
HA ) leads to a change in H, by - 10 kOe. 

4. Hlly. The rf properties 

The r3 phase 

a )  AFMR frequencies. The ground state in the T, phase 
( H >  H, ) is the magnetic configuration G, , F,, C, which is 
invariant under the symmetry operations E, 
C ;, , C,, , and C ;, of the magnetic class D, (C,). In the gen- 
eral case this configuration corresponds to a four-sublattice 
antiferromagnet. However, we can easily satisfy ourselves 
that for the actual relationship of the parameters in 
PDAMnCl, [see the expression for Hamiltonian ( 3 ) ]  the 
magnetization vector in the layer has no projection onto the 
x axis: F,, = F,, = 0. Thus G, = 0, and the static configu- 
ration of the magnetic moments of the system actually as- 
sumes a two-sublattice nature. It is characterized by the 
components 1, and m, of the antiferromagnetism and mag- 
netization vectors of the layer: 

Although statically the system has a two-sublattice nature, 
its dynamic properties are fundamentally different from 
those of a two-sublattice antiferromagnet; the effects of the 
many-sublattice nature are a factor of H,/H; > 1 stronger in 
low-dimensional systems than in three-dimensional sys- 
tems. 

Let us find the AFMR frequencies in this phase. As 
Table I1 implies, the oscillatory parts of the magnetic mo- 
ments of the sublattices transform according to the two re- 
presentations r13 and T2,. The corresponding calculation of 
the AFMR frequencies gives 

We note first of all that for HA, = 0 the AFMR frequencies 
in the r, phase [Eq. (34) ] go over to the frequencies in the 
r, phase (Eqs. (9)  and ( 10) ] and vice versa with the follow- 
ing relabeling of the variables: 
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This property becomes obvious when we recognize that for 
HA, = 0 we have I, = 0 in the T, phase and, as follows from 
Table 11, the phases T, and T, differ only in the choice of 
coordinate axes. 

For H :, - H, we can neglect terms of order H , /H f . 
Further, it follows from (34) that w,,, ,a,,, >w ,,, ,02,, 
and it is meaningful to divide the vibrations into acoustic and 
optical modes. Here the expressions for the acoustic modes 
coincide with the expressions for the AFMR frequencies of a 
two-sublattice antiferromagnet. 

When H -HA,  all the frequencies are of the same or- 
der, and the formal division of the frequencies into acoustic 
and exchange modes vanishes. Thus, even in the case of col- 
linear structures there is no region of frequencies in which a 
low-dimensional four-sublattice system can be reduced to an 
effective two-sublattice system. 

We note that it is only for H: = 0 that the frequencies 
(34) coincide in pairs so that even dynamically the system 
acquires a two-sublattice nature. In the T, phase, unlike the 
T, phase, frequencies of different symmetry coincide in pairs 
fo rH:  = O .  

The frequency w,,, (34a) goes to zero at H = H, (32) .  
At the same time, experiment shows (see Fig. 4 )  that 
y-'w;;P, = A = 4.6 kOe at the phase transition point. The 
experimental curve of yp'wi;P, is well described by the 
expression 

exp 
[ Y - ' u ~ ~ A  (11) ( H )  Y - 2 ,  

where w (H) is determined by formula (34a).  The nature 
of the gap A in the soft mode spectrum is unquestionably an 
interesting problem. 

We note that the thermodynamic potential of the sys- 
tem, with allowance for the interaction with the lattice in the 
T , ,  phase, contains an invariant of the form 

or, in terms of the order parameter 

( b  sin q+D1 cos q)Ou.,,. (35) 

Here b and b ' are linear combinations of the components of 
the magnetoelastic-constant tensor (they have dimensions 
of effective magnetic fields), and u,, is a component of the 
strain tensor. It follows from (35) that the given spin-reor- 
ientation transition is a proper ferroelastic transition. As is 
shown in Refs. 15 and 16, in this case the soft mode spectrum 
exhibits a gap of magnetoelastic origin. Omitting the awk- 
ward calculations, we get for the striction gap at the phase 
transition point 

y - 2 ~ w y j a  . , , = ~ H , ( o  sin cpo+ 0' cos ~ ~ ) ' ( / ' C , Z X I ) - ' ,  (36) 

where C,,,, is a component of the elastic-constant tensor, 
and the equilbirum angle p,, in the given approximation is 
determined by expression ( 3  1 ) with H equal to the value of 
H, found from (32) without allowance for the magneto- 
striction. However, we do not know the values of the elastic 
and magnetoelastic constants of the crystal, and the question 
of whether expression (36) agrees with experiment will re- 
quire additional studies. 

b. The rf magnetic susceptibility tensor. The last column 
in Table I11 indicates which components of the rf magnetic 
susceptibility tensor have poles corresponding to the vibra- 
tions of the given symmetry. It follows from the table that in 
the T, phase the componentxyy (w ) has poles corresponding 
to vibrations of symmetry TI , ,  and the componentsx,, (w) ,  
xzz ( 0  ) , x,, ( w )  , and x,, (0) have poles corresponding to 
vibrations of symmetry T,,. Thus the AFMR frequencies 
w,,,,, are excited by an rf field h / / y  and the frequencies 
w,,,,, by an rf field h ly .  

Let us give explicit expressions for the components of 
the rf magnetic susceptibility tensor in the T, phase: 

Here 

and the plus sign is taken for H,,, the minus sign for Hz,. 
Expressions (37)  imply that the components of the rf 

magnetic susceptibility tensor in the T, phase have residues 
at the exchange frequencies. These residues are proportional 
to the monoclinic anisotropy H A , .  In the T, phase the resi- 
dues at the optical modes are also proportional to the param- 
eter H A , ,  which has also determined the degree to which the 
magnetic structure of the system is canted in this phase. For 
this reason one could get the impression that the intensity of 
the absorption at the optical frequencies is determined by the 
degree of canting of the structure. However, as we have men- 
tioned, the system is collinear in the T, phase (the antiferro- 
magnetism vector L, and the ferromagnetism vector Fi of 
the layers are mutually collinear). Nevertheless, the corre- 
sponding residues at the optical modes are nonzero. Thus 
the intensity of the absorption at optical modes is deter- 
mined not by the degree of canting of the system but by the 
magnitude of the effective anisotropy fields which cause the 
many-sublattice structure of the system to be manifested in 
the dynamics. In some cases, such as the T, phase, for exam- 
ple, the anisotropy causes the many-sublattice nature of the 
system to be manifested even in the statics, giving rise to a 
canting of its magnetic moments. In other cases, such as the 
r, phase, for example, it is manifested only in the dynamics. 
However, for the inensity of the absorption by optical modes 
the dynamic many-sublattice nature always has priority 
over the static. 

The static susceptibility of the system can be obtained 
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from (37) by taking the limit w-0, H-H,. As a result we 
find 

The component X, (0 )  has a nonzero residue at the ex- 
change frequency. The reason for this is that for h lz  the 
system acquires an admixture of the T, phase, which has a 
four-sublattice configuration of the magnetic moments even 
in the statics, i.e., the external field along the z axis causes 
not only a bending of the magnetic sublattices toward this 
axis but also a rotation of these sublattices. 

The lJ4 and yrr phases 

A detailed theoretical calculation of the rf properties of 
the system and a comparison of the results of this calculation 
with experiment in the r,, and F,, phases will be the subject 
of a separate paper. Here we shall give only a qualitative 
analysis of the experimental behavior of the optical and 
acoustic modes of the AFMR in these phases. 

In the T,, phase (0  < H < H,,) the configuration of the 
magnetic moments of the system is invariant with respect to 
the operations E and C;, which generate the magnetic class 
C, ( C I  ) .  Because the only unitary operation in the F,, phase 
is the identity operation, all the AFMR modes have the same 
symmetry. Therefore, the frequencies w,2340 and a,,,,, 
should repel each other. However, no repulsion of the 
branches is observed within the experimental error. The rea- 
sons for this are as follows. 

It can be shown that for HD = 0 the magnetic symme- 
try of the system is effectively increased and becomes equiva- 
lent to the symmetry of a structure of the plane cross type, 
considered in Ref. 3. It follows that in this approximation 
the optical and acoustic modes do not interact with each 
other. On the other hand, even for nonzero HD but H = 0 
the vibrations a 1 2 3 4 0  and o,,,,, have different symmetries 
and, here too, do not interact. Since an HDl of 1.7 kOe in 
PDAMnCl, causes a slight canting of the magnetic configu- 
ration (HD , /He ~ 0 . 0 0 1 )  and since the external magnetic 
field at which the crossing of the branches is observed (see 
Fig. 4 )  cannot substantially alter the ground state of this 
antiferromagnet, it can be shown that the value of the repul- 
sion should be of the order of HHD , /He -0.01 kOe. Such a 
value is difficult to observe experimentally because of the 
masking effect of the finite AFMR linewidth. 

If the I?,, phase (field region H,, < H < H, ) the mag- 
netic configuration of the system is descibed by the class 
C, ( C,) . The corresponding oscillatory modes transform ac- 
cording to the two representations TI ,  and r,,. A symmetry 
analysis shows (see the third row in Table 111) that the fre- 
quencies w,,,, are excited by an rf field hlly and the fre- 
quencies a240,A are excited by an rf field hly.  

Experimentally this phase exhibits a strong interaction 
of the optical and acoustic modes which transform accord- 
ing to the representation r,, (see Fig. 4) .  It can be shown 
that the interaction of thew,,, and a24A branches does not 
vanish even for HD = 0, and the strength of the interaction is 
determined by H and H A .  

FIG. 6. Frequency-field diagram of the AFMR for H / J x .  The solid lines 
are drawn through the experimental points. 

The presence of an interaction of the optical and acous- 
tic modes and the formation of coupled vibrations with dif- 
ferent types of precession were first detected in Ref. 6. I t  was 
also shown there that the coupling of the optical and acous- 
tic modes in low-dimensional many-sublattice magnets 
should be observed in fields - (H,H, ) ' I '  because of the 
substantial lowering of the optical mode frequencies in sys- 
tems of this kind. Three-dimensional magnets can exhibit 
similar effects for H-He , as has been obseived5 in AFMR 
experiments on CuC1,.2H20. 

An external magnetic field directed along the x axis in- 
duces a magnetic moment Fx parallel to this axis. As we see 
form Table 11, the magnetic class in this case is C ,  (C, ) , and a 
mixed magnetic configuration containing all the compo- 
nents of vectors ( 1 ) is realized. 

The experimental frequency-field curves of the AFMR 
for HI(x are given in Fig. 6. Being of the same symmetry, the 
modes interact. In weak fields the interaction of the optical 
modes with each other and the interaction of the acoustic 
modes with each other are determined by the small param- 
eter HHD /He and are therefore not observed in experiment. 
In fields H z 4 0  kOe the nature of the interaction of the opti- 
cal and acoustic modes is basically analogous to that of the 
interaction of the optical and acoustic modes in the T,,  
phase ( H ( ( y ) ,  and therefore the repulsion of the branches is 
of the same order of magnitude (see Fig. 6 ) .  

V. CONCLUSION 

We have shown in this paper that the specific features of 
two-dimensional four-sublattice magnets are manifested 
rather clearly in PDAMnCl,. We have made the first experi- 
mental and theoretical study of the case of a low-dimension- 
a1 relativistically canted magnetic structure, which has unu- 
sual rf and static properties. 

We have shown that the AFMR spectrum of a four- 
sublattice low-dimensional antiferromagnet cannot in prin- 
ciple be described in the two-sublattice mode and that in the 
case of low-dimensional antiferromagnets, unlike the three- 
dimensional case, the formal division between acoustic and 
exchange branches of the AFMR spectrum vanishes because 
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of the strong depression of the optical mode frequencies. 
By studying all the branches of the AFMR spectrum we 

were able to reconstruct the magnetic structure of 
PDAMnCl, without using complicated neutron diffraction 
methods and to determine the constants of the thermody- 
namic potential. 

We note that our analysis of the rf properties of 
PDAMnCl, has enabled us to describe in this particular case 
the behavior of the optical and acoustic modes as a function 
of the field and of the parameters of the system and to give 
the values of their intensities, which turn out to be substan- 
tially dependent on both the ground-state magnetic configu- 
ration of the system and on the excitation conditions. This 
indicates that the quantitative description of the behavior of 
the system is not amenable to simple criteria. Qualitatively, 
the question of the interaction between different modes and 
the possibility of their excitation by a magnetic field has been 
resolved unambiguously on the basis of the symmetry meth- 
ods developed in Ref. 1 1. 

The presence of additional branches of the AFMR 
should be manifested in the thermodynamics of the system 
and in the temperature dependence of the magnetization and 
of the gap in the spin-wave spectrum. We propose to study 
these questions both experimentally and theoretically in the 
future. 

For the example of the spin-flop transition in 
PDAMnCl, we have demonstrated the specifics of the spin- 
reorientation transitions in low-dimensional magnets. 
More-detailed studies of the spin-flop transition in this com- 
pound are also of interest, especially a study of the character 
of the transition, the critical angles of inclination of the mag- 
netic field, the angular dependence of the AFMR spectra 
near the transition field, etc. 

In closing we express our gratitude to V. G. Bar'yakhtar 

for constructive comments in the course of this study and to 
V. V. Eremenko for a fruitful discussion. 
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