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A generalized Maleev-Dyson transformation is proposed for magnetic systems characterized by 
tensor interactions-single-ion anisotropy and (or)  higher-order exchange interactions-in ad- 
dition to the spin-spin exchange. As an application, the low-temperature properties of a ferromag- 
net with easy-plane single-ion anisotropy are studied in a magnetic field perpendicular to the easy 
plane. The existence of three fundamentally different types of spin structures is predicted, only 
one of which corresponds to the usual ferromagnetic structure. A detailed study is made of the 
features of these structures, the spectra of the collective excitations, the low-temperature behav- 
ior of the thermodynamic functions, and the possible phase transitions. 

1. INTRODUCTION 

In this paper a unified approach is developed for the 
description of magnets having tensor interactions-higher- 
order exchange interactions and (o r )  single-ion anisotro- 
py-in addition to the ordinary spin-spin interactions. Sys- 
tems of this kind have been studied intensively in recent 
years.'-" This is particularly true of ferromagnets with sin- 
gle-ion anisotropy,'-l9 the role of which until quite recently 
was considered indistinguishable from that of the exchange 
anisotropy. Recently, however, it has become clear that the 
use of the standard methods of the theory of magnetism in 
studying these systems runs up against serious difficulties. 
In relation to the diagram technique of Vaks, Larkin, and 
~ ik i~20 .2  I these difficulties were discussed in Refs. 21 and 5 

and were linked to the fact that Wick's theorem does not 
hold for the spin operators when the single-ion anisotropy is 
included in the zeroth-order Hamiltonian. Two versions of a 
generalized diagram technique permitting exact allowance 
for the single-ion anisotropy have been pr~posed. ' .~  As to the 
quasiparticle approach based on the introduction of Bose 
operators with the aid of the Maleev-Dyson ( M D )  or Hol- 
stein-Primakoff ( H P )  representations, it leads to unphysical 
results when the ratio of the single-ion anisotropy and ex- 
change constants is not small: The density of quasiparticles 
and the corrections from the anharmonic terms are not small 
at T = 0.'' However, it is hard to agree with the statements 
that have been made in this regard in several papers (e.g. 
Ref. 4):  that the quasiparticle description itself is invalid at 
arbitrary relationships between the single-ion anisotropy 
and exchange constants (i.e., that the weak-nonideality cri- 
terion for the Bose gase of quasiparticles is violated in princi- 
ple at low T), that the zero-point vibrations are extremely 
large in this case (this view was maintained in Ref. 6 ) ,  etc. 

The point of view developed in the present paper is as 
follows. The quasiparticle concept is applicable to the same 
extent as it is in the description of any ordered system, but 
the quasiparticles should be introduced by a method other 
than the transformations mentioned above. The first goal of 
this paper is to construct a transformation from spin to Bose 
operators that is suitable for spin systems with tensor inter- 
actions. The necessity of using a different method of intro- 

ducing the quasiparticles is due to the possible existence of 
peculiar spin structures in which there is no magnetization 
at all or in which the magnetization is very different from the 
saturation value. In the standard M D  and H P  transforma- 
tions there is understood to be complete or almost complete 
ferromagnetic order in the ground state, since one uses the 
representation S = S - a + a in a coordinate system with 
the z axis along the magnetization. 

The second objective of this study is the classification 
and description of the corresponding magnetic structures, 
their low-temperature properties, and the phase transitions 
between them. This classification and the formalism devel- 
oped apply to arbitrary systems with tensor interactions, in- 
cluding, in particular, single-ion anisotropy of arbitrary 
symmetry and arbitrary order, and briefly consists of the 
following. Besides the ordinary ferromagnetic structure 
there are two more structures: a tensor structure in which 
the order is determined by tensor characteristics and the 
magnetization is equal to zero, and a tensor-ferromagnetic 
structure in which the order is characterized by a superposi- 
tion of vector and tensor variables. In the particular case of 
second-order single-ion anisotropy these structures can be 
called quadrupole-ordered (QO) and quadrupole-ferro- 
magnetic (QFM) . All of the types of ordering are described 
by an (n2 - 1 )-dimensional (n  = 2 s  + 1 ) vector order pa- 
rameter defined in the space of tensor operators 0 ;" or rank I 
( I  = 1, ..., 2S), and the collective excitations in the system at 
low T correspond to oscillations of this order parameter 
about an equilibrium position. Accordingly, the transitions 
between different structures at low T involve the reorienta- 
tion of the order parameter. The approach developed here 
enables one to describe the properties of such structures us- 
ing the standard scheme of regular allowance for both the 
leading (a t  low T)  spin-wave contributions and the anhar- 
monic terms with the aid of the usual diagram technique22 
for Bose systems, for example. 

Concrete calculations are done for an easy-plane ferro- 
magnet in a field perpendicular to the easy plane. This sys- 
tem is described by the Hamiltonian 
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Even this simplest case, as we shall see, exhibits all the spin 
structures described above. We emphasize that in the study 
of easy-plane ferromagnets the external field is usually di- 
rected parallel to the easy simplifying the problem 
c ~ n s i d e r a b l ~ . ~ '  This simplification, however, is due to the 
existence of a single phase in this case: a collinear ferromag- 
netic structure with magnetization along the field. 

We study the ground state, the spectra of the collective 
excitations in all the phases, the low-temperature behavior 
of the magnetization, susceptibility, and quadrupole aver- 
ages, and the transitions between the existing structures; we 
refine the existence criterion for ferromagnetism at 
T = 0,h = 0. We estimate the renormalization of the order 
parameter due to zero-point vibrations and find that it is 
small at any values ofD /J,.  The low density of true quasipar- 
ticles allows us to use the spin-wave approximation to de- 
scribe the leading characteristics of the system at low T. The 
nonlinear theory for each of the structures will be given sepa- 
rately. 

The calculations are done for the case S = 1. This is the 
minimum spin value at which single-ion anisotropy exists 
and, consequently, it is in this case that the quantum effects 
which give rise to the features discussed above are manifest- 
ed most clearly. The generalization to arbitrary S is dis- 
cussed in the Conclusion. 

At low T the quasiparticle approach developed here is 
equivalent to the diagram technique for spin o ~ e r a t o r s . ~  In 
particular, the results obtained here for the magnetization 
and susceptibility can be found by the technique of Ref. 5 in 
the first approximation in l / r i ,  as can be seen by direct cal- 
culations. 

2. GENERAL FORMALISM 

The problem of adequately describing magnets having 
tensor interactions requires independent allowance for both 
the vector (magnetic) fields and the tensor fields-the exter- 
nal fields created by the single-ion anisotropy and the inter- 
nal fields created by the intersite spin-spin interactions of 
higher orders-and their incorporation into the zeroth-or- 
der Hamiltonian. For the system described by ( 1 ), the latter 
is of the form 

As has been pointed out previously,"~"' this procedure is 
equivalent to enlarging the basis of the operators character- 
izing the state of an individual ion from the three spin opera- 
tors of the Lie algebra SU(2)  in the case of an exchange 
ferromagnet to (n" 1 ) operators of the Lie algebra S U ( n )  
(n = 2S + 1 ) .  For S = 1 the eight operators 0 ;"of the alge- 
braSU(3)  include three spin and five quadrupole operators: 

1 Oi0=fl, O,"=S*, S*=i  -(P&iS"), 
VT 

Accordingly, it is necessary to replace the standard M D  and 
H P  transformations, which reflect the symmetry of the 
S U ( 2 )  algebra and apply to magnets having only spin-spin 
but no tensor interactions, to the analogous transformations 
incorporating the symmetry of the algebra S U ( 3 ) .  Such a 
transformation-a generalized M D  transformation-is of- 
fered below. As usual, it includes two stages: a conversion to 
local coordinates rigidly bound to the orientation of the vec- 
tor order parameter, and, the proper introduction of second- 
quantization operators when a preferred axis of the local 
coordinates is chosen as the quantization axis. Each of these 
stages, however, is done with allowance for the properties of 
the S U ( 3 )  algebra [in the general case S U ( n ) ]  in a way 
which is different from the standard method. 

A. Conversion to local coordinates 

For an exchange ferromagnet the vector order param- 
eter q is the magnetization, with three components 
(S ) , (Sx ) , (SY ) , and the conversion to local coordinates is 
accomplished by rotations in three-dimensional space-the 
unitary transformations of the group S U ( 2 ) .  In such a coor- 
dinate system the zeroth-order Hamiltonian is diagonal, and 
at T = 0 one has (S'), = S; here and below a letter with a 
tilde refers to the local coordinate system, and the index 0 
denotes an average with the zeroth-order Hamiltonian. 

In the case under study that state of the system is deter- 
mined by eight independent averages of the operators (3 ) ,  
and the vector order parameter q is defined in an eight-di- 
mensional isotopic space. By analogy with the three-dimen- 
sional case, it is expedient to convert to local coordinates in 
which the preferred axis ( the z axis) coincides with the di- 
rection of the order parameter, so that all but one of the 
averages of the operators ( 3 )  are equal to zero. Then the 
value of the only nonzero average determines the degree of 
order in the system, and the orientation of the preferred axis 
determines the structure of this order. 

However, this transparent picture requires some refine- 
ment in connection with the difference from unity of the 
rank r of the S U ( n )  algebra in all cases except n = 2, since 
r = n - 1. Because r determines the number of independent 
commuting operators of the algebra, the minimum number 
of nonzero averages in the local coordinates is equal to r. For 
SU(3)  ( r  = 2 )  this i s a  = ($'),A = (36').   he conversion 
to the local coordinates is done with the aid of the unitary 
transformationsoftheSU(3) group, exp{@, 0 7 )  ( I  = 1,2), 
which are described in detail elsewhere.'' The angles of the 
unitary transformations, which fix the position of the local 
coordinates and have the meaning of generalized Euler an- 
gles, are determined from the condition that the six averages 
of the operators in (3 ) ,  except a and A, are equal to zero. In 
our case, when t h e y  component of the field is absent (for 
both the external and internal fields), three of these averages 
are identically zero. Accordingly, we have three equations 
for the angles p, K, and L 

(012) sin 2cp cos K+h cos cp sin K+ ( J , / 2 )  o sin 2K cos 2L=O, 

(4a)  
( 0 1 2 )  cos2cp sin 2K+h sin cp cos 2K 

+ (J.14)sin 4K(h+o sin 2 L )  =0, (4b) 
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R sin 2L+D2 cos 2L=0, ( 4 ~ )  

R = h  cos rp cos K- (012) sin 2rp sin K+J,o cos2K cos 2L, 

DZ=- (h/2) sin q sin 2KS (012) (cos2K cos2 cp-cos 2cp) 

- (Jo/4) sinZ 2K (h+o sin 2L) 

of the three unitary transformations: 

In the zeroth approximation, the averages a and A appearing 
in ( 4 )  are given by the equations 

In obtaining ( 6 )  we used the explicit form of %-U3U2UI u -1u -1u - I .  
0 1  Z 3 '  

?i=R cos 2L-D, sin 2L, (7a)  

D 3h 
d = -(3 cos2 K cosZ cp-I) - - sin cp sin 2K 

2 2 

-- 3Jo sin2 2K (h+o sin 2L). 
4 

We notice that for T = 0, three versions of solutions ( 6 )  are 
possible: 

%=I,  ?.,=I, (8a)  

o,=O, A,=-2, (8b) 

o,=-I, A,=I. ( 8 ~ )  

Each of these corresponds to different values of the angles 
determined by expressions ( 4 ) .  This means that three types 
of local coordinates are po~sible .~ '  The most transparent is 
the type corresponding to (8a) :  Having (Sz),, = 1 means 
that in this coordinate system there is a "complete ordering 
of the spins along thez axis" at T = 0 (in the zeroth approxi- 
mation), and at finite T the value of a will characterize the 
degree of order in the system. The quotation marks are 
meant to emphasize that this "ferromagnetic" order is real- 
ized only in certain coordinates of the eight-dimensional 
space; the true structure of the order in real three-dimen- 
sional space can be radically different from ferromagnetic. It 

FIG. 1. Level scheme of an ion with S = 1 in local coordinates of the 
second type [for which Eq. (8b)  holds at T = 01. The levels are labeled by 
the eigenvalues of the operator 5' 

is specified by the components 

which determines (3;' ) : 

~Sz>=u,(S2>+cr,(S">+~UQO+~2QZ+~1Ql, 

a,=cos 2L cos K cos rp+'/, sin 2L sin 2K sin cp, 

a,=cos 2L cos K sin cp-'/n sin 2L sin 2K cos rp, 

/30=2-iV~[cos2~ sin K sin 2rp-sin 2L(cos 2rp-cos2K cosZ rp) 1, 
p,='/,[-cos 2L sin K sin 29 ( 9 )  

pi=[-cos 2L sin K cos 2cp-'1, sin 2L sin 2cp(l+sin2 K)  1, 
a z 2+a,Z+poZ+p,Z+pt2= I. 

The quantities a, and fl, play the role of the direction co- 
sines determining the orientation of the preferred axis of the 
local coordinates with respect to the fixed system with basis 
vectors along (9 ), (Sx ) ,Q0,Q2,QI, . . . . 

I t  remains for us to introduce the vector order param- 
eter 

whose direction is determined by the unit vector e with com- 
ponents a,, a , ,  flo, f12, and fl, (the three remaining compo- 
nents are zero) and whose modulus is the value of (3;' ) in the 
local system under study: 1771 = a. Clearly, the direction of q 
characterizes the structure of the order: if all thefl, are zero 
we have the ordinary ferromagnetic structure, for a, = 0 we 
have the Q 0  structure, and for a, 5 0 ,  Pp # O  we have the 
QFM structure. Regardless of the structure of the order, the 
degree of ordering, characterized by 91, goes to unity for 
T+ 0. 

In the general case it is a rather awkward problem to 
obtain explicit nontrivial solutions for the angles. Substan- 
tial simplification of system ( 4 )  can be achieved in the case 
T = 0 by using local coordinates of the second type. In fact, 
when (8b) is used, system ( 4 )  decomposes into one indepen- 
dent equation for sin 2L and two coupled equations for sin p 
and cos 2K. Therefore, although these coordinates are less 
transparent, we shall for the sake of uniformity use them to 
describe all the phases. One can readily see that the subse- 
quent conversion from these coordinates to the physical co- 
ordinates of the first type requires one more, trivial rotation 
specified by the angles cos p = cos 2K = cos 2L = 0. Hence 
one can obtain formulas relating the order parameter q in- 
troduced earlier to the characteristics of this coordinate sys- 
tem, a a n d  A,  and to the angles p, K, and L. In particular, the 
modulus 1771 and direction cosines of the unit vector e ( E ,  
and /7, ) of the order parameter are given by 

- 
1 q = ( A )  2fip=a,-v3A,, 2fiP=8,-V3~,. ( 11 ) 

Here a, andfl, are determined by formulas ( 9 ) ,  and A ,  and 
B, are determined by formulas (A.  1 ) of the Appendix. The 
proof of ( 11 ) is given in the Appendix. 
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Let us finally give the formulas relating the original 
averages with the parameters g, A, p, K, and L: 

M,-- ( S ' > = ~ , ~ + A , A / V %  l=z, z; 
(12) 

~,=i3,,o+~,,h/l'3, n = O ,  1, 2 .  

6. Second-quantization operators 

After the conversion to the local coordinates the inter- 
site interaction contains not only spin-spin but also quadru- 
pole-quadrupole and spin-quadrupole exchanges: 

The expressions for the "exchange integrals" 3, K, and 
P in terms of the angles p, K, L and the constants of the 
original Hamiltonian are written out in Eqs. (14)-(18) of 
Ref. 16. The conversion to Bose operators would require the 
use of a transformation that would take into account the 
equal status of the spin and quadrupole operators in SU(3) .  

We propose a representation in which the spin and qua- 
drupole operators in the local coordinates are expressed in 
terms of the Hubbard operators, the other independent gen- 
e r a t o r ~ ' ~  of the algebra S U ( n )  : 

and the latter are expressed in terms of the Bose operators 
according to the formulas 

The choice of this transformation, which is the MD transfor- 
mation generalized to the SU(3)  case, becomes obvious 
when we consider the level scheme of an individual ion in the 
local coordinates (Fig. 1 ); we see from this scheme that the 
Hubbard operators X l o  and X - I 0  are the operators for tran- 
sitions from the ground level to excited levels at a site; at low 
T these operators, to first approximation, have Bose commu- 
tation relations: 

[XiQl ,  xIia] =sij (1 -2x i i1 -xLi - '  ) =bij, 

whereas the operators X I - '  obey 

Furthermore, this representation follows from a comparison 
of the present approach with that of the diagram technique5: 

in the presence of single-ion anisotropy it is precisely for the 
off-diagonal Hubbard operators in coordinates in which %', 
is diagonal (i.e., in the local coordinates introduced above) 
that the generalized form of Wick's theorem holds. 

By doing all the transformations described above, we 
obtain an explicit form for the quadratic Hamiltonian in a 
local coordinate system of the second type: 

+ E  {V3 ( k )  ak'ak-1/2VA ( k )  ( a k + ~ - ~ + + a ~ a - ~ )  
k 

+ V ,  ( k )  bk+bk-1/zV2 ( k )  (br+b-r++brb-r) 
+us ( k )  (ak+bk+bk+ak) - v l ( k )  (ar'b-k++bra-k)). ( 18) 

The constants of this Hamiltonian depend on the angles p, 
K, and L in the following way: 

V i  ( k )  =-Jk[l- '1 ,  sinZ 2 K ( l + s i n  2L) 1 ,  
VS(k)  =-Jk[I-'1, sinZ 2 K ( l - s i n  2L) 1 ,  

V z ( k )  = J k  cos 2 K [ s i n  2L cosZ K-sinz K ] ,  

V4 ( k )  = - J k  cos 2K[s in  2L cosZ K+sinz K ] ,  

v1  ( k )  = J k  cosz K  cos 2K cos 2L, 

v, ( k )  =2Jk cos2 K  sinz K cos 2L, 

&,=K+J, eb=d-h; 

here J ,  is the Fourier transform of the exchange integral. 
The general formulas for the terms of higher order in 

the operators a, and b, are rather awkward, and we shall not 
give them here. We note that the condition that the Hamil- 
tonian contain no terms linear in a, and b,-the condition 
usually used to determine the equilibrium spin configura- 
tions-leads to the same equations ( 4 )  for the angles as we 
obtained earlier. 

From here on the analysis is done in the usual way. The 
quadratic Hamiltonian determines the spectrum of collec- 
tive excitations in the spin-wave approximation: 

[In Eq. (20) the argument k has been dropped from the 
coefficients V , ,  V,,  V, ,  V,,v , ,u,.]  Using this Hamiltonian, one 
can determine the corrections to the averages a and /1 by 
proceeding from the expressions relating the diagonal spin 
and quadrupole operators to the Bose operators: 
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Further, on substitution of the renormalized a and A into 
system (4 ) ,  we obtained the renormalized values of the an- 
gles p, K, and L. Substitution of both into formulas ( 11 ) and 
( 12) gives the renormalized values of the order parameter 
and of the initial averages M, , M, , Q,, Q,, and Q,. A study of 
the influence of the anharmonic terms on the low-tempera- 
ture dynamics of the system can also be done by the highly 
developed standard methods for weakly interacting bosons. 

3. STRUCTURE OF THE ORDERED PHASES OF AN EASY- 
PLANE FERROMAGNET 

System (4)  determines three branches of solutions for 
the angles p, K, and L. The first, 

cos cp=cos 2K=cos 2L=0, (22) 

describes the ordinary ferromagnetic structure, since all the 
/7, in ( 11 ) are zero. This is a saturated phase with magneti- 
zation parallel to the field: Mio' = 1, Mx = 0. 

The second solution, 

sin cp=sin 2K=sin 2L=0, (23) 

corresponds at T = 0 to a nonmagnetic structure in which 
the order is determined exclusively by the quadrupole com- 
ponent Q,: 

The quadrupole order is characterized, according to the de- 
finition of Q,, by a spin alignment perpendicular to thez axis 
( ((S' )') = 0) ,  with an arbitrary alignment in the xy plane. 
At finite T a nonzero magnetization M, # O  (calculated in 
the next section) arises along the field. Then 
171 = - 1 / 2 ( f i ~ ,  + M,).  The given solutions exist for 
any values of h ,  D, and T. 

There is also a nontrivial solution which at T = 0 is 
characterized by the angles 

1 1 
sin c p = - H { ( ~ - -  1+H2) I(_+ ~ - H ~ ) ) ' I '  , 

(25) 
tan 2L=-Dz/R, g=D/2J0, I l s h l D .  

This solution describes the QFM structure, in which the 
contribution of the vector and tensor components to the or- 
der parameters is determined by the values of the coefficients 
8, and% in formulas ( 11 ) and ( 10). This solution exists in 
the field region H,, < H < H,, ; it goes over to the QO solu- 
tion at H = H,, and to the FM solution at H = H,, . In the 
zeroth approximation H Ly' = ( 1 - I/[) "',H $' = 1. In 
the case f <  1 solution (25) exists in the field region 
0 < H < H,, . From the standpoint of its ferromagnetic prop- 

FIG. 2. Field dependence of the total magnetization M and its longitudi- 
nal (M, ) and transverse ( M ,  ) components at T = 0: a )  { = D /W, > er, 
b )  { < pr , C )  {(rr. In the molecular-field approximation er = 1, and 
the renormalized value is given by Eq. (67) .  

erties the QFM phase is canted (with respect to the external 
field and easy plane). Here the components of the magneti- 
zation are given by 

M, "' =- sin cp sin 2K, ~ ~ ~ ' = c o s  cp sin 2K. (26) 

The features of the low-temperature behavior of this phase 
are determined, however, not by the canting, but mainly by 
the contribution of the quadrupole components to the order 
parameter. At T = 0 this contribution varies from 1 to 0 as H 
changes from Hcl to Hc2 , leading to unusual behavior of the 
total magnetization for a ferromagnet: It increases in a non- 
linear manner from 0 at H = H,, to 1 at H = H,, : 

Peculiar behavior is also exhibited by the cooperative com- 
ponent of the magnetization, M:" (see Fig. 2 ) .  For f < 1, in 
which case there is no H,, , the peculiar behavior of M and 
M, persists (Fig. 2 ) .  It vanishes only for 641, when the 
entire existence region of the QFM phase is effectively the 
region adjacent toll,, . Let us give the dependence ofM, M,, 
andMx o n H  f o r H 2 = H f l  +AH: 

1Vf("=1-2;' (AH)'; (29) 

and, finally, for H = 0 + AH we have 
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4. SPIN-WAVE SPECTRUM AND THERMODYNAMIC 
FUNCTIONS 

Let us give the explicit calculations of the spectrum and 
thermodynamic functions, using the explicit form of the Ha- 
miltonian p2 for each phase. 

I .  FMphase. The Hamiltonian is 

since V ,  = Vz = V, = u ,  = uz  = 0. Here V j  = - J k  , 
E, = h - D + J,, E~ = 2(h + J,). Accordingly, the single 
branch of excitations, with dispersion relation 

has the form typical of an ordinary ferromagnet. At small k 
we get wk = A + A  k" and the gap 
A = h - D -D(H - H,, ) goes to zero at H = H,, , so that 
at the field value H = H,, the FM phase likewise becomes 
unstable. 

The corrections Agand M calculated by formulas ( 2  1 ) 
are zero at T = 0, i.e., even in the spin-wave approximation 
we have a = 0 and A = - 2 at T = 0. Accordingly, the 
ground state in the F M  phase is a state of complete F M  order 
along the z axis: M, = 1, M, = 0. The absence of zero-point 
vibrations is due to the relation [ (2, SSf ), F ]  = 0. At finite 
T we have 

and the magnetization change determined by formula ( 12) 
is 

1 
A M ,  ( T )  E M .  ( T )  -flz (0) = - r, n  ( u k ) ,  

N k  
(34) 

which is also the standard formula for a ferromagnet. Ex- 
plicit calculations give 

m 

r ( 3 / 2 )  e A 
A M z  (T) = - (, ) 2, (K ) ,  Z p  (z) = Z n - p e - n x ,  

4nZ 
n = i  

and for the susceptibility 

Using the explicit form" of Z, ( x )  for small x ,  we obtain 
expressions for the magnetization and susceptibility under 
the condition A<B 

The behavior of the magnetic characteristics in the 
phase under study is thus the same as in an ordinary ferro- 
magnet. Here it is pertinent to note that a formula with a 

structure exactly like (37) was recently obtained" for the 
magnetization of a ferromagnet with a cubic single-ion an- 
isotropy, and it was pointed out that the magnetization at 
small A/B contains a term linear in Tin addition to the terms 
- T ~ / ?  Such a behavior, however, is not peculiar solely to 
ferromagnets with single-ion anisotropy but is also typical of 
ferromagnets with A = h- 0 (Ref. 23), ferromagnets with 
exchange anisotropy near the point of a spin-reorientation 
phase t r a n ~ i t i o n , ~ ~  and uniaxial antiferromagnets near a 
field-induced phase t ran~i t ion . '~  This behavior can be said to 
be universal for spin structures in which there is a mode 
w, = A + A  k2 near a point at which a loss of stability oc- 
curs, i.e., for A- 0. For spin-reorientation phase transitions 
of various types one usually has A -  lH - H, /, and the uni- 
versal of MI, ,  the magnetization along the field, 

AMl ,  ( T )  =C,0'k+C,0A'i2, x,, ( T )  me/@ (38) 

is a reflection of the universal behavior of the thermodynam- 
ic functions near second-order transition points with 
allowance for Gaussian fluctuations. 

2. QOphase. Using formulas ( 18) and ( 19) with angle 
values (23),  we obtain a Hamiltonian of the form 

This Hamiltonian is diagonalized with the aid of the U-V 
transformation: 

The frequencies of the two branches of the spectrum and the 
functions Uk and Vk are of the form 

or'= [D (D-2Jr)] "'&h, (41 

At H = 0 the spectrum is twofold degenerate. A field re- 
moves the degeneracy, decreasing the frequency of the lower 
branch (rather than increasing it as in a ferromagnet). At 
small k (and finite H,, ) the frequencies are of the form 

Since A- = 0 at H = H,, , this field is a point at which the 
QO phase suffers a loss of stability. If H,, = 0, Eq. (41) 
implies that w, a k. 

The correlation functions are 

iY, ( p )  = Up2n (up+) + V p 2 n  ( a p - )  + V p Z ,  

N,(p) =U,Zn(up-) +V,Zn (a,+) +V,Z, (44) 
p(p )  =< bp+a-,+>=(a,b-,>=U,V,[l+n(ap+) + n ( a p - ) I .  

Accordingly, for Ao and M we obtain from (21 ) 
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Aa=Ao ( 0 )  +Ao ( T ) ,  Ah=Ah ( 0 )  +Ah ( T )  , 

where Z is the number of nearest neighbors and 6 is a vector 
joining two nearest neighbors. We recall that for the QO 
phase Eqs. ( 12) and ( 1 I )  imply that 

and the order parameter is 

Equations ( 4 5 )  and ( 4 8 )  imply that the ground state re- 
mains nonmagnetic in the spin-wave approximation, since 
Ao(0)  = 0 .  Moreover, we can state that the equation 
M, ( T  = 0 )  = 0 is satisfied exactly, since 

and the order at T  = 0  is determined exclusively by the qua- 
drupole parameter Q,. Accordingly, x,, ( T  = 0 )  = 0.  Be- 
cause 

the ground state cannot correspond to a state of complete 
quadrupole order. Let us estimate the correction AT(O) to 
the order parameter ( 7  = 1 - AT)  due to zero-point vibra- 
tions; this correction is determined by U ( 0 )  in ( 4 5 ) :  
A v ( 0 )  = M ( 0 ) / 2 .  Its absolute value depends on the pa- 
rameter {, which falls off monotonically in the interval 
1 <( < m ,  the existence region of the QO phase For 6 = 1 ,  
our Eq. ( 4 5 )  for M  ( 0 )  coincides up to a factor of 3 with the 
formula for the correction to the magnetization at T  = 0  in 
the transverse xy model; the latter was evaluated in the 
three-dimensional case for simple cubic (sc) and body-cen- 
tered cubic (bcc) lattices in Ref. 25. Those vlaues can there- 
fore be used to estimate an upper limit on A y ( 0 ) .  Because 
M ( 0 )  = O a t ( =  m,weseefrom ( 4 5 ) ,  wehave 

3/2 0,022 for an sc lattice 

/2.0,017 for a bcc lattice. 
( 4 9 )  

We conclude that the renormalization of the ground 
state due to zero-point vibrations is small at any value of D  / 
J,, and does not depend on the field. We note that the QO 
phase under discussion is precisely that phase in which it is 

believed4r6 that quantum fluctuations are most highly devel- 
oped and for which some sort of special higher-order ap- 
proximations are needed. 

For the temperature-dependent corrections Au(T)  and 
M  ( T )  we have explicitly 

Equations ( 5 0 )  and ( 4 7 )  imply that for T  # O  there is a 
longitudinal magnetization M, which depends linearly on 
the field for smal h  and nonlinearly for larger h; in both cases 
this magnetization is exponentially small because of the 
small value of 6' / A ,  , i.e., 6' / D .  As H  approaches H,, the T  
dependence takes on a power-law behavior and has the char- 
acteristic form in ( 3 8 ) .  

The form of the temperature dependence of the magne- 
tization, susceptibility, specific heat, and other thermody- 
namic functions in the spin-wave approximation is deter- 
mined solely by the form of the spectrum w: and can be 
obtained not only from ( 4 5 ) - ( 5 0 )  but also from analysis of 
the form of the free energy of noninteracting bosons 

8 . = 0 r ,  in( i--exp{-w,~/~))  ( 5 1 )  
jk - 

and the thermodynamic relations. Since the spectrum has 
exactly the same form as that of a uniaxial antiferromagnet 
in the low-field phase, the results will be identical. In parti- 
cular, for the specific heat C, = Ta ' R ,  / d T Z  and the suscep- 
tibility AX,, = x ( T )  - ~ ( 0 )  = - a ' a ,  /aH, we have: 

1 ) in the case of small fields H<Hcl : 

2 )  near H  = H,, , i.e., for H,, - H(6' /D:  

3)  for small H,,  (6 '  /D:  

In the expressions for a , , ,  and b ,., , k is the Boltzmann 
constant. 

3. QFMphase. At the angle values given by ( 2 5 ) ,  all the 
constants in ( 19) are nonzero, and, consequently, the form 
p2 for this phase is the same as ( 18).  The formulas for the 
frequencies over the entire existence region of the QFM 
phase, H,, < H  < H,, , are of form ( 2 0 ) .  The expression for 
the lower branch simplifies somewhat: 
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After substituting the explicit expressions for the con- 
stants V,(k),  V2(k), V,(k) ,  V,(k), v , ( k ) ,  u , ( k ) , ~ , ,  
determined by formulas (19) with the use of (25),  we can 
see that for small k the dependence on k is of the form 

Because the explicit form of the function f (H ') is rather 
awkward we shall not write it out here-it can easily be ob- 
tained using the explicit formulas mentioned above; at 
H = O w e h a v e  f ( 0 )  = (1  +[ ) [ I  + [ - y , ( l - [ ) I ,  and 
at small H the function f (H ') is a power-law function of 
H Z .  

Thus in the entire existence region of the QFM phase 
there is a Goldstone mode with a linear dispersion relation. 
This mode arises because a continuous symmetry operation 
of Hamiltonian ( 1)-rotation about the z axis-is spontan- 
eously broken in this phase. 

Let us give the explicit formulas for small k in several 
particular cases: 

a )  H = 0 :  

It follows from (58) and (59) that at the boundaries of the 
existence region of the QFM phases the spectrum becomes 
quadratic, coinciding with the spectrum of the QO phase for 
H = Hcl and with the spectrum of the FM phase for 
H = H,, . The sound velocity of the Goldstone mode is zero 
at the boundaries and increases toward the center of the re- 
gion (Hc, ,Hc2 ). 

Since for the lower branch we have w; a k, all the tem- 
perature corrections to the thermodynamic functions at the 
lowest values of Twill be interger powers of T; in particular, 

The qualitative difference in the behavior of the ther- 
modynamic functions in the QO, QFM, and FM phases 
leads to a peculiar change in their values and temperature 
dependences on changes in the external field. For example, 
the spin specific heat at the lowest values of T exhibits the 
following characteristic behavior: It has an exponentially 
small value for H<H,, , increases with increasing H,  and as 
H+HCl goes over from an exponential dependence on T to a 
power-law dependence C, a T"" at H = H,, the specific 
heat exhibits a downward jump, and with the change in the 
structure of the phase there is also a change in the character 
of the temperature dependence: C, a T for Hcl < H < Hc2 . 

changes: At the transition through H = H,, the specific heat 
exhibits an upward jump and again C, a T"' at small 
H - H,,; it then falls off with increasing H and reverts to an 
exponential dependence on T. 

The jumps and the mirror-like nature of the behavior of 
C, (H) are due to two successive second-order transitions 
Q O 4 Q F M  and QFM+FM occurring at the points 
H = H,, and H = H,, , respectively. Actually, at H = H,, 
and H = H,, formulas (25) for the angles describing the 
QFM solution go over to the formulas for the QO and F M  
solutions. The same fields correspond to a softening of the 
low-lying mode in the spectrum of the QO and FM phases. 
At these same points the velocity of the Goldstone mode in 
the QFM phase goes to zero. All these circumstances make 
up the typical pattern for a second-order transition. The be- 
havior of the susceptibility is also typical-there are jumps 
in the longitudinal susceptibility X ,  and a divergence of the 
off-diagonal components of the susceptibility tensor as the 
transitions are approached from the QFM side (from the 
phase with broken symmetry): x,rdM,/dH,  a- H - ' I 2 ,  

AH = H, - H / in the molecular-field approximation, and 

xZZ cc ( A H )  
- with allowance for the spin waves, i.e., the 

quantum Gaussian fluctuations [in the d = 3 case this is Eq. 
(37) 1,  where d is the dimensionality of the crystal l a t t i ~ e . ~ '  
We note that the latter anomaly in x,, (AH)  vanishes at 
T = 0, and the critical behavior corresponds to the molecu- 
lar-field approximation. An interesting feature of these tran- 
sitions, which leads to the mirror-like character of C, (AH),  
xZZ (AH),  and the other characteristics, is that the transition 
from the low-symmetry to the high-symmetry phase occurs 
on an increase in H at H = H,,  and on a decrease in H at 
H = Hc2 . 

5. RENORMALIZATION OF THE CRITICAL FIELDS 

The renormalized critical fields can be found, as before, 
from the condition for the vanishing of the nontrivial QFM 
solution described by system ( 4 )  but with a and R given not 
by the unrenormalized values (8b) but by the spin-wave re- 
normalized values (21 ) .  Explicit solutions of system (4 )  for 
a # O  is difficult, but it will not be necessary. 

To obtain the phase boundary H,, (T)  we first elimi- 
nate from system (4 )  the trivial QO solution (23).  To do this 
we use (4b) to express sin p in terms of sinK and, after sub- 
stituting into (4a) ,  we cancel out sinK. Then after setting the 
values of the angles in this question equal to (23),  we obtain 
an equation for the phase boundary H,, ( T )  at low T: 

In this equation a and R are determined by general formulas 
(21) at angles (23) corresponding to the QO solution, i.e., 
by formulas (45) and (46).  In an analogous way we obtain 
an equation for the phase boundary H,, ( T )  : 

Thereafter the changes are the mirror image of the previous 2JoDaf  (D-h)  [D+h-'/,J,(h+a)] =O. (62)  
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In this case u and il are determined by formulas (33).  The 
corrections Au(T)  and M ( T )  in both cases depend on H 
through the special functions Z, ( x ) ,  so that Eqs. (61) and 
(62) have a rather complicated form. Proceeding in the spir- 
it of an iterative scheme, we shall assume that H = HIP' and 
H = H!:', respectively, in the corrections Au(T)  and 
M ( T) which figure in (61 ) and (62) and solve the quadrat- 
ic equation with respect to H, .  We then get 

1 A u ( T )  
Hcl ( T )  = -- I A"(T) 2+iAh(T) 

21 2 +{(ZT) 25 

At the lowest temperatures, 6 /D<H, ,  , we have 

H,,  (T) = H::' + AH,, ( 0 )  + AHc, ( T )  , 

where S ( 6 )  is determined by formulas (49) and (45);  for- 
mula (49) fixes the boundaries of its numerical values. 
Equations (64) imply that both corrections AH,, ( 0 )  and 
AH,, (T)  are positive and work to increase H,, . 

For H,, ( 0 )  - 0 ( 6 ~  I ) ,  or under the condition 
Hcl ( 0 )  46 /D, we have 

AH,, ( T )  ~ 3 0 " ~ .  (65) 

In an analogous way, for H,, ( T )  we get from (62) to first 
order in Au and M 

2 
AH,, ( T )  = - 2 r ( 3 / 2 )  c ( 3 / 2 )  

A o ( T ) = - -  ($1 " . 
1+4g 1+4E 4x2 

Unlike H,, , the second critical field decreases with increas- 
ing T. The two tendencies work to narrow the existence re- 
gion of the low-symmetry phase, as typically happens when 
fluctuations of the order parameter are taken into account. 

Formulas (63) and (64) also permit refinement of the 
existence criterion for ferromagnetism in the absence of field 
at T = 0: 6 < cr . Since the vanishing of the ferromagnetism 
at the point H = 0, T = 0 under the opposite &>cr is due to 
a transition to the QO phase, a refined value of cr can be 
determined from (64) under the condition H,, ( 0 )  = 0: 

According to the estimates of Sec. 4, in the three-dimension- 
al case S ( 6  = 1 ) is (3/2)  e0.022 and (3/2) ~0.017 for simple 
cubic and bcc lattices, respectively. 

6. CONCLUSION 

The formalism developed in this paper is a generaliza- 
tion of the MD transformation to the case of systems whose 

Hamiltonians are constructed on generators of the group 
S U ( 3 ) ,  i.e., on spin and quadrupole operators. 

We made a detailed study of the particular case of a 
ferromagnet with easy-plane single-ion anisotropy in a field 
perpendicular to the easy plane and showed that, contrary to 
the existing opinion, the quasiparticle description is valid in 
concept at any value of the ratio D /J,.  We showed that the 
deviation of the ground state from a state of ferromagnetic 
saturation is due not to zero-point vibrations but to an order 
structure that is other than ferromagnetic. In particular, the 
structure of the QFM phase is determined by a superposition 
of two different types of order, ferromagnetic and quadru- 
pole, in analogy with the coexistence of antiferromagnetic 
and ferromagnetic order in weak ferromagnets. This circum- 
stance is responsible for the peculiar magnetic properties, 
including those illustrated in Fig. 2. At H = 0  the predomi- 
nance of one type of order or the other is determined by the 
relationship of the constants D and J,,, while for H # O  it is 
determined by the proximity to the field H,, or H,,: near 
H,, the quadrupole order dominates; near H,, , the ferro- 
magnetic. For H <I&, there is a spin structure character- 
ized by quadrupole order only. We have shown that in re- 
gard to its magnetic properties this structure is in many 
respects analogous to an easy-plane antiferomagnet in the 
low field phase. For H >  H,, an ordinary ferromagnetic 
structure is realized. The phase transitions between the three 
types of structures are spin-reorientation transitions. Here 
the reorientation occurs in an eight-dimensional isotopic 
space. 

The generalization to the case of an arbitrary form of 
the Hamiltonian in the framework ofSU(3)  (i.e., allowance 
for a more complex symmetry of the second-order single-ion 
anisotropy, for a field of arbitrary direction, for exchange 
anisotropy, and for biquadratic exchange) is trivial. The 
only thing that changes is the system of equations for the 
angles which fix the position of the local coordinate system. 
In particular, this system of equations is written out in Ref. 
12 for the case of rhombic symmetry and a field of arbitrary 
direction. The second stage-the conversion to Bose opera- 
tors-is done using the same formulas ( 14) and ( 15). Be- 
cause the form of the system of equations for the angles is 
different, the analysis of its solutions, which determine the 
possible spin structures, should be carried out separately for 
each geometry of the system. However, the possibility of the 
existence of three phases and the characteristic behavioral 
features of the phases are preserved. 

Let us now discuss the possibility of generalizing the 
formalism to the case S >  1, i.e., to algebras S U ( n )  with 
n > 3. In principle the approach remains the same: a conver- 
sion to local coordinates and the subsequent introduction of 
Bose operators. The first stage is done with the aid of the 
unitary transformations of the group SU(2S + 1);  the basic 
description of these transformations is discussed in Ref. 11. 
If one has found the law describing the behavior of the spin 
operators under the corresponding transformations, the 
conversion of the total Hamiltonian to local coordinates (in 
which the only nonzero averages are (0: ), (0: ) ,..., (O:s ) in 
the notation of Ref. 11 ) does not present difficulties, but it is 
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FIG. 3. Level scheme of an ion in the case of arbitrary S. 

awkward. The system of equations for the generalized Euler 
angles is obtained from the condition that the remaining 
averages of the generators of the group SU(2S  + 1 ) be zero. 
The Hamiltonian of the intersite interaction in the local co- 
ordinates in general contains terms of the form 

p:'. ( i j )  0,- (i)O,vm' (i). 

where I,/ '  = 1, ..., 2 s  is the rank of the tensor operator, m ,  
m' = I, I - 1, ..., - I + 1, - 1 is the index of the spherical 
component, and i and j are the site indices. 

The generalization of the second stage is trivial. Just as 
for S = 1, one should first convert from the operators 0 ;"to 
the other generators of SU(n)-the Hubbard operators 
P' , which are connected by a linear relation which is analo- 
gous to ( 14) and is given for arbitrary S i n  Ref. 26, for exam- 
ple, and then to the Bose operators by means of formulas 
analogous to ( 15). If the level system of an individual ion is 
denoted as in Fig. 3, these latter formulas are of the form 

One can also use in the second state a symmetrized rep- 
resentation analogous to the Holstein-Primakoff representa- 
tion: 

For the algebra SU( 2 )  the off-diagonal Hubbard opera- 
tors are the same as the spin operators, 
x 1 1 2 - 1 1 2 -  =S +J - 112 IIZ= -S -, and the representations in 

(68) and (69) go over to the ordinary MD and H P  represen- 
tations, respectively. 

On the whole, therefore, the approach developed here is 
universal, like the approach in Ref. 5, although, as was men- 
tioned in that paper, the explicit form of the unitary transfor- 
mations used in the first stage and the behavior of the spin 
operators under these transformations becomes increasing 
complicated as S increases. It should be noted that the idea 
discussed in Ref. 13 that the technique3 used in that study is 
universal with respect to the value ofSis actually only true of 
the second stage, since the Hamiltonian is assumed to 

have been diagonalized and the conversion to local coordi- 
nates is assumed to have been done. I believe that the first 
stage, including the classification and the description of the 
possible spin structures and their existence regions, is the 
most important part of the study and can be omitted only in 
two cases. The first of these is for the simplest geometry of 
the system, when the type of spin structure is obvious and is 
of the ferromagnetic type, e.g., in the case of easy-axis single- 
ion anisotropy with the field parallel to the easy axis, i.e., the 
case considered in Refs. 14 and 15. The second case is for 
A  = D /J$( I, when the only possible phases are the F M  
phase and a QFM phase with a small (of order A )  quadru- 
pole component. We also note that although the use of the 
M D  and H P  representations is incorrect for the description 
of magnets with single-ion anisotropy in the general case, for 
A( 1 they can be used for any direction of the field under the 
condition that a summation is made of the contributions of 
all the anharmonic terms in the chosen order in A, as is done 
in Refs. 4, 18, and 19 for small D / J ,  and arbitrary S.  

APPENDIX 

Since the rank of the algebra S U ( 3 )  (i.e., the number of 
different unitary-nonequivalent operators) is two, the state 
of the system in the local coordinates is characterized by two 
averages, e.g., a = (9 ) and /1 = (32) ( I ) .  The relation of the 
first to the original averages is given by formula (9 )  and that 
of the second by the formula 

3 ' / z  3'" 
A,=-sincpsin2K, A,=-- 

2 2 
cos cp sin 2K, 

3'" 
B, = -- (-1+2 cosZ K-cos2 K cosz c p ) ,  

2 

3"' 
B1 = 2 cosZ K sin cp, 

Accordingly, in these local coordinates there are two pre- 
ferred axes. The position of the first is characterized by the 
direction cosines ap and fl,, and that of the second by the 
direction cosines A, and Bp . Thus, one can say that the state 
of the system is characterized by two vectors: ( @ )  and 
(36'  ). 

In Sec. 2 we introduced the order parameter q as a vec- 
tor coinciding with the vector (S') given in local coordi- 
nates of the first type [for which (8a)  holds]. The same 
vector q in local coordinates of the second type, to which one 
can convert using an additional rotation specified by the an- 
gles 

cos q=cos 2K=cos 2L=0, (A.2) 

is determined by a superposition of the vectors (S') and 
( 3 0 ' ) .  We easily see from (12) ,  ( 9 ) ,  ( A . l ) ,  and (A.2) ,  for 
example, that the absolute value and direction cosines E p  
and /7, of this vector are given by formula ( 1 1 ) . 
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"The discussion pertains to all cases except an easy-axis ferromagnet in a 
field h parallel to the easy plane. 

"The geometry corresponding to ( 1 ) has been considered only in Ref. 4, 
for T = 0 and D /J,,( 1, when only structures which differ little from the 
ferromagnetic structure are possible, and in Ref. 10, for the case of anti- 
ferromagnetic exchange, at T = 0 and in the molecular-field approxima- 
tion. 

"The number 1 of different local coordinates is also determined by the 
rank of the Lie algebra: 1 = r + 1. In the present case of the SU(3)  alge- 
bra, the number of such coordinates is equal to three, while for theSU(2) 
algebra, corresponding to an exshange ferromagnet, I = 2. The first type 
of coordinate corresponds to (9 ),, = S, the second to (S ),, = - S. 

'"Recall that at the field-induced transition the role of the susceptibility is 
identical to the role of the specific heat at temperature transitions. 
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