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The effect of ac current I, cos Rt  on the rate of tunneling decay of zero-voltage states of Josephson 
junctions was investigated in the frequency range V>R)o, where Vis the potential-barrier height 
and w the plasma Josephson frequency. I t  is shown that the effective ac current amplitude that 
determines the change of the decay rate contains a factor exp(Rr,  ), where r, is the characteristic 
below-barrier motion time. Forjunctions with low viscosity ~ ( w ,  the contribution linear in the ac 
current to the argument of the tunneling exponential is calculated in the entire range of tempera- 
tures T and dc currents I,, lower than the critical current I,.. . For I, - I,(I, it is found, in 
particular, that r ,  =. 1 . 1 7 7 ~ - ' .  The dissipative effects increase r ,  in accordance with the decelera- 
tion of the particle motion below the barrier. For strong dissipation, when v)w, it is found that 
7, = v ~ - ~  at I, - I,(I,. 

Zero-voltage states of Josephson junctions correspond 
to the minima of the junction energy V(p) as a function of 
the phase difference between the two superconductors. At 
sufficiently low temperatures the finite lifetime of the zero- 
voltage states is due to macroscopic quantum tunneling 
through the potential barrier. ' - w e  have previously shown" 
that for particle tunneling through a potential barrier in the 
presence of an alternating field %' cos Rt the effective field 
amplitude that determines the barrier transparency is ex- 
ponentially enhanced compared with Z?, so that ge ,  
= ff? e x p ( R ~ ,  ), where r, is the characteristic time of below- 

barrier motion. In this article we consider the simulation of 
tunneling decays by an alternating perturbation as applied to 
Josephson junctions, whose properties are determined by the 
critical current I , ,  the capacitance C, and the shunting resis- 
tance R. 

We shall distinguish below between junctions with 
weak dissipation ( ~ ( w )  and those with strong dissipation 
( v ) ~ ) ,  where 7 = l /RC is the viscosity coefficient and 
w = (2eIc/C)"2 is the plasma Josephson frequency. Esti- 
mates show that at ~ ( w  we have in order of magnitude 
T, - - I ,  and in the opposite limiting case T, - vw -2. In the 
case of weak dissipation the argument of the tunneling expo- 
nential should be an oscillating function of the direct current 
through the junction, of the alternating-current frequency, 
and of the temperature, in accordance with the possibility of 
resonant absorption of ac energy in the Josephson junction. 

The effect of an alternating current of the decay rate of 
zero-voltage states was investigated in experiment,"' but the 

Let the alternating current be small, I, (I,, and let the direct 
current not exceed the critical value I, <I,.  Neglecting the 
tunneling between neighboring minima of the potential, the 
junction voltage is subject only to small oscillations about 
the zero value. With tunneling taken into account zero-vol- 
tage states decay with lifetimes -D - I ,  where D is the prob- 
ability of tunneling through the potential barrier. In  the stat- 
ic case D can be obtained by quantum mechanics if 7 = 0, 
and if 7 is arbitrary one can use the methods of the recently 
developed theory of quantum tunne!ing in the presence of 
d i s~ ipa t ion .~ -~  Our aim is to generalize the indicated results 
to include alternating current. 

The equation of motion for the phase difference e, is 
known, 

d" dql 
- + q -+ o ~ c o s  cp-k,-k, cos R t )  =0, 
dt2 dt 

where k,,=I,/I, and k,=I, /I , .  For this adiabatic descrip- 
tion to be valid, it is necessary that the ac frequency be lower 
than the characteristic relaxation times in the superconduc- 
tor; we assume therefore that R(  Tc . 

With dissipation neglected, Eq. ( 1 ) corresponds to the 
Lagrangian 

v drp 
9 = 20' (i) +V(-sin ql+k.p+h,p cos R f ) ,  

where V = 1, /2e. As b e f ~ r e , ~  we represent the quasiclassical 
tunneling probability in the exponential approximation as 

D=exp ( -A ) ,  A = - i  9 dt, 

zero-voltage states decayed because of activation processes. where A is the classical action and the integration is along the 
Such processes were investigated theoretically at zero alter- contour C in the complex time plane (Fig. 1 ).4 We note that 
nating current in Ref. 1 1. in the quantum-mechanical problem the location of the con- 

1. DECAY OF ZERO-VOLTAGE STATES IN THE CASE OF tour c i s  Re t- - m is determined by the initial energy of 

WEAK DISSIPATION the p a r t i ~ l e . ~  We shall assume below that the tunneling is 
from a thermodynamic-equilibrium state, so that as Re t 

Assume that an alternating current of amplitude I, and - - m the contour Cis  at a distance i/2 T from the real axis. 
frequency d l  flows through the current in addition to the 

Regarding the alternating current as a small perturba- 
direct current I,,, so that 

tion, we write the action in the form A = A ,  + A ,, where A,, 
I ( t )  =I,+I, cos Qt. is the action at I, = 0 and A ,  is linear in I , .  This expansion is 
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FIG. 1. Contour of integration in Eqs. ( 3 ) ,  ( 13), and ( 14), and locations 
of the singular points of the p ( t )  trajectory. 

valid so long as A ,  <A,,. Smallness of A ,  compared with A, 
does not mean at all that the effect of the alternating current 
on D is small. On the contrary, the quasiclassical approxima- 
tion is applicable only if A , )  1 ,  so that the alternating-cur- 
rent amplitude is bounded from below by the condition that 
D change, say, by one or two orders. 

We write for A,  and A ,  the expressions 

A,=-iVk,j rp(t)cos Pt d t .  ( 3  
C 

It is important that both A,  and A ,  are determined by the 
same function p ( t )  given by the solution of ( 1 )  at 7 = 0  
k ,  = 0. The integral ( 3 )  constitutes a Fourier transform 
along the contour C. In the limit as a-+m the asymptote of 
the Fourier integral is determined by the singularities of the 
function p ( t ) .  In our case the contour C must be shifted in 
the direction Re t+ - cc , where the alternating current can 
be regarded as adiabatically turned off. This means that we 
need consider only the p ( t )  singularities located inside C. 
Their distance from the real axis will determine the degree of 
exponential enhancement of the alternating-current ampli- 
tude. 

We must therefore study the singularities of the solu- 
tion of the unperturbed problem. In the absence of alternat- 
ing current, the function p ( t )  is implicitly given by 

The type of the solution p ( t )  becomes clear from Fig. 2, 
where the turning points are determined by the condition 
V ( p  ,,,,, ) = E. The energy E must be obtained from the con- 
dition that the time of below-barrier motion between points 
pz and p ,  is i/2T. We get then from (4)  

The last relation determines the temperature dependence of 
the energy E( T )  . 

The singular points of the trajectory correspond to 
those instants of the complex time at which V ( p )  becomes 
infinite. It follows from ( 4 )  that these singularities are loga- 
rithmic, so that near the singularities we have 
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cp, , ( t )  =72 i  ~~~{o[l+t,(K+'/~)+it,~t,]). ( 6 )  
The infinite sequence of singular points N = 0,1,2, ... is the 
result of the periodic character of the motion, with period 
t , (E) ,  in the classically allowed region in Fig. 2. We obtain 
the location of the quartet of singular points 

in accordance with (41, by integrating along a path drawn 
from the turning point p, to a certain arbitrary point p, on 
the real axis and then upward or downward to infinity, with- 
out bypassing any singular points of the integrand other than 
the branch points at p  = p, ,  p,, p3. We obtain thus integrals 
of the type 

D 1 

at,= ( V l 2 )  { j [E-B(cp) 1 "  d q  
9 3  

7 

The oscillation period in the classically allowed region 
is determined by the relation 

'7, 

wto= (SV) 'h  [ E - V ( p )  ] - I "  dcp. (8  
91 

With this information on the unperturbed trajectory, 
we calculate the integral ( 3 )  with the aid of ( 6 ) .  The result is 

~ ( ~ i ) = ~ ~ r x p { z (  sin (B to /2 )  I ~ X ~ ( Q T . ) ) ,  ( 9 )  

where Do is the transmission coefficient in the absence of 
alternating current. In  the derivation of ( 9 )  the frequency 
was assumed high compared with the reciprocal time of be- 
low-barrier motion, a r ,  ) 1. This imposes the frequency lim- 
its V ) a ) r ;  ' if the quasiclassical approach is valid. Equa- 
tion ( 9 )  describes the time-averaged transmission 
coefficient in the principal exponential approximation. The 
averaging eliminated the dependence on the alternating-cur- 
rent phase at the instant of passage through the barrier. 

As regards the oscillating terms in ( 9 ) ,  the following 
remark is in order. Action of even a weak alternating current 
can alter greatly the state of the junction compared with the 
unperturbed one, through resonant effects, if the frequency 

FIG. 2. Potential V ( p )  and locations of the turning points p,, p2, a n d ~ . .  
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of the alternating current coincides with one of the distances 
between the quantum levels. In a quasiclassical potential, 
the levels are locally equidistant, and since the alternating- 
current frequency is low compared with barrier height V, the 
resonance condition can be met for states having energies E 
that satisfy the condition 

where t,(E) is the period of the classical oscillations. This is 
just the condition under which the linear increment to the 
action diverges, as seen from (9 ) .  To obtain a finite answer 
in this case it is necessary either to take into account the 
nonlinearity with respect to the alternating current, in the 
spirit of the theory of resonance in anharmonic systems, or 
take a small damping into consideration. 

Expression ( 9 )  is valid for low-dissipation Josephson 
junctions at arbitrary values of the direct current through 
the junction, right up to the critical one, and at any tempera- 
ture right up to the value T, at which the macroscopic quan- 
tum tunneling goes over into the activation regime.4 The 
critical temperature To is obtained from relation (5 )  if it is 
assumed that the energy E tends to the top of the potential 
barrier, 

The calculation of the linear-in-I, increment to the tun- 
neling exponential has thus been reduced to calculation of 
the zero-voltage and temperature dependences of the quanti- 
ties r,, t l ,  and tz that enter in ( 9 ) ,  using the relations (5 ) ,  
(7 ) ,  and (8 ) .  In the limiting cases when I, is close either to 
the critical current or to zero, simpler relations can be ob- 
tained. 

We consider first the most vital case, when the direct 
current through the junction is close to the critical values, 
I, - I,(I,, or 1 - k,4 1. The potential can be regarded in 
this case as cubic 

and expression ( 5 )  reduces to an elliptic integral. For the 
oscillation period t, we obtain from ( 8 )  

T a T o ,  
1, T o - T e T , .  

Substituting the expansion ( 1  1)  in Eq. ( 7 )  to find the 
locations of the singularities yields 7, = t ,  = 0; the four 
logarithmic singularities coalesce into one second-order pole 
in accordance with the results of Ref. 9. To obtain finite 
values of r, and t ,  we must substitute in (7 )  the exact poten- 
tial V(p)  from (2 ) .  Integrating along a contour drawn at 
k, = 1 from the turning point p, = 0 to the point p, = a, 
and then vertically upward, we get 

rn 

In the considered range of currents, the values of T~ and t ,  
depend little on temperature or current. We note that r, and 
t ,  were found to be substantially smaller than to- 
w -  ' ( 1 - k,) - 'I4 This is an indirect reflection of the absence 
of exponential amplification of the alternating current in the 

cubic-potential approximation. 
In the other limiting case of low currents, I,d, (k,,( 1 ) 

we obtain for the oscillation period in the classically accessi- 
ble region 

If the direct current is exactly zero, the potential V(p)  be- 
comes symmetric. For such potentials, t ,  amounts to half the 
time of motion, in the classically accessible region, between 
the turning points, while 7, is equal to half the time of mo- 
tion in the classically inaccessible region, 

The time r5 diverges at low temperature, and t ,  at tempera- 
tures close to critical. To cut off these divergences we must 
include a small but finite current I,,. The potential is then no 
longer strictly symmetric and relations ( 12) no longer hold. 
It follows in this case from ( 7 )  that 

Numerical results based on relations (5 ) ,  ( 7 ) ,  and ( 8 )  
are shown in Fig. 3 in the form of zero-voltage dependences 
of the parameters T, ,  t , ,  and t, at different temperatures. 
Since the critical temperature T, is a function of the current 
[see (10) 1, the curves in Figs. 3a and 3b have termination 
points corresponding to the change from the tunneling to the 
activation mechanisms. The corresponding boundary curves 
are shown dashed. It follows from ( 7 )  that the boundary 
curve for r, coincides with the plot of t,(k,,) at T = 0 and 
conversely. The solid curves in Figs. 3a and 3b intersect the 
dashed ones outside the borders of the figures. We note that 
for numerical calculations in the entire range of currents it is 
convenient to use in ( 7 )  p, = 3 ~ / 2  when calculating rs and 
p, = - 3 ~ / 2  when calculating t , .  

The sine in expression ( 9 )  appears on summation over 
nearby singular points. The decay probability of the zero- 
voltage state becomes as a result an oscillating function of 
the quantities a t ,  and a t , ,  that depend on the direct current 
I, k d , ,  on the frequency of the alternating current, and on 
the temperature. At low temperature T(T, the position of 
the resonances in the denominator of (9 )  is determined by 
the frequencies of the small oscillations in the potential (2 ) .  
Resonances takes place at the current values 

We note that to obtain good resolution of the resonances in 
( 9 ) ,  the junction must have high W, and the ratio SZ/w must 
not be too large, otherwise the resonances will be close to one 
another and the picture becomes smeared out even at rela- 
tively weak dissipation. If, on the contrary, we are interested 
in the exponential amplification effect, the ratio R/w must 
be chosen as large is possible at the limit SZ 5 Vof the validity 
of the classical approach 

2. DECAY OF ZERO-VOLTAGE STATES IN THE CASE OF 
STRONG DISSIPATION 

In the case of a Josephson junction with finite dissipa- 
tion, Eq. ( 1)  contains a relaxation term v d p  /dr, and the 
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Lagrangian formalism cannot be directly applied. We use 
therefore the theory, developed in Refs. 2-4, of quantum 
tunneling in the presence of friction. It follows from these 
references that the dynamics o fa  Josephson junction is equi- 
valent in the quasiclassical limit to a problem with effective 
action 

where the notation is the same as in ( 1 ),  and the contour C i s  
shown in Fig. 1. In the absence of alternating current the 
interval along the horizontal sections of the contour vanish- 
es. This relatively simple form of the effective action corre- 
sponds, as does also Eq. ( 1  ), to the adiabatic situation 
ncq .  

Varying the action ( 13),  we obtain the equation of mo- 
tion in complex time: 

d'q 
- i - 0 2 ( c o s  q - ko -k l  cos Q t )  
dt' 

-%n iqT2  
d t ,  

sin c~ ( t )  -'F ( t i )  
= (14) 

sh2[xT ( t l - t )  ] 2 

where the principal value of the integral is understood. 
It is possible to transform from the contour C in the t ,  

plane to a contour 2 that differs from C only in that in the 
vicinity of the point t ,  = t  it is a small semicircle located 
inside the contour C. It is then necessary to add a compensat- 
ing half-residue to ( 14). The contour C has the advantage 
that it can be freely displaced when the position o f t  is fixed. 
As a result, Eq. ( 14) takes the form 

FIG. 3. Zero-voltage plots of or,, ( a ) ,  w t , ,  ( b ) ,  at,,, ( c )  
at different values of the parameter T*-2nT/o: 1-0; 
2-0.7; 3-0.8; 4-0.9. 

d2rp dcp 
- dt-  - Q 1- (t12 (COS (p - 

At large real t - t ,  the integrand is small and the integral can 
be neglected so that at real t Eq. ( 15) coincides with ( 1 ) . 

Just as in the preceding section, we seek a correction, 
linear in the alternating current, to the action by using Eq. 
( 3 )  in which the unperturbed trajectory p ( t )  must be substi- 
tuted. We consider below the case of strong friction 7 ) w  and 
of a current close to critical I, - I,<I, ( 1 - k,g 1 ) . Under 
these conditions the term with the second derivative can be 
omitted, and we can use for the potential the expansion ( 11 ), 
so that Eq. ( 15),  in terms of the imaginary time it takes the 
form 

I 2T 

the solution of which was obtained by Larkin and Ovchinni- 
~ o v , '  

T Z  
r p ( r ) - [ 2 ( i - ~ , )  ]'.{-- 2 

T,, 7'- (T , , ' -T2)  ' cos ( 2 n T ~ )  

( 1 7 )  
where 

According to ( 3 ), exponential amplification takes place if 
the singular points of the unperturbed solutions do not lie on 
the real axis of the time t. It follows from ( 17), however, that 
for a cubic potential the singularity of the trajectory lies ex- 
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actly on the real axis, as in the previously considered case of 
weak dissipation. This means that to find T, it is necessary, 
as before, to use the exact form of the potential. 

Returning to Eq. ( 14), we delete its term with the sec- 
ond derivative, as in the transformation to ( 16), but do not 
regard p as small. It followed from the preceding section 
that T, at I, - Io<Ic is small compared with T ;  ' in terms 
of the parameter ( 1 - k,) 1'4(l. Assuming that the same 
property is preserved also at q )o ,  we suggest that the signif- 
icant values of t  are those for which It I < T ,  I. The argument 
of the hyperbolic sine in Eq. (14) can then be regarded as 
small, so that when k,is replaced by unity Eq. ( 14) takes the 
form 

drp q --& + 'u? (cos 'P - 1) 

This equation is satisfied by the function 

The contour 2 contracts then into a double vertical section 
from - ir, to ir, . 

We note that the reason why we can solve ( 18) exactly 
is that when the contour C is shifted in it to infinity, the 
integral over the contour tends tc zero because of the simpli- 
fied form of the integral kernel in ( 18) compared with ( 14). 
Bypassing the singular point t,  = t reverses then the sign of 
dp /dt, so that ( 18) is equivalent to a relaxation equation 
with the time reversed: 

dv -q - + oZ (cos 9-1) =O. 
dt  

At tb r ,  we obtain from Eq. (19) the pole part of the 
solution ( 17). I t  can also be seen that r,4 T ,  I ,  and the pa- 
rameter has the meaning of the time that the particle remains 
below the barrier. These results are valid so long as T< To. 

Substitution of ( 19) in (3 )  yields 

It can be seen that at vSl>w2 we obtain exponential amplifi- 
cation, while at vSl(w2 the argument of the exponential in 
(20) coincides with the variation of the static action with 
respect to the current, since, according to Ref. 4, 

A. = 
4nVq(l-ko) g] 

o2 
Evidently, in the case of strong friction the quantity 

T, = 7wP2 greatly exceeds its value -w- in the nondissi- 
pative limit. It is therefore better to study the effect of expo- 
nential amplification in low-Q junctions. I t  must be recog- 
nized here that the quantum regime is realized at T < To, 
while To decreases substantially in the strong-dissipation 
limit. 

3. CONCLUSION 

A common feature of the effects considered is the strong 
influence of the alternating current flowing through the 
junction on the decay probability of a macroscopically co- 

herent Josephson state. The physical reason for this is that 
during the imaginary time of motion below barrier the oscil- 
lating current acting on the system is transformed into an 
exponentially increasing one. 

Let us discuss the order of magnitude of the effects. The 
formal region of validity of the derived expressions is the 
interval V>R)w, where Vis the height of the quasiclassical 
barrier and w is the characteristic frequency of the motion 
within it. The effect is largest if the frequency of the alternat- 
ing current is a maximum, R - V. In the absence of alternat- 
ing current the transmission coefficient Do cc exp( - A,), 
where A, - V /a. Since T, - w I, the amplifying exponential 
of the amplitude of the alternating current can be of the or- 
der of D; ", where a - 1. Therefore in the case of a low- 
dissipation Josephson junction the decay probability of a 
zero-voltage state, disregarding resonance effects, can be 
represented in the form of the following schematic expres- 
sion that gives a general idea of the maximum stimulation of 
tunneling processes by a weak alternating current: 

Notwithstanding the difficulty of estimating a,  whose 
order of magnitude at Sl - Vis unity, this expression reflects 
a general tendency, viz., the less probable the tunneling in 
the static case, the more effective the stimulating action of 
the alternating current. 

The characteristic parameters obtained experimental- 
ly6 for a niobium Josephson junction were of the order of 

and the temperature could be chosen lower than the plasma 
frequency. The junctions realized under these conditions are 
those with weak dissipation, discussed in Sec. 1, and the ef- 
fects indicated there can be observed by passing through the 
junction an alternating current of frequency a- 10"-10'2 
s-I. 
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