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The behavior of the conductivity and thermoelectric power in the vicinity of a point at which the 
topology of the Fermi surface of a metal change is investigated at finite temperature and impurity 
density. It is shown that the previously predicted thermoelectric-power singularity near the topo- 
logical transition is eliminated when account is taken of these two factors. The laws governing the 
variation of the conductivity and of the thermoelectric power, as well as their temperature depen- 
dences, are determined on the right and left of the transition point. The results explain the 
available experimental data. 

1. Interest in the study of the electronic topological 
transitions predicted by Lifshitz,' in various metals and al- 
loys, has increased noticeably of Investigation of the 
thermodynamic, and especially kinetic, properties of sub- 
stances undergoing such transitions not only confirms the 
very existence of the transition in the system, but yields in- 
formation on various electronic properties (such as the re- 
laxation times of small carrier groups). 

It is pointed out even in I. M. Lifshitz's trail-blazing 
paperi that when the topology of the Fermi surface of a met- 
al is changed, the thermodynamic quantities, and also the 
kinetic coefficients should have on one of the sides of such a 
transition singularities of the type /zl * where z is a con- 
tinuously varying parameter that indicates proximity of the 
system to a phase transition of order 2 1/2 and vanished at 
the transition point itself. 

Vaks et have shown that the thermoelectric power 
has in this case a singularity of type / z /  - whereas other 
kinetic coefficients have a much weaker z-dependence 
( - / z /  ) . This conclusion was arrived at by pseudopoten- 
tial-theory methods with a transition of order 2: in the 
Li, -, Mg, alloy as the example. At the same time, Egorov 
et a/.3 investigated experimentally the thermoelectric power 
in these alloys at various Mg concentrations and have indeed 
observed in the thermoelectric power at x, ~ 0 . 2  an anomaly 
that manifested itself distinctly at nitrogen and helium tem- 
peratures. In the analysis of the experimental results, how- 
ever, it was pointed out in Ref. 3 that the observed depen- 
dence of the thermoelectric power on z (on the Mg 
concentration in that particular case, z = x - xc ) differed 
substantially from the that predicted in Ref. 2. In place of the 
divergence as z-+ - 0 and the jump of the thermoelectric 
power to its normal value at z > 0 (Ref. 2) ,  the experiment of 
Ref. 3 showed a rather broad peak with a smooth fall to the 
normal value of the thermoelectric power in the z > 0 region. 
It was proposed in Ref. 3 that allowance for electron scatter- 
ing by impurities can lead to a finite thermoelectric power at 
the peak and make the latter more symmetric than predicted 
in Ref. 2. 

We investigate in the present paper the behavior of the 
differential thermoelectric power Q(z, T)  on the conductiv- 
ity g(z, T) in the vicinity of the point where a 2 + phase 

transition would take place at T = 0 in the absence of impur- 
ities. It will be shown that in the presence ofimpurities and at 
finite temperatures, when the variation of the Fermi-surface 
topology is not a 2 1/2 phase transition in its rigorous mean- 
ing (we shall refer to this situation as the Lifshitz topological 
transition), the thermoelectric power has an anomaly as be- 
fore. However, the divergence at z = 0 (Ref. 2)  is no longer 
present and becomes smeared out by the temperature (so 
long as T 2  r - I )  or by the characteristic relaxation time r 
(at  ~ 5 :  r - ' I2) .  In the pure case (r,T - 1)  the peak of Q(z) 
is strongly asymmetric and as the temperature is raised it 
decreases, spreads out, and shifts towards larger negative z.  
In the dirty case ( T < T  - '  ) the peak broadens but retains as 
before some asymmetry, albeit a weaker one than at r) T - '. 

The conductivity anomaly in a phase transition of order 
2 + is of the kink type. When impurity scattering and the 
finite temperature are taken into account, the kink is 
smoothed out, but the characteristic u(z, T, T) dependence 
together with the change of the thermoelectric power can 
attest to a change of the topology of the Fermi surface. 

2. The change of the Fermi-surface topology in real 
metals and in alloys can take a large variety of forms: forma- 
tion or breaking of a neck, the onset or vanishing of a cavity, 
spillover of electrons from several ellipsoids into one, etc. 

We shall consider the simple "neck-breaking" transi- 
tion. In view of the qualitative agreement between our pres- 
ent results with the experimentally measured thermoelectric 
powers of n - Bi,, Sbal  compound^,^ where electrons spill 
over from three electron ellipsoids into one, suggests that the 
choice of a specific type of transition is of no fundamental 
significance. 

To simulate a neck-breaking transition, we choose the 
Fermi surface to be a hyperboloid of revolution (Fig. 1)  

where P, andp, are the transverse and longitudinal compo- 
nents of the electron momentum, and E, is a certain critical 
energy corresponding to the topological transition. External 
factors (e.g., pressure) change the chemical potential and 
the single-sheet hyperboloid (p  > EC ) becomes two-sheeted 
(p  < Ec ), and this corresponds in fact to a neck-breaking 
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FIG. 1. Topological transition of the "neck-breaking" type. At z = 0 the 
open Fermi surface ( a )  turns into a closed one ( b ) :  p ,  is the limiting 
value of the longitudinal momentum. 

topological transition. 
To find the kinetic coefficients near such a transition, 

we use a temperature diagrammatic technique. We must 
first calculate the one-electron Green's function with aniso- 
tropic spectrum ( 1 ) and with allowance for scattering by the 
impurities 

pL2 p x 2  G-I (on,  p) =ion - - + - + z-2 (a,, z),  
2m, 2m, ( 2 )  

where w ,  = 277T(n + 4 ) .  
If the impurity density is not too high (E, 7% 1 ), where 

co = Pxo 2/2mx is an energy of the order of ,u and corre- 
sponds to the limiting momentump,, , while 7 is the charac- 
teristic relaxation time which we shall define below), the 
self-energy part Z can be calculated in the ladder approxima- 
tion." Assuming for simplicity pointlike and isotropic scat- 
tering by the impurities, we can write for Z the self-consis- 
tent equation 

here ni is the impurity density and / u  1 is the amplitude of the 
electron scattering by the impurities and is assumed con- 
stant. 

Analytic continuation of Z ( w ,  J )  into the upper com- 
plex-frequency half-plane (via the substitution iw, +a) and 
integration over the momenta, followed by separation of the 
real and imaginary parts of the resultant equation, yields 

We have introduced here the characteristic relaxation time 

It can be seen from the system ( 4 )  that the real part ReZR is 
small in terms of ( E ~ T ) - '  compared with ImZR,  and the 
corresponding contribution to the Green's function can be 
neglected. 

In the pure case ( T%r- ' ) the relation ImZR g T  is val- 
id. The essential frequency region for the subsequent inte- 
grations is Jw 1 5 T, so that small terms of the type Im2ZR /E,' 

can be neglected in (41, and we obtain 

where 6 ( x )  is the Heaviside theta function. 
In the opposite ("dirty") case ( T ~ T -  ' ) the system (4 )  

can be solved by successive approximations with respect to 
the parameter ( E ~ T ) - ' .  The result is 

3. The kinetic coefficients can be expressed in terms of 
the correlators of the one-electron temperature Green's 
functions." For the conductivity CT, this correlator reduces 
to the usual electromagnetic-response operator, whose ver- 
tex functions y:" = e&( p ) / d p  = evi correspond to inter- 
action of an electron with an electromagnetic field (Fig. 2) ,  
where the function E (  p )  determines the conduction-elec- 
trons dispersion law. 

The off-diagonal kinetic coefficients pi, in the expres- 
sion Qik = - a, for the differential thermoelectric 
power is determined graphically by an identical diagram, 
but one of its vertices corresponds to the heat-flux operator. 
In the case of interest to us of not too high temperatures, the 
electron-phonon and interelectron interactions can be ne- 
glected, and the vertex corresponding to the heat flux takes 
in the ( p, w ,  ) representation the form yjh' = iw, v,, where 
w ,  is the fermion frequency that runs over the electron lines. 
The averaging of the corresponding diagrams over the impu- 
rity positions is standard" and reduces to averaging the 
Green's functions themselves (renormalization of the vector 
vertex in case of anisotropic scattering would lead only to the 
substitution 7-r,, ) an averaging already carried out above. 
Thus, the correlators K:;"' (R ,  ) and K Leh' (R ,  ) are repre- 
sented in the form 

1 1 dh' / (8) 

where R, is the external Boson frequency. Transforming the 
sums over the frequencies into contour integrals and contin- 
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FIG. 2. (9)  

uinganalytically in the usual manner (iR,+R) the frequen- Substituting in (9 )  the explicit expression ( 1 ) for 
cy correlators into the upper complex-frequency half-plane, GR (w, p, Z )  and integrating over the momenta, we obtain 
we obtain for the kinetic coefficients 1 for the longitudinal components cxx and PXx 

This expression, in conjunction with the self-energy part 
ZR (w, Z )  obtained above, determines in general form the 
thermoelectric power and the conductivity of a metal near a 
2 +-order phase transition of the neck-breaking type at 
T # O  and in the presence of electron scattering by impuri- 
ties. 

4. We consider first the case of a pure metal ( TBT- I ) .  
We can then neglect in ( 10) the quantity Im2ZR in the radi- 
cands, since the main contribution in integration with re- 
spect to w is made by the frequency region Jo l<T.  using 
expression (6 )  ImER, we get 

m 

( E ~ - O ) ~ ~ ~ O ( E ~ - - O )  - I O+Z I %e(- ( o t ~ ) )  
X 

(eo-o)"O (.%-a) - I o+zI I%(- (o+z) ) 
, (11) 

whence, after simple calculations, we get 

where 
e 2 m l ~  ( 2 ~ ~ ) ' ~ ~  n2T 

a0 = , Qo=- 3n2m,"' 3eeo 
are the conductivity and differential thermoelectric power of 
a normal metal far from the transition. It can be seen from 
( 12) that in the pure case the conductivity anomaly at T = 0 
is kink-shaped, as before, in accord with the results of Refs. 1 
and 2. At finite temperature, the kink smoothes out and in 
the region / z (  5 T the conductivity varies smoothly near the 
transition point. A schematic plot of the conductivity versus 

I 
z is shown in Fig. 3 (curve a ). 

It follows from ( 13 ) that the differential thermoelectric 
power reaches, accurate to a coefficient that depends on the 
Fermi-surface geometry, its value Qo for an isotropic normal 
metal. As the transition is approached from the side of nega- 
tive z (this corresponds to a two-cavity hyperboloid) the 
thermoelectric power increases in proportion to JzJ  - 'I2 and 
reaches at z , = - 1 . 2 8 T  its maximum value 
Q,,, zO.l9Q0, "'/T ' I 2 .  The value of z, is determined by 
solving numerically the equation 

Note that Q,,, exceeds Q, in terms of the large parameter 
(E()/T) ' I 2  and it can be stated in this sense that a giant ther- 
moelectric power is present in the region of JzJ S T. We em- 
phasize once more that the thermoelectric power reaches its 
maximum not at the transition point itself, but close to it. 
This can be treated as a result of the "temperature break- 
down" that occurs when the Fermi surface approaches the 
boundary of the Brillouin zone. With further increase of 
positive z the Fermi surface is transformed into a one-cavity 
hyperboloid and the thermoelectric power begins to de- 
crease rapidly (exponentially) from its anomalously large 
value at z = 0 to the normal value Qo at z 2 T. This behavior 

FIG. 3.  Schematic plots of the conductivity (curve a )  and of the differen- 
tial thermoelectric power (curve b )  versus the parameter r (pure case). 
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FIG. 4. Schematic plot of the conductivity (curve a )  and of the differen- 
tial thermoelectric power (curve 6 )  versus the parameter z (dirty case). 

is illustrated schematically in Fig. 3 (curve b)  . 
5. We consider now a dirty metal ( T S  T - ' ~ E , ) .  We can 

no longer neglect Im2ZR in the radicands of ( 10). The char- 
acteristic parameter with whichz should be compared is now 
not the temperature but r-I. In the vicinity ofthe transition, 
where Iz/(r- '  expression ( 7 )  can be simplified by expand- 
ing in the small parameter z~(E,,T)"~. This yields 

In the case of large negative z(z  5 - r - I )  we can neglect 
r - I  compared with z in expression (7 )  for the self-energy 
part. Even though r-l% T, the situation turns out to be simi- 
lar to that in the pure case. Expressions ( 12a) and ( 13a) 
remain therefore valid for the conductivity and for the ther- 
moelectric power respectively in the region z S - T -  I .  

Nothing like that occurs, however, at large positive 
z ( z R r - I ) ,  and the picture is substantially different from 
that in the corresponding region (z 2 T)  in the pure case. 
Expanding the radicands in (7 )  we see that the terms 
(W + z)/2 cancel out also in the region 
T - I  5 z 5 r - I  (.-so?) 'I3; for the self-energy part we get 

It is now easy to obtain explicit expressions for the conduc- 
tivity and the differential thermoelectric power in the dirty 
case. Substituting expressions ( 14) and ( 15 ) for ImZR in 
( 10) and calculating the remaining integral with respect to 
frequency, we get 

[ l+( lz l /~o)  ZG-T-I, (16a) 
( J ~ = = ( J O  ( E ~ T ) - ' " ( ~ - Z T )  1 z 1 CT-', (16b) 

1+'12~- '  ( E ~ Z )  - " T - ' S Z O ' C - ' ( E ~ ' C )  ', ( 1 6 ~ )  

1 I+ ' /6  ( E O ~  12 I zG-T-', (17a) 
Qn=Qo ' I , (E , ,T) '~  (I- l , j z / ~ ~ )  Iz 1 KT-' (1%) 

' / ~ + o , O ( i ~ ~  "/TZ " z T . ( 1 7 ~ )  

We see from (16) that the conductivity kink' * for a topo- 
logical transition in the presence of impurities is smoothed 
out by impurity scattering of the electrons even at T = 0. 
The kink is now smeared out in the wider (compared with 
temperature region jzlS r-I. A schematic plot of the con- 
ductivity versus the parameter z is shown by curve a of Fig. 
4. 

The differential thermoelectric power in a dirty metal 
near a topological transition is described by expressions 
( 17). It can be seen that in this case an anomaly appears, as 
before, near the transition, but it is now less pronounced: 
emax /eo- ( E ~ T ) " ~  in place of Q,,, /Qo- (E,/T)'/'. A 
schematic plot of Q(z) in the dirty case is shown in Fig. 4, 
curve b. As z increases from large negative values to r- I, the 
thermoelectric power exhibits the usual square-root growth 
( a  ~ Z I - ' ' ~ )  from the value 2Qo to Q,,, Z(&,T) ' /~Q,  at 
z- - r-I ,  after which the growth slows down rapidly and 
the plot practically flattens out ( a  weakly pronounced maxi- 
mum appears at z-?-'). With further increase of 
z(7-I 5 z  5 r-' the thermoelectric power begins to 
decrease like z P u 2  and consequently the asymmetry of the 
overall picture of the peak is preserved also in the dirty case. 
Recall that in the pure case to the right of the peak (z 2 T) 
the thermoelectric power decreased rapidly (exponentially) 
to its normal value. In the considered case r -  ' %  T, however, 
the impurities lead, as assumed in the analysis of the experi- 
m e n t ~ , ~  both to a broadening of the peak and to a smoother 
decrease (power-law rather than exponential) of the ther- 
moelectric power on the right of the transition. We point out 
also that the impurity not only eliminate the formal diver- 
gence at the point z = 0 (at T = 0 )  (Ref. 2) ,  but also limit 
the maximum possible value of the thermoelectric power at 
small finite temperatures ( TT( 1 ) in terms of the parameter 
(Tr ) I t2 ,  thereby smoothing the peak even more. In the re- 
gion z > T -  ' It3, the thermoelectric power is of its nor- 
mal order of magnitude, and we shall not present the corre- 
sponding expression. 

6. To conclude, we discuss the obtained functions 
Q(z, T) and a ( z ,  T)  and analyze the available experimental 
results. 

At high temperatures, the condition Tr) 1 is satisfied 
for a sufficiently pure metal. Therefore, according to (13), 
as the temperature is lowered (7-' S T~E,,) a peak of the 
function Q(z, T)/Qo(T) evolves near the topological transi- 
tion (Fig. 5 )  and increases like ( IE,I/T)'/~. With further 
lowering of the temperature, when Tbecomes of the order of 
r-I ,  the dependence of Q(z)/Qo on temperature vanishes 
[see ( 17) ] and the final shape of the curve is determined by 
the characteristic relaxation time T .  

As before, however, Q(z)/Qo has a square-root growth 
up to z ~ 7 - l  in the large-connectivity region (z<O).  It is 

FIG. 5. Reduced differential thermoelectric power vs the parameter z at  
various temperatures (T, > T, > r - I ,  T, < T - I ) .  At T 5  r-' the reduced 
differential thermoelectric power ceases to depend on temperature. 
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replaced next, in the region l z l 5  T-I, by a plateau (inclu- 
sion, in the vicinity o f t  = 0, of the next terms of the expan- 
sion in the parameter z/co in ( 17) shows that traces of the 
maximum, which was reached at z, = - 1.28T in the pure 
case, still remain near the point z=. - r- ' ) . The exponential 
decrease on the right of the transition at high temperatures 
for z k T gives way now to a power-law decrease like zP3l2  
( a t z z r - ' 1 .  

We note that a similar law governs in this region the 
variation of the correction to the thermal coefficient of the 
electron pressure, l 3  whereas the correction to the conductiv- 
ity varies more slowly than z- ' I 2  [Eq. ( 16) 1 .  We emphasize 
that the absolute value of Q(z, T )  tends, together with the 
normal differential thermoelectric power, linearly to zero as 
T-0. 

The calculation of the transverse components of the 
tensors Qik and uik is similar and shows that, apart from the 
coefficients, they are subject to the same anomalies as the 
corresponding longitudinal components. On the other hand, 
the off-diagonal components of the tensors ui, and Dik are 
zero, as can be easily seen from (9  1. 

A similar picture was observed in numerous experi- 
m e n t ~ . ~ - ~ ~  Thus, even in the first experiments of Egorov et 

on Li, , Mg, alloys, Q(z)/Qo was a monotnic function 
at room temperature, while at nitrogen temperatures a pro- 
nounced peak appeared at x = 0.2, increasing rapidly and 
becoming somewhat narrower when the temperature was 
lowered to 4 K. Further lowering of the temperature had no 
effect whatever on the relative differential thermoelectric 
power, in full agreement with the proposed theory. 

In the experiments of Egorov et al.4 on 
Bi,, Sb,,, + lop4 at.% Te, uniaxial deformation resulted in 
a topological transition connected with the spillover of elec- 
trons from two Fermi ellipsoids to a third. Measurement of 
the differential thermoelectric power at helium tempera- 
tures has shown that the peak near the transition point is 
somewhat asymetric with a width on the order of several 
meV, i.e., it cannot be attributed to temperature-induced 
smearing. 

A similar transition was investigated by Gaidukov et 
~ 1 . ~  by elastically stretching a bismuth whisker. A character- 
istic plot with a highly asymmetric peak of width =. 5 meV 
was obtained for the thermoelectric power at T = 5.5 K; this 
can likewise be attributed only to impurity smearing. 

Brandt et a1.I4 tracked the evolution, with temperature, 
of Q ( z )  for topological transitions in doped Bi, -, Sb, al- 

loys, and their results agreed qualitatively with the plot of 
Fig. 5. In particular, they observed the linear temperature 
shift of the thermoelectric-power maximum discussed 
above. 

We did not take into account at all in our model effects 
connected with electron-phonon interactions, although they 
are undoubtedly quite substantial at sufficiently high tem- 
peratures. In the low-temperature region, however, which is 
of greatest interest from the experimental point of view, the 
phonons freeze out and these effects can be neglected. 

We note that according to the results of Kaganov and 
Moebius7 allowance for the Fermi-liquid interaction does 
not smear out the Lifshitz topological transition, and only 
renormalizes the singular parts of the thermodynamic char- 
acteristics. 

In conclusion, we are deeply grateful to A. A. Abriko- 
sov for suggesting the topic and for constant interest in the 
work, and thank R. 0 .  ~ a i t s e v  for helpful advice, and Yu. P. 
Gaidukov, V. S. Egorov, M. Yu. Lavrenyuk, and N. Ya. 
Minin for a disucssion of the experimental results. 
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