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Two exact solutions corresponding to topological solitons are presented. The first is a domain 
boundary (kink) moving between two spatially uniform but time-periodic vacuum solutions of 
the sine-Gordon equation, while the second is a solution of the Landau-Lifshitz equations and is a 
domain boundary with an internal degree of freedom corresponding to a perturbation that is time- 
periodic and self-localized in the region of the boundary. 

1. In the study of nonlinear phenomena in magnetically or- 
dered media (moving domain boundaries, solitons, and non- 
linear spin waves), integrable models associated with the 
Landau-Lifshitz equation, the sine-Gordon equation, and 
the nonlinear Schrijdinger equation are widely used at the 
present time (for examples, see, e.g., Ref. 1).  A characteris- 
tic feature of the most well known objects of investigation- 
domain boundaries (kinks) and solitons-is the fact that 
they are essentially nonlinear formations (in particular, self- 
localized in space) on a background of simple equilibrium 
states of the medium (e.g., states that are spatially uniform 
and independent of the time). Envelope solitons, or preces- 
sion solitons, are not in this sense an essentially new class of 
objects, since the possibility of isolating simple motion (an 
oscillating phase or precession) in the initial dynamical 
eauations of the nonlinear medium returns us to the tradi- 
tional situation. 

A number of theoretical and experimental investiga- 
tions14 associated with the analysis of the formation of soli- 
tons and with distinctive features of the motion of domain 
boundaries against a background of nonlinear spin waves 
(and also with the analysis of analogous phenomena in dis- 
tributed Josephson junctions5) lead to the necessity of seek- 
ing and classifying exact solutions of a more general type, 
viz., solutions of the domain-boundary (kink) and soliton 
(breather) type, which are essentially nonlinear formations 
(transitional layers or regions of self-localization) against a 
background of states corresponding, e.g., to spatially uni- 
form but time-periodic nonlinear solutions of the fully inte- 
grable equations of the medium. 

The existence of such a class of solutions for the above- 
mentioned fully integrable models of magnetically ordered 
media was noted by us in Ref. 6 and is related to the compar- 
atively simple topological structure of the phase space of the 
dynamical system generated by a certain class of solutions of 
different (in their physical nature) fully integrable equa- 
tions (a more detailed account is given in Ref. 7). The latter 
circumstance can be used to predict, from already-known 
types of solutions of some integrable model, their analogs for 
other models possessing a phase space with the same topo- 
logical structure. 

The construction of spatially self-localized solutions 
(of the kink and breather type) that tend asymptotically for 
x-t f w spatially uniform and time-periodic states of the 
nonlinear medium (i.e., to a nonzero vacuum) points to the 
possibility that in the known integrable models there exist 

new types of solitons, and to the need to analyze features of 
their interaction just as has been done in the theory of soli- 
tons on a background of finite-zone potentials.' 
2. We shall give a simple example that illustrates both the 
general statements of Refs. 6 and 7 and the possibility of the 
construction of soliton solutions of a nonzero vacuum. The 
well studied equation 

utl-u,+ sin ~L=O (2.1) 

admits the following very simple solution in the class under 
consideration: 

a sn T+ eA" 
u (x, t )  =4 arctg 

I +a sn ~e-'' ' 
Here 

and sn is the Jacobi elliptic sine with modulus k. The solution 
(2.2) is periodic in time, with a fundamental period T, de- 
termined by the relation 

where K is the complete elliptic integral of the first kind, and 
w is the fundamental frequency (the parameter with respect 
to which it is convenient to classify the more complicated 
solutions). It is obvious that 

lim u (x, t )  =u. ( t )  , lim u (x, t) =u, ( t )  +2n, (2.5) 
z+-m x-+m 

where 
u, ( t )  -4 arctg(a sn  7 ) .  (2.6) 

Thus, according to (2.5) and (2.6) the solution (2.2) is a 
generalization of the well known special solution-the kink 
(topological soliton)-and determines the transitional layer 
between two spatially uniform "vacuum" states correspond- 
ing to time-periodic solutions of Eq. (2.1). As w2-+1 and, 
correspondingly k 4 ,  the solution (2.2) degenerates into a 
kink: 

lim u (x, t )  =4 arctg ex,  
0 2 - 1  

linking the spatially uniform vacuum states u = 0 and 
u = 2.n. By virtue of the Lorentz invariance of Eq. (2.1 ) the 
solution (2.2) admits an obvious generalization to the case 
of motion with constant velocity S: 

a s n  T + e A *  
I L  (x, t )  = 4arctg c ~ ,  (D = - -- . (2.8) 

1 $- a s n ~ e ~ ~  
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Here, 

?= ( t+Sx) / ( l + k )  (I-s') '",  E=x-St, (2.9) 

and the characteristic size X-' of the transitional layer is 
determined by the relation 

- 
: i = ( l - k ) / ( l + k )  ( I -S2) ' " .  (2.10) 

The difference of the functionals 

E [ u ( q  t ) ] - E [ u , ( t ) ]  =8(o) ,  
-. (2.11) 

E [ u ]  = 3 d ~ ( ~ l ~ z ~ ~ ~ + ~ / ~ a . 2 + l  - cos U )  

- x 

determines the energy of the topological soliton (2.2) rela- 
tive to the spatially uniform vacuum state (2.6). Straightfor- 
ward calculations show that 

Here the modulus k( 1 of the elliptic function is connected 
with the frequency w of the vacuum oscillations by the rela- 
tion (2.4). As w2-1 the energy (2.12) of the topological 
soliton tends to the energy of the kink (zero-vacuum topo- 
logical soliton), which is equal to 8 ( 1 ) = 8. With decrease 
of the frequency of the vacuum oscillations, and increase (in 
accordance with (2.4) and (2.6)) of their amplitude, the 
nonzero-vacuum topological soliton (2.12) decreases. 

Regarding the topological soliton (2.2) as an elemen- 
tary formation with energy (or rest mass) dependent on the 
frequency of the vacuum oscillations, we arrive at the con- 
clusion that such an elementary formation can be character- 
ized by an "internal" degree of freedom. In this sense the 
nonzero-vacuum topological soliton is analogous to the tra- 
ditional zero-vacuum breather, which, as an elementary for- 
mation, possesses an internal degree of freedom. Taking into 
account that quantization of the breather states of a nonlin- 
ear field leads to a definite branch of the mass spectrum of 
the elementary formations, we must expect that the solution 
of the problem of the quantization of nonzero-vacuum soli- 
ton states (primarily, topological solitons) can lead to a new 
branch of the mass spectrum of the sine-Gordon equation. 

From the point of view of the theory of dynamical sys- 
tems, both the solutions (2.2) and (2.7) are singular- 
namely, they are solution of the separatrix type. Here, ac- 
cording to Ref. 6, upon decrease of the parameter w2< 1 there 
appear not only the singular solution (2.2 ), which bifurcates 
at o2 = 1 from the spatially uniform solution (2.7), but also 
new, more-complicated singular solutions (the analogs of 
the well known solutions of the breather or wobbly-kink 
type), which are generated when the parameter w2 passes 
through the bifurcation values 

o, , '=l /n2 ,  n=2,3,. . . . (2.13) 

Unlike its analogs, this new class of singular solutions is dou- 
bly asymptotic (as x+ * 00 ) to the spatially uniform and 
time-periodic solution of the type u,, ( t ) ,  i.e., to the solu- 
tions (2.6) with w replaced by nw in the dispersion relations 
(2.3) and (2.4). 

The solution (2.8) given above corresponds to motion, 

with a constant velocity, of a topological soliton "frozen 
into" a nonzero vacuum. The question naturally arises of the 
existence of topological solitons moving with a constant ve- 
locity relative to a nonzero vacuum. Such solutions can be 
constructed, e.g., by the method of Darboux transforma- 
tions, if as the " bare" solution we use the solution (2.6). 
Using the general relations given in Ref. 9 one can show that 
the solution can be represented in the form 

u ( x ,  t )  =4 arctg 'Y, 
(2.14) 

Here, 

where A is the parameter of the Darboux transformation, 
X ( t )  is a time-periodic function characterizing the oscilla- 
tions of the position of the front of the topological soliton in 
the comoving (with velocity V )  reference frame (the explicit 
form of this function is not important for our purposes), and 
T is a complete elliptic integral of the third kind. 

We shall discuss the principal characteristics of the to- 
pological nonzero-vacuum soliton (2.14). For il = f 1 we 
find that V= 0, X(t)=O, S = 0, and the solution (2.14) de- 
generates into the stationary nonzero-vacuum soliton (2.2). 
By direct calculations one can show that the energy (given 
by the relations (2.11 ) ) of the topological soliton (2.14) is 

Consequently, the relations (2.16), (2.17), and (2.19) after 
elimination of the auxiliary parameter il determine the de- 
pendence of the energy F3 ( V, o) on the "average" velocity V 
of the motion of the front of the topological soliton and on 
the frequency o (or amplitude) of the oscillations of the 
nonzero vacuum. It is not difficult to convince oneself that 
for w2 5 1 and, correspondingly, x 2 4  1 the relation (2.19) 
leads to 

Consequently, the effect of the oscillations of the position of 
the front of the topological soliton on the functional depen- 
dence of the energy on the velocity is manifested only in the 
next terms of the expansion of the energy in the characteris- 
tic amplitude of the oscillations of the nonzero vacuum. In 
the general case the relations (2.15 )-(2.17 ) determine the 
functional dependence of the energy (or parameter A )  on 
the velocity Vand oscillation frequency o in the form of the 
transcendental equation 
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l / , a ( v ,  O )  = . l = m ( x 2 ,  ~ ? ) l ( l - v ' ) ' ~ .  (2.21 

Here 
m ( x 2 ,  v 2 )  = [ I - x ~ ( ~ - u ' )  ]'.>0, (2.22) 

V = v l l [ ( l - u 2 ) x 2 ,  x ] / K ( x ) .  (2.23) 

The relation (2.22) determines the dependence of the effec- 
tive mass of the topological soliton on the velocity and effec- 
tive amplitude - x  of the oscillations of the nonzero vacu- 
um, while the relation (2.23) determines the dependence 
V = V(v, x ) .  Finally, we note that the relation (2.18) 

s n ( 5 ,  x )  = i v [ l - ~ ~ ( 1 - v ~ ) ] - "  
determines the relative shift, equal to 26, in the phase of the 
nonzero-vacuum states as x+ + a. 

According to Ref. 10, Eq. (2.23 ) can be written in the 
form 

(2.24) 
sin a = x .  q=arcsin (1-v2)'! ' .  

On the basis of the representations (2.23) and (2.24) it is not 
difficult to convince oneself that 

The equation 

2E ( x )  =K ( x )  

determines a critical value x = x,,  - 0.9 1 (a,, - 65.5") such 
that for x > x,,  motions of the topological soliton with veloc- 
ities V> 1 become possible. 

Characteristic dependences of the curves V = V(v) on 
the amplitude (determined by the parameter x = sina) of 
the oscillations of the nonzero vacuum are given in Figure 1. 
By virtue of the relations (2.21 ) the energy of the topological 
soliton is finite for all values v2 < 1. We draw attention to the 
fact that the function v = v(V) becomes two-valued for 
IC > X,, . 

Thus, the sine-Gordon equation admits the extraction 
of a new class of singular solutions, corresponding to distri- 
butions of the kink and breather type on a background of 
spatially uniform and time-periodic solutions. 

We are aware that an attempt to construct nonzero- 
vacuum soliton solutions on the basis of perturbation theory 
was made in Ref. 4. However, no exact nonzero-vacuum so- 
liton solutions were obtained. One should expect that the use 
ofthe very simple exact solutions (2.2) and (2.14) as "bare" 
solutions in various methods in the modern theory of fully 
integrable field equations will make it possible to investigate 
features of interaction processes of elementary nonzero- 
vacuum formations. According to Refs. 6 and 7 one should 
expect that solutions of the nonzero-vacuum topological-so- 
liton type can also be discovered for other fully integrable 
field equations (e.g., for the Landau-Lifshitz equations). 

0 
FIG. 1. 

3. As the next example we shall consider the fully integrable 
system of Landau-Lifshitz equations and exhibit a new sin- 
gular solution corresponding to a domain wall with internal 
degrees of freedom-a solution of the "wobbly domain wall" 
type, analogous to the wobbly kink".12 for the sine-Gordon 
equation. The fully integrable system of Landau-Lifshitz 
equations for the spherical variables 8(s, t )  and q ( x ,  t )  of 
the unit vector of the magnetic moment m(x, t )  has the 
form1 

d20 - - [ i + r e u s ~ c p + ( ~ ) ' ]  s i n ~ c o s ~ = - s i n e ,  a CP 

dx2 ax d t  
a a 0 (3.1) 

-(sin2 0 2) +e sinz 0 cor ip sin cp = - - s i n  0 .  
3 x dt 

Here E is the parameter of the biaxial ferromagnet. Using the 
method of Hirota,I3 one can show that the time-periodic so- 
lution satisfying the asymptotic conditions 

lim 0 ( x ,  t )  =O, lim 0 ( x ,  t )  =n (3.2) 
*+- w z++co 

is determined by the relations 

Here, 

gl ( x ,  t )  = A ,  e x p ( a x + i o t )  +A,  esp  ( a x - i o t )  +Besx, 
0 2  (a- p )  2 

g3 (2) =- AiA2B exp (2a-I-1) x, 
~ a ' ( a + B ) ~  (3.4) 

+A2 e x p ( ( a + p ) x - i d )  I ,  
A,='lzea, A2= (a2- I - o - ' l z ~ )  a. 

Furthermore, the characteristic precession frequency w and 
parameter a are connected by the dispersion relation 

(a2-I)  ( a 2 - 1 - 8 )  =02. (3.5) 
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Finally, B = b and fl = 1 + E for the asymptotic behavior 
of the solution that is typical for a domain wall of the NBel 
type, while B = ib ando  = 1 for the asymptotic behavior of 
the solution that is typical for a domain wall of the Bloch 
type. We note that a and b are arbitrary parameters, one of 
which can be associated with a shift along a spatial variable. 
According to Ref. 6, for the dynamical system generated by 
time-periodic solutions of Eqs. (3 .1  ) the singular solutions 
( 3 . 3 )  determine a one-parameter family of heteroclinic tra- 
jectories that are doubly asymptotic (as x-+ +: co ) to the 
singular points 8 = 0 and 8 = a, it is clear that to these solu- 
tions there correspond domain walls (in the asymptotic 
sense of Bloch or Ntel domain walls) associated with a spa- 
tially self-localized and time-periodic soliton-type perturba- 
tion ofthe magnetic moment. The solutions ( 3 . 3 )  extend the 
class of time-periodic and spatially self-localized solutions 
first constructed in Ref. 14 to the case of states with nonzero 
topological charge. Singular solutions of the type ( 3 . 3 )  may 
be of interest in connection with the problem of the motion of 
a domain wall in an external field with allowance for damp- 
ing. Such perturbations destroy the integrability of the Lan- 
dau-Lifshitz equations and lead to a dependence of the total 
energy of such a formation on the position of the time-peri- 
odic and spatially self-localized perturbation relative to the 
domain wall. Consequently, this opens up the possibility of 
the appearance of new channels of dissipation of the energy 
of a moving domain wall with increase of the external field, 
these channels being associated with the excitation of soli- 
ton-type internal degrees of freedom of the wall. 
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