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We find for a discrete anisotropic Heisenberg chain with arbitrary spin value a solution in the 
form of a coherent spin state with a coherence parameter which changes periodically along the 
chain. We evaluate the energy and the spin correlators. In the particular cases of uniaxial magnets 
the solutions obtained describe domain walls. 

1. INTRODUCTION 

The solution of the problem of finding the energy and 
the wave function of a one-dimensional spin chain has come 
a long way from the already classical Bethe Ansatz' to the 
work of Baxter2 and Faddeeve3 The gradual broadening of 
the scope of the problem-from Bethe's isotropic model 
XXX to Baxter's anisotropic XYZ-required an appreciable 
complication of the mathematical apparatus of the theory 
and the development of a quanta] method for inverse scatter- 
ing. Incidentally, there have appeared in the literature pa- 

ditions, and we evaluate the spin correlators in the various 
sites in the chain. We consider in Section 5 the limiting cases 
of an easy-axis and an easy-plane magnetic for which the 
solution degenerates into domain walls and a "fan." In the 
conclusion we touch upon some problems which were not 
elucidated in the main text of the paper and we note, in parti- 
cular, that the classical ferromagnetic chain is a complete 
discrete analog of the well known Neumann problem. Some 
of the results of the present paper were given in a short com- 
munication.' 

pers4v5 which contain attempti to solve the quantum prbb- 
lem by traditional methods but they did not get further than 

2. PARAMETRIZATION OF THE ROTATION MATRIX 

the XXZ model studied earliere6 The present paper also be- The set of states 2 10) forms a complete set of coherent - - 
longs to that class. spin statesX which can be parametrized by a parameter 7: 

We consider the anisotropic XYZ model with the Ha- 
miltonian 

R (q) =exp (qS, -9s-), q=1/20eiw, (2.1) 

where 8 and p are the polar coordinates of the point to which 

( 1.1) the North pole of the sphere has been transferred and the 
S ,  are the circular spin components: - 

where the exchange constant tensor JaB is symmetric and S,=S,*iS,. 
triaxial and when it is on principal axes (2.2) 

The absence of a third parameter (for instance, one of the 
Ja>J,>J,>O. ( Euler angles) is due to the fact that rotation around the2 axis 

We assume that the value of the spin forms a stationary sub-group of the vacuum 10) (for details 
see Ref. 8) .  

Sn2=o(a+l) (1.3) The result of the transformation of the spin operators is 

is given (g = 1/2, 1, 3/2, . . . ) .  
We look for the wavefunction of the chain in the form4 

h 

where R ,  is the rotation operator for the spin on the nth site, 
and 10) is the state in which all spins are directed along thez  
axis (vacuum). We use in Section 2 sphero-conical coordi- 
nates to parametrize this operator (the rotation matrix) and 
the spin state is given by means of the local frame of refer- 
ence. We solve in Section 3 the Schrodinger equation for the 
states (1.4) using the addition theorem for elliptical func- 
tions and we elucidate the region where the solution ob- 
tained is applicable and we give its geometrical interpreta- 
tion-the end point of the spin vector describes a spherical 
ellipse. We give in Section 4 a closed expression for the ener- 
gy of the solution we have obtained, using the boundary con- 

The rotation ^matrix Rap is a more convenient object than 
the operator R,  as it interrelates any vectors and not only 
spins. They can, in particular, be the coordinate basis vectors 
E ( ' )  and e"' of the original and the rotated systems: 

and it is clear that 

The spin state is thus directly described by giving the local 
frame of reference-a triad of basis vectors in the given site. 
From site to site the frame of reference is rotated due to the 
interaction between neighboring spins. 

The usual parametrization of the sphere by polar co- 
ordinates leads to cumbersome expressions for Rap.9 One 
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can reach the maximum simplicity putting for the circular 
basis vector 

e?' =Nn (i, -sn w,, cn w,), (2.6) 

as it occurs in the Schrodinger equation in a decisive manner. 
One finds the other two basis vectors from (2.6): 

Here w, = u, + iv,, and the modulus x of the elliptical 
functions will be determined later. One can write the vector 
eL3) explicitly as follows: 

We have used here the notation s = sn(u ,x) ,  s' = sn(v,xl) ,  
and so on: 

N,= ( I - s , ' ~ ~ , ~ ) ' ~ .  (2.8a) 

The parameters u, v are none other than the sphero-conical 
 coordinate^'^: 

x=r sn' v dn u, y =r cn' v cn u, z=r dn' v sn u. (2.9) 

These coordinates describe the position of the average value 
of the spin in the state ( 1.4), since 

In other words, e,!" is the same as the classical spin unit 
vector 

3. RECURRENCE RELATIONS 

We write the Hamiltonian in the local frame representa- 
tion': 

n 

where 

Substituting (3.1) into theequationfi 10) = E 10) andusing 
the fact that 

we get 

Here 

Equation (3.3) will be satisfied if 

There are just the equations for the rotation of the frame of 
reference which we discussed above. In the parametrization 
chosen the first one is satisfied immediately by virtue of the 
theorem for the addition of elliptical functions": 

cn a cn b+dn (a- b) sn a sn b=cn (a- b) . (11) 

Comparing (3.6) with Eq. (3.5a) written in the form 

we find 

where 

Hence we find the elliptical modulus 

By virtue of inequality ( 1.2) we have 0(x2< 1. The ordering 
(1.2) of the exchange constants corresponds in the phase 
diagram to a dashed triangle the boundaries of which corre- 
spond to the XZZ model (vertical line) and the XXZ model 
(bisectrix), i.e., to uniaxial magnets. The intersection of the 
boundary when the relations between the exchange con- 
stants is changed leads to a rearrangement of the state (Fig. 
1) .  

The parameter q is not determined uniquely by Eqs. 
(3.8): it can be real or purely imaginary. In the second case 
J, > J, > J3 and we obtain a solution in another part of the 
diagram that is symmetric with regard to the triangle with 
respect to the point Q. Using the fact that w = u + iv we note 
that this symmetry reduces to the substitution u e v .  In what 
follows we assume in accordance with ( 1.2) that q is real and 
positive. 

The solution of Eq. (3.7): 

means that 

In other words, one of the sphero-conical coordinates v is 
fixed. As it is given by the intersection of an elliptical cone 
with the sphere r2 = 1, i.e., a spherical ellipse, the axis of the 
local frame (the vector eL3') traces on the sphere just this 
line (Fig. 2) .  The distribution of the spin axes along the sites 
of the chain is a scan of the spherical ellipse. 

There are no additional restrictions imposed by Eq. 

FIG. I .  
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In this formula we can split off the homogeneous part with 
density 

FIG. 2. 

(3.5b) on the parameters w, tt. It is the same as the Landau- 
Lifshitz equation for a classical chain of spins considered as 
unit vectors. The reason for this agreement is clear and con- 
sists in the choice of the solution ( 1.4) in the form of coher- 
ent spin states which are the quantum analog of the classical 
system.8 

4. ENERGY AND CORRELATIONS 

Satisfying the compensation (3.5) we get from the 
Schrodinger Eq. (3.3) the energy of the given state: 

n 

Substituting the components of the basis vector (2.8) we 
find the expression 

which reminds us of the expressions of Baxter and Faddeev 
but with a different parametrization. More important differ- 
ences consist in the fact that we consider the case of arbitrary 
(and not only 1/2) spin and do not impose periodic bound- 
ary conditions. 

Using Eq. (3.6) and one similar to it" 

dn a dn  b f  x Z  cn(a-b)  sn a sn b=dn (a-b)  (4.3) 

all elliptic functions in (4.2) reduce to the sines: 

Remarkably, this expression can be summed and provides 
thereby an answer to one of Baxter's questions (about the 
transformation of his expression for the energy to another 
form). To do this we must use the Jacobi identity": 

where 
U 

E ( u )  -- j dn2 fdt (4.6) 
0 

is an elliptical integral of the second kind. Putting 
A = u,  = qn + u,, we have 

where E ( K )  and, K are complete elliptical integrals of the 
second and first kind. 

The remaining dependence in (4.7) on the boundary 
conditions means (by virtue of the variational principle) 
that when solution ( 1.4) exists it is necessary to fix the state 
of the spins at the end points of the chain (e.g., by an external 
magnetic field) or to give periodic boundary conditions. 

The parameter q reduces to an elliptical integral of the 
first kind: 

q=F ( r p ,  ?t) , cos rp=Jl/J3. (4.9) 

It is important to emphasize that the energy is indepen- 
dent of u [this is already clear from (4.4)]-of the param- 
eter determining the "eccentricity" of the spherical ellipse. 
This degeneracy is manifested by the presence of an addi- 
tional integral which [for the solution ( 1.4) 1 commutes 
with the Hamiltonian. Strictly speaking, it is just the exis- 
tence of this extra integral, and with it of a dynamical sym- 
metry group, which is the primary case of the complete inte- 
grability of the chain problem. 

One could also evaluate the energy differently by aver- 
aging the Hamiltonian: 

E=(H)=-z J,,<S,,~S:+,), (4.10) 
n 

which requires the calculation of the correlator of neighbor- 
ing spins. Because 

and because the spins on different sites commute, we get 

so that 

Naturally we returned to Eq. (4.1 ) .  Incidentally we ob- 
tained a result for the correlator 

It is clear from Eq. (2.8) that the correlator of any pair 
of spins depends periodically on the number m for fixed n.  
We must note that the period of the correlator of the trans- 
verse spin components is twice the period of the longitudinal 
correlator as dn x in contrast to cn x and sn x has the period 
2K(x)  rather than 4K(x) .  

In the evaluation of the spin fluctuation we must con- 
sider the quantity 

In particular, 

E=-02J3N [cn q dn q+ sn qE ( q )  ] + 02J3 sn q [ E  (u,) -E ( a , )  1. ( (Sn')2>=u2(d'sn)  2+2u(~'2~,2+s'2d'2~n2dn2)/[l- ( s f & )  2 1  

(4.7) (4.14) 
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[we bear in mind that s, = sn(qn + q,), s' = sn(v, x ' ) ,  and 
so on]. This means that the correlators, as one should ex- 
pect, depend on the parameter v, with respect to which the 
energy is degenerate. 

5. "WALLS AND "FANS" 

Here we consider the behavior of the solution at the 
boundary of the triangle (Fig. 1).  On the bisectrix 
(J, = J2 < J,) we have an easy-axis type magnet and on the 
vertical (J, = J, > J, ) an easy plane type magnetic. 

In the first case the elliptical modulus x = 1 and in the 
second case x = 0. It is well known that in those cases the 
elliptical functions reduce to elementary functions 

The solution for the easy-axis magnet thus becomes non- 
periodic; more precisely, its period tends to infinity. If we 
consider a sufficiently long chain this will be a domain wall 
type solution. Indeed, the averaged spin component equals 

sin v cos v ( s , > = ~ ~ : '  = - - ( ch u. ' cb u. 

i.e., the projection on the easy axis changes from - u to + u 
according to the relation tanh(qn + q,) which is typical for 
a domain wall. The parameter q determines the thickness of 
the wall and equals, according to (3.8) 

The transverse components of the spin depend on the param- 
eter v and in all cases the spin rotates in a plane containing 
the easy z axis. 

The energy of the domain wall is independent of its type 
(i.e., of v )  and, according to (4.7) equals 

EdW=oZJ3  th q (th u,-th u, )  , (5.5) 

as the elliptical integral (4.6) in that case reduces to an ele- 
mentary one: E ( u )  = tanh u. For an infinite chain 

Gochev5 did obtain this formula earlier. 
We now turn to an easy plane type magnetic. From 

(5.2) and (2.8) we have 

cos un sin u, 
( ~ . ) = o ( t h u ,  - chv ' -) chu . 

This means that the spin component along the difficult axis 
is fixed by the parameter u and in the easy plane it rotates 
with an "angular velocity" q = arccos(J,/J,) per step along 
the chain. We call this solution a fan; it is completely analo- 
gous to the precessional rotation of a top. 

The energy density of the fan equals 

which follows immediately from (4.4) when x = 0. The de- 
generacy with respect to energy of the states manifests itself 
here in that E ~ ,  is independent of the spread angle of the fan. 

We indicate finally that the spherical ellipse in the easy- 

axis magnet is degenerate in the meridian joining the north 
and the south poles of the sphere. The spin rotates by 180" in 
the plane of this meridian. 

In the easy-plane magnet the ellipse turns out to be a 
circle-the parallel around the difficult axis. The energy is 
independent of the lattitude on which this parallel is drawn 
and also of the longitude on which the meridian in the easy- 
axis case is positioned. To give these quantities it is necessary 
to fix the second integral of the motion. 

For a qualitative representation of the properties of the 
solution in the general case when x # O  we can use a mixture 
of the properties of the wall and the fan. In particular, when 
x is close to unity and v = 0 the solution gives a model of a 
band domain structure-several domain walls fit onto a fin- 
ite length chain. 

6. CONCLUSION 

The solution obtained in the present paper for a quanta1 
anisotropic Heisenberg chain has a number of features on 
which we must dwell. 

Firstly, the solution is practically independent of the 
magnitude of the spin: the spin enters trivially merely into 
the expressions for the energy and the correlators [this prop- 
erty reflects the coherent nature of the solution ( 1.4) ] .  We 
thereby obtained a certain class of solutions with fixed ener- 
gies for anisotropic chains with arbitrary (and in the limit of 
large u, classical) spin. Not a single solution was previously 
known for such chains. 

Secondly, as we have already noted, periodic boundary 
conditions need not be satisfied; we thereby go beyond the 
framework of the inverse scattering method3 in which 
boundary effects are lost such as those which are responsible 
for the existence of domain walls. 

Thirdly, it is well known that in the continuum classical 
limit the (stationary) Landau-Lifshitz equation describes 
the motion of a point on a sphere with a quadratic potential 
(the so-called Neumann problemI2). This is completely in- 
tegrable, i.e., it possesses three independent integrals of mo- 
tion which are in involution with the Hamiltonian. The dis- 
crete Eq. (3.5b) turns out also to have three "integralsw- 
expressions which are algebraic in eL3' and which are inde- 
pendent of the number of the site. The anisotropic chain 
described by Eq. (3.5b) is thus the discrete analog of the 
Neumann problem which retains all important properties of 
the latter. In particular, this explains the success of the 
sphero-conical parametrization (2.8 )--the variables in the 
Hamilton-Jacobi equation in the Neumann problem sepa- 
rate just in the sphero-conical coordinates. l 2  

One can use the solution as a zeroth approximation for a 
perturbation theory solution ofproblems connected with the 
inclusion of a weak external field or for taking into account 
anisotropy which is not of an exchange nature. The problem 
of the possibility of constructing "excited" states on the so- 
lution (1.4) and also the symmetry aspect of the "random" 
degeneracy with respect to the parameter u are of interest. 
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