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A study is made of the influence of small perturbations of an interface on the total external 
reflection of x rays. Three small parameters of the problem determine the specific behavior of 
reflection in the x-ray range: the glancing angle a, the permittivity discontinuity E ,  - E,, and the 
ratio of the wavelength A to the transverse size of a perturbation. The relationship between these 
parameters determines the angular dependence of the x-ray reflection coefficient of a plane sur- 
face. This angular dependence explains why the height of the irregularities appears greater at low 
glancing angles. Conditions are found under which x-ray beams are rotated through large angles 
as a result of propagation along curved interfaces. 

I. INTRODUCTION 

The permittivity E of all materials differs little from uni- 
ty, E = 1 - 6, in the x-ray range. Therefore, there is a narrow 
range of glancing angles a 5 a, = 8"' where the reflection 
coefficient of x rays is close to unity. Studies of the angular 
dependence of the reflection coefficient in this range provide 
an important and often a unique source of information on 
the fundamental properties of solids, liquids, and inter- 
faces. 

The phenomenon of total external reflection underlies a 
traditional branch of x-ray optics which is being used in- 
creasingly in research and physics, astrophysics, and bio- 
logy.4 We are speaking here of wavelengths in the range 300 
A >A > 1 A, so that it is important to consider the irregulari- 
ties which unavoidably remain on an optical surface after 
any type of finishing treatment. This applies equally to the 
surfaces of ideal crystals because, due to reconstruction, 
their atomic structure may be characterized by a scale much 
greater than the interatomic distances. Clearly, the future 
developments and applications of x-ray optics largely de- 
pend on whether it will be possible to eliminate surface irre- 
gularities on a scale of tens or even a few angstroms or, at any 
rate, to minimize their influence on the parameters of reflect- 
ed x rays. 

Several reviews and monographs (see, for example, 
Ref. 5 ) have been devoted to the theory of reflection of radi- 
ation by rough surfaces, but insufficient attention has been 
given to small glancing angles for which the reflection coeffi- 
cient of x rays is large. In many cases the range of small 
angles is outside the scope of a given theory. However, it is at 
small glancing angles, including those close to the critical 
value a,, that several features of the reflection coefficient 
and angular distribution of the scattered radiation are ob- 
~e rved . "~  They can be explained using different models of a 
surface layer based on certain assumptions about the distri- 
bution of the permittivity in this layer and the nature of the 
surface irregulaties. I s 9  

the wavelength A, and the correlation radius of the surface 
irregularities a.  If a) (A /a)  'I2, the correlation radius is un- 
important and the reflection coefficient after allowance for 
scattering is given by 

I R'I2= I RI2 (1-4k2C2a2)  

(where k = 27r/A and { is the height of irregularities), which 
follows both from perturbation theory and from the Kirch- 
hoff approximation. lo If the glancing angle is small, a( (A / 
a )  , ' I 2  then-as shown below-the dependence of the reflec- 
tion coefficient on the angle changes to 

4 r  (3/ , )  k2bZ 
( ka) ' j 2  

In both acoustics and radiophysics it is usual to consid- 
er media which reflect strongly at all incidence angles. Con- 
sequently, the permittivity discontinuity is regarded as larg- 
er than any other parameter of the problem. On the other 
hand, in the x-ray range all materials are characterized by a 
weak polarizability and the change in the permittivity at the 
interface is small. We therefore have a new parameter S(a /  
A) which governs the influence of the state of the surface on 
its reflectivity. A detailed knowledge of the angular depen- 
dence of the specular reflection coefficient makes it possible 
to justify quantitatively the methods used to determine the 
surface parameters from the x-ray reflection coefficient mea- 
surements (see Refs. 2, l l ,  and 12), and also the require- 
ments in respect of the surfaces intended for use as x-ray 
optics components. 

In Sec. I11 we shall apply these results to the problem of 
rotation of an x-ray beam by a concave mirror with whisper- 
ing-gallery modes. In this case, in contrast to a plane surface, 
the presence of irregularities generally reduces the reflection 
coefficient even at the zero glancing angle. The surface of a 
concave mirror may be regarded as smooth (for a beam 
glancing along i t)  if the height < and the correlation radius a 
of irregularities satisfy one of the two conditions: 
<<A 314 a114 or <( (A /S) (A /a)  'I4. 

Our aim will be to use a very general model of a surface 
in a study of the specular component of x rays reflected at 

II. DERIVATION OF PRINCIPAL FORMULAS 

small glancing angles. In Sec. I1 this problem will be tackled General 

by perturbation theory. The specular reflection coefficient The aim in the present section will be to obtain formulas 
depends on the relationship between the glancing angle a, for the intensity of specularly reflected radiation incident on 

1225 Sov. Phys. JETP 62 (6), December 1985 0038-5646/85/121225-05$04.00 @ 1986 American Institute of Physics 1225 



a rough interface between two media. The general approach 
to problems of this kind can be found in Refs. 5 and 10. We 
shall use a different variant of the perturbation method (see 
Ref. 13), which makes it possible to simplify an allowance 
for the boundary conditions and to consider from a unified 
standpoint both abrupt and diffuse boundaries, and yields 
the required result more rapidly. 

An ideal interface between media 1 and 2 will be regard- 
ed as a one-dimensional inhomogeneous layer the permittiv- 
ity of which is described by the function E,(z), so that 
E,( - ccr ) = E ,  and&,( + rs ) = E ~ .  Theimperfections ofthe 
interface are due to the presence of perturbations Ar(r) ,  the 
scale of which is limited along the z axis, but is generally not 
limited (unbounded) in the transverse directions (along the 
x and y axes). 

In the case of an ideal boundary, the field is 

$o ( r )  = lClo ( z )  exp ( i q , p ) ,  q ,=k&,'" cos a , ,  (1)  

where p = (x, y )  is a two-dimensional vector in the z = 0 
plane, a, is the glancing angle, and $,(z) satisfies the equa-, 

tion 

d2$, ldz2+ [k2&0 ( 2 )  - q o Z ] $ ~  ( 2 )  =O. ( 2 )  

In the presence of a perturbation Ae(r) the wave field $(r)  
satisfies the equation 

[ V ' + ~ ' E ~  ( 2 )  ]$ ( r )  = - k Z A &  ( r )  $ ( r ) ,  (3) 
which can be written in the integral form: 

$ ( r )  = $o ( r )  - k z  J G ( r ,  r') Ae ( r f )  $ ( r ' )  d3r', (4)  

where the Green function is 

i  y 1 ( z , ,  q ) y z ( z > ,  q ) e x p [ i q ( p - p f )  I ( r f ) = - -  J- 
( 2 n )  ' k  c,"> ( q )  + E ~ ' , ~  ( q )  

9% 

(5  
z < = m i n  ( z ,  z ' ) ,  z ,=max ( 2 ,  z ' )  &, ( q )  = & , - q 2 / k 2 ,  

c2  ( q )  = ~ ~ - y ~ / k ~ ,  q = k e l l '  cos a .  

In Eq. (5 ) ,  y, (z, q )  and y2(z, q )  are the solutions of Eq. (2)  
satisfying the boundary conditions and given by 

where R (q) and T(q) represent the reflection and transmis- 
sion coefficients of the waves incident on an ideal boundary 
from the z < 0 side. 

If the point of observation z lies much further from the 
interface than the thickness of the transition layer L or the 
characteristic longitudinal size of the inhomogeneity, then 
Eq. (4)  yields an asymptotic expression valid in the limit 
z--+ - co : 
$ ( P ,  2 )  = exp ( i q 0 p )  30 ( z ,  q o )  

x 1 y ,  ( z ,  y )  e-*qh'A& ( r )  y: ( r )  d i r .  (8 )  

We shall use Eq. (7)  to calculate the energy flux along 
the z axis, which intersects a small vertical area loc?ted far 
from the interface: 

- ( 2 ~ ) '  I A ( q )  1 ' R e  ~ , % ( q )  d 2 q  

This area a is selected to be sufficiently large to satisfy 

I 
The physical meaning of the terms in Eq. (9 )  is self-evident: 
the first term describes the flux created by the unperturbed 
wave (i.e., by the wave interacting with an ideal boundary); 
the second and third terms represent the fluxes scattered by 
inhomogeneities and consisting of two parts: diffuse and 
specular. 

It is clear from Eq. (9)  that the diffuse scattering coeffi- 
cient (i.e., the energy scattered by a surface element, divided 
by the incident energy) is 

and the specular reflection coeffcient, calculated allowing 
for the scattering, is 

i R 1 ( q , > )  1 2 =  1R ( 4 " )  I ' - 6 R  (401,  

The expressions ( 10) and ( 1 1 ) are exact. They are derived 
making no assumptions about the shape of the interface or 
the nature of its inhomogeneities (irregularities). 

Model of an Interface 

We shall assume that an interface is the surface on 
which an abrupt (in fact, over distances of the order of the 
atomic spacing) change in the properties of materials takes 
place. A surface of this kind may appear as a result of pro- 
cessing of amorphous bodies or of cleaving a crystal (model 
of steps and ledges). 
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We shall assume that an ideal surface coincides with the 
z = 0 plane and a real surface is described by z = c (p ) ,  
where ((p)  is a random function governing the statistical 
properties of the surface. 

Since we are interested in specular reflection from ul- 
trasmooth surfaces, we shall find the first term of the expan- 
sion 6R [see Eq. ( 1 1 ) ] from the height of irregularities 
((p).  It is readily shown that this can be done by retaining 
only the first perturbation-theory term in Eq. (4)  and using 
the following properties of the permittivity and its correla- 
tion functions: 

- - t;' AE (r)  = be - 6' (z) ,  
2 

-- 
A& (r) A E  (rl) = (86) '8 (2) 6 (z') S2 (p-p') , 

where B(z) is the Heaviside step function, 6(z)  is the Dirac 
delta function, and 

is the correlation function of the surface irregularities, which 
we shall assume to be isotropic. From now on we shail omit 
the averaging sign (bar) of ( 2. 

Thus, assuming (in accordance with the above discus- 
sion) that $(r) = $,(r) applies on the right-hand side of Eq. 
(4),  we shall substitute the result in Eq. (8 )  and average 
over the surface irregularities using the relationships in Eq. 
( 12). Then, the average amplitude becomes 

where 

Finally, substituting Eq. ( 14) into Eq. ( l l ) ,  we find the 
expression for the specular reflection coefficient of a rough 
surface: 

According to Eq. ( 15) the function F(q,) depends on the 
optical constants E,  and E, of a material, on the angle of 
incidence, and on the correlation function of the heights of 
irregularities. 

We must point out directly that if the correlation radius 
of the surface is very large (in comparison with a quantity we 
shall define later), then in Eq. ( 15 ) we have x ( p) z 1 and 
~ ( q )  = (2a)'S2(q) and Eq. ( 16) reduces to the frequently 
employed simple expression for the reflectivity of a rough 
surface: 

I R'(q,) 1 = I R(qo)  1 2 ( 1 - 4 k Z ~ 2 e 1 1  sinZ a ) ,  (17) 

which does not contain the correlation radius of the surface 
irregularities or the ratio of the optical constants E, and E,. In 
fact, it follows from Eq. ( 16) that both these factors play a 
role. We shall discuss later this topic in detail. 

Grazing incidence 

We shall assume that the correlation function of the 
heights of irregularities on the surface given by Eq. ( 13) is 
Gaussian: 

~ ( p )  =exp (-p2/az), (18) 

where a is the correlation radius, and we shall integrate with 
respect to angles in Eq. ( 15 ) : 

q2+40z 
x exp( - - a 2 )  2 dq. 

In optical and x-ray experiments the correlation radius is 
considerably greater than the radiation wavelength: a)A ,  so 
that we can use in Eq. ( 19) the asymptotic representation of 
a modified Bessel function with large values of the argument. 
We then have 

The reflection coefficient of x rays differs from zero 
only for small glancing angles a which is smaller than or of 
the order of the critical value. The following conditions are 
satisfied in this range: 

aBh,  aK l ,  a z < 2 [ 1 - ( ~ z l ~ 1 ) " l ,  (21) 

so that the quantity Re F (9,) and, therefore, the specular 
reflection coefficient depend only on one parameter: 

In fact, we shall bear in mind that Re(&, -qZ/ 
k ') ' I2  = 0 and substituting the variables q = k~! '~u  and 
q = ~E: '~u ,  we shall rewrite Eq. (20) in the form 

t 

ake,  
Re F ( p , ) =  ----; [I [u(L-u2) I "  

2n 0 
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We shall initially assume that k a ( ~ ,  - E,)) 1. The inte- 
grands in Eq. (23) have then sharp maxima (stationary 
points), because k 2a2~1/4)  1, but in the second integral the 
maximum is outside the range of integration and the integral 
itself is exponentially small. In the remaining integral we 
must allow for the contribution of the stationary point 
u = 1 - a2/2 and of the nearby point u = 1. We shall as- 
sume that u = 1 - n 2 ( 1  + y)/2 and simplify the integrand 
using the conditions (21 ) :  

50 

Substituting Eq. (24) into the general formula ( 16), we 
obtain the following expression for the specular reflection 
coefficient of a round surface when the glancing angle is less 
than the critical value 

It is clear from Eq. (25) that the contribution of the 
scattering by surface irregularities to the specular compo- 
nent of the reflection coefficient is described by Eq. (17) 
only in the case of relatively large glancing angles 
a > 2 ( a k ~ : / ~ )  - ' I 2 .  If a ( 2 ( a k ~ ! / ~ ) - " ~ ,  the contribution of 
the scattering to the specularly reflected radiation is propor- 
tional to the glancing angle: 

4&:/<r ( 3 / 4 )  (kc)2  
6Ra-o = I R 1 '" a. 

(ka) '" 

In other words, it seems that the effective height of surface 
irregularities rises for infinitesimally small glancing angles: 

l zK=b2~;'h r ( 3 / 4 )  / a  (nak) "'. 

This effect had been observedyn the course of a study of 
diffuse scattering of radiation of wavelengths /i =: 2-12 A. 

It should be pointe dout that Eq. (26) does not contain 
the permittivity of the material from which the mirror is 
made, in view of the condition ka(cl  - E ~ ) )  1 that justifies 
dropping of the second term from Eq. (23 ). Physically, this 
corresponds to the approximation of a totally reflecting (soft 
or hard) surface, which is used in radiophysics and acoustics 
when the permittivity discontinuity can be regarded as infi- 
nitely largee5 

The low polarizability of matter in the x-ray range 
makes the permittivity discontinuity very small: E,  - E,( 1, 
so that the opposite condition ka (E,  - E,) ( 1 may be satis- 
fied. The second term on the right-hand side of Eq. (23) 
should be retained. Obviously, it contributes only when inte- 
gration is carried out in the vicinity of the boundary point 
u = 1. We can include this point by combining the inte- 
grands in Eq. (23) taking out the factor 

Transformations and the substitution of the result into the 
general formula ( 16) readily shows that if k a ( ~ ,  - E,) (1, 
we must distinguish two cases 

''1 ka ei-ez 
< 1, 

and 

A comparison of Eqs. (27) and (28) with Eq. ( 2 6 )  shows 
that a reduction in the permittivity discontinuity E,  - E,  

weakens the influence of the scattering by surface irregulari- 
ties on the specular reflection. In other words, we can say 
that an x-ray beam characterized by a high penetrating pow- 
er bypasses the surface irregularities without scattering. A 
similar conclusion was reached in Ref. 14 in connection with 
the study of x-ray waveguides. 

It therefore follows that there are two regimes of reflec- 
tion of a grazing x-ray beam by a plane rough surface. When 
the glancing angle is large ( p  > 1 ), the influence of the sur- 
face imperfections on the specular reflection is governed, in 
accordance with the Rayleigh formula ( 17) (see Ref. ( lo ) ,  
only by the square of the ratio of the "apparent height of the 
irregularities" l sin a to the wavelength. In the case of small 
glancing angles ( p  < 1 ) the correction for the surface rough- 
ness becomes proportional to a (and not to a2) and, more- 
over, it begins to depend on the correlation size a and on the 
ratio of the permittivities E, and E, [see Eqs. (26)-(28)]. 
For example, in the case of Vitreosil and Spectrosil quartz 
glasses the height of surface irregularities is c z  10 b;, and the 
correlation length is a =: 100p (Ref. 12). Then, according to 
Eq. (25), the transition from one reflection regime to an- 
other at the wavelength ofA = 10 b; occurs for glancing an- 
gles a z 0 .  lo. 

Ill. INFLUENCE OF SCATTERING ON THE PROPAGATION OF 
X RAYS ALONG A BENT INTERFACE 

It was shown in Ref. 15 that under certain conditions a 
beam of soft x rays may tarvel along a bent interface without 
significant intensity losses. These conditions are satisfied in 
the wavelength intervals A < 20 b; and A > 50 b;. This effect 
may be used to rotate synchrotron radiation and other x-ray- 
source beams through large angles," to construct filters of 
short wavelengths, and also to make x-ray radiation concen- 
t r a t o r ~ . ' ~ " ~  Consequently, we have to consider the role of 
microirregularities. The special feature of the problem con- 
sidered here is that the influence of microirregularities re- 
mains important even at zero glancing angle because of mul- 
tiple reflections. We shall consider this problem in greater 
detail employing the results reported in Sec. 11. 

We shall assume that a narrow beam of x rays is incident 
on a concave cylindrical interface between two media. At 
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low glancing angles a the propagation of such a beam can be 
regarded as consisting of consecutive reflections, so that the 
total reflection coefficient is 

IR(a, cp) I2=IR(a) I"/", ( 2 9 )  

where g, is the angle supported by the mirror and equal to the 
angle of rotation of the beam and /R ( a )  1 is the single-reflec- 
tion coefficient which is given by Eq. (26 )  after allowance 
for the scattering by surface inhomogeneities [it is assumed 
that ka ( E ,  - E ~ ) )  1 1. Since at low glancing angles a the 
number of reflections g, / 2 a  is large, it follows that Eq. ( 2 9 )  
can be transformed to 

The first factor of Eq. ( 3 0 )  is the reflection coefficient 
of an ideally smooth concave surface, which can reach a few 
tens of percent for the angles of rotation p z ~ / 2  and the 
glancing angles a <a, (Refs. 15 and 18 ) . The second factor 
in Eq. (30 )  allows for the reduction in the reflection coeffi- 
cient due to the scattering. It is clear from Eq. ( 3 0 )  that in 
the case of a grazing beam (a  = 0 )  the condition for an ideal 
concave surface is of the form k 35 <a/+, whereas for 
glancing angles of the order of the total external reflection 
angle (a-a, ), we have kc< (2a,g,)-"* .  

We shall now consider an example. A mirror with sur- 
face irregularities of height 60 A rotates a A = 200 A x-ray 
beam through an angle g, = 77/2 and the mirror can be re- 
garded as smooth if the correlation radius is a 2 1 p. It 
should be pointed out that only the specular component is 
allowed for and the diffuse reflection is effectively ignored. 
Therefore, in reality we have to ensure a surface smoothness 
needed to observe rotation of x rays through large angles and 
these requirements may in fact be less stringent, since the 
diffusely scattered component is also rotated by a concave 
mirror. 

IV. CONCLUSIONS 

We have developed a theory of total external reflection 
of x rays from a rough interface. The angular dependence of 
the reflection coefficient is governed by the permittivity of 
the reflecting material in the x-ray range and also by the 
characteristics of the surface, which are the height of the 
irregularities and the correlation radius. 

The results allow us to explain qualitatively the phe- 
nomenon of an increase in the height of irregularities, ob- 
served on reflection at small angles, and to formulate the 
criteria of smoothness of the surfaces to be used in x-ray 
optics characterized by single and multiple reflection. A de- 
termination is also reported of the conditions which must be 

satisfied by a concave interface for the observation of the 
effects of propagation and rotation of x-ray beams through 
large angles. 

We shall note in conclusion that the currently available 
surfaces with irregularities and microinclusions are unsuita- 
ble for the realization of the full physical potential of x-ray 
optics materials8920 and this limits the use of the spherical 
model in scientific and technical applications. 
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