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A study is made of the electron recombination due to electron-electron scattering in the field of a 
singly charged Coulomb center. It is shown that the energy of a trapped electron relaxes more 
slowly than the other integrals of motion and the form of the energy distribution function of such 
electrons is found. The electron gas temperature is calculated and the formula for the recombina- 
tion time is confirmed. 

1. INTRODUCTION. FORMULATION OF THE PROBLEM 

The process of recombination regarded as motion in the 
space of total energy has been studied by Pitaevskii' and by 
Pitaveskii and G u r e ~ i c h . ~ . ~  The inelasticity of the scattering 
processes in a weakly ionized plasma was attributed to colli- 
sions with neutral atoms. ' However, if a plasma is sufficient- 
ly energy may be transferred by electron-electron 
collisions. Abakumov, Perel', and Y a s ~ i e v i c h ~ - ~  used a simi- 
lar method to calculate the trapping of carriers by attractive 
centers in semiconductors. In these investigations the inelas- 
ticity of the scattering processes was linked to acoustic 
phonon emission. An increase in the carrier density in an 
energy band results in predominance of the inelastic elec- 
tron-electron scattering processes in recombination. The 
case of multiply charged centers is considered in Ref. 2. The 
approach employed in Refs. 1-6 is inapplicable to singly 
charged centers. This is because the equation for the distri- 
bution of the total electron energy E is derived by averaging 
the collision integral describing the scattering of free parti- 
cles in terms of the coordinates of a trapped electron, which 
is incorrect in the case of electron-electron scattering. The 
interaction between trapped and free electrons cannot gener- 
ally be reduced to the interaction of "free" particles, i.e., the 
orbital motion of a trapped electron is significant during the 
interaction time. The kinetic equation for the distribution 
function of the total electron energy, obtained by formal ap- 
plication of the method of Refs. 1-6, has no physically mean- 
ingful solutions. 

It is therefore necessary to determine the probability 
W(E,E ' ) ofa transition from an energy E to an energy E ' for 
a trapped electron under the influence of free electrons. The 
corresponding mechanical problem of a singly charged cen- 
ter (Z = 1 ) is considered in Sec. 2. The form of the function 
W(E,E1) can be used to draw the conclusion that the 
Fokker-Planck approximation can give only the order of 
magnitude, because the scattering processes involving the 
transfer of an energy 1 E ' - E I - E make a considerable con- 
tribution to the recombination flux for any value of E. 

We shall now formulate the problem in general terms. 
We shall assume that a stationary (steady) state is estab- 
lished in a system and that in this state electrons are excited 
optically from lower levels of centers to the conduction 

band. Collisions of the released free electrons with one an- 
other establish a Maxwellian energy distribution in a gas, 
with its own temperature Te and density n. Collisions may 
result in the trapping of one of the electrons by a high level of 
a Coulomb center. The energy of such a trapped electron 
changes subsequently because of the interaction with the gas 
of free electrons. This interaction may result in a repeat ioni- 
zation of the trapped electron. However, the probability of 
this event decreases as the electron drops to increasingly 
deeper levels so that in the interval - Te 5 E < 0 this prob- 
ability is of the order of unity, whereas for 1 E / )Ee , E < 0 the 
ionization probability is low. Therefore, a recombination 
flux forms at E- - T,. If the electron temperature Te is 
much smaller than the ionization energy of the Coulomb 
centers JE, I, the motion of the trapped electrons is usually 
quasi~lassical.~ We shall assume hereafter that the electron 
can again be excited optically, and so on. We shall postulate 
that a repeat photoexcitation occurs only if JE I ST,, E < 0 
and also that the rate of generation of electrons G 
( ~ m - ~ . s e c - ' )  is not known. In our problem the density of 
free electrons and their temperature can be expressed in 
terms of the generation rate G, photoexcitation energy E, (in 
the case of monochromatic photoexcitation), and crystal 
lattice parameters. 

In the case of a semiconductor plasma the charge e and 
the mass m of an electron should be replaced by their effec- 
tive values. 

The plasma is assumed to be almost ideal so that 

v=e2N'lr/Te<l,  eZnU/T,<l, (1 )  

where N is the concentration of attractive centers. We shall 
show below that it follows from the conditions of Eq. (1)  
that the recombination time T, is long compared with the 
energy relaxation time r,, so that free electrons do indeed 
comprise a Maxwellian gas. Moreover, it follows from the 
conditions of Eq. ( 1 ) that the energy relaxation time is long 
compared with the time of motion of a free electron from one 
center to another, i.e, 

where v, is the velocity of a thermal electron and r, is the 
momentum relaxation time, which is of the order of re for a 
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gas of free electrons. In spite of the fact that rp -7,) the 
distribution of free electrons is isotropic because of the con- 
dition ( 2 ) .  In the case of trapped electrons a transition to a 
state with the distribution of the total energy is possible if the 
other parameters of the orbit (or the integrals of motion) 
relax faster than the energy. We shall show that this situa- 
tion does indeed occur in the specific case of electron-elec- 
tron (ee) scattering in the field of a Coulomb center. 

Furthermore, the conditions of Eq. ( 1 ) imply also that 
wells overlap only weakly, i.e., that the overlap energy is 
Eo-e2N l i34T, ,  so that the motion of an electron in the re- 
gion of formation of a recombination flux occurs in the field 
of one center. 

We shall now consider the kinetic equation for free and 
trapped electrons. The distribution of the total energy 
f+ (E)  of free electrons is (apart from very high and very 
low energies) given by7 

1 
\ J I  

n'"GZee (T,, n )  8nne4A 
=- 

'(El= 4ily ('//,, E/T.) Y e  ( T  n ml"T.' 
, n"=T,g(Te),  

where g ( ~ )  is the density of states of an electron with an 
energy E; A is the Coulomb logarithm; y ( a , x )  is an incom- 
plete gamma function. The nonequilibrium distribution 
function f describes a recombination flux in a gas of free 
electrons and we find that j ( n /A  when E- Te . 

In the case of negative total energies the distribution 
function is far from equilibrium. This distribution function 
f- (E)  satisfies the following kinetic equation: 

C,,(fs*, fnrIE)fCee(i, fnrlE) 

In Eq. (4) ,  Cee represents an electron-electron collision inte- 
gral in which the first function describes the distribution of 
the particles being scattered, whereas the probability of scat- 
tering is given by the second function. If E > 0, then in the 
zeroth approximation the functional is Ce, ( fM,  fM lE) = 0, 
whereas for E < 0 it represents a source which supplies [to- 
gether with C,, ( j, fM IE) ] electrons to the region of nega- 
tive energies. The term I ( E )  describes photoexcitation. If 
the problem of recombination is solved, then the complete 
kinetic equation for electrons of all energies yields, subject to 
allowance for the scattering by phonons, the balance equa- 
tion describing the electron temperature. Since the electron- 
electron scattering does not alter the total energy of the elec- 
trons, all the entire pump power G ( E ~  - E l )  is dissipated by 
transfer to the lattice: 

The term Q describes the rate of energy loss due to the scat- 
tering of free electrons by phonons. If, as is assumed, free 
electrons are weakly disturbed by the scattering on trapped 
electrons, the term Q can be calculated without allowance 
for such scattering. The required result can be found in Refs. 
9,8, and 7. The rate of the energy losses due to the scatter- 
ing of trapped electrons by phonons will be calculated in Sec. 
3. 

2. MECHANICS OF THE INTERACTION BETWEEN FREE AND 
TRAPPED ELECTRONS 

A study of the probability W(E,E ') of a transition of a 
trapped electron from a state of energy E to a state of energy 
E ' under the influence of a Maxwellian gas of electrons (tri- 
ple collisions) will be studied by considering first the me- 
chanical problem of the interaction of a free electron of ener- 
gy E, arriving from infinity at a point represented by the 
impact parameter p ,  with a given trapped electron. The re- 
sult of the interaction is very different for different parts of 
the plane ( p , ~ )  shown in Fig. 1. We shall begin with the 
regions characterized by E( lE I and identified by the index a 
in Fig. 1. It is clear from this figure that the trajectory of an 
incident slow electron may be of two types. It is found that 
trajectories of the first type ( Ia)  characterized by p)p* lie 
far from an orbit, so that irrespective of the nature of arrival, 
the minimum approach distance is r,, >e2/lE 1. We shall 
show that for these trajectories the transferred energy 
IE ' - E / is exponentially small. 

Perturbation of a Kepler system by a slow electron trav- 
eling at a considerable distance from the system results in a 
slow change in the parameters and orientation of the orbit. 
Averaging over the revolution period, we obtain the follow- 
ing equations for the evolution of the integrals of motion 

where r and v are the radius vector and the velocity of a free 
electron; L is the Lenz vector; M is the angular momentum; 
6 is the eccentricity of the orbit of a trapped electron. The 
first two equations of the system (6)  yield the orbit preces- 
sion frequency 

The following relationship between the transit time of a 
free electron to, the precession frequency a, and the revolu- 
tion period T applies to trajectories of the first type: 

In fact, if the condition (8)  is assumed to be satisfied, it 
follows from the system of equations (6)  that a free electron 
moves in the field of a fixed dipole formed by a Coulomb 
center and by the charge of a trapped electron averaged over 
a revolution period. The time dependence of the distance to 
the dipole is then 

epcos 8 0  2~ 
r2=p2-  - + - tZ, 

E m 

where p is the average dipole moment; 8, is the angle 
between the vector - p and the initial velocity v,. It is clear 
from Eq. (9)  that if ~ ~ ' # e p  cos do, then the trajectories lie 
far from the center, at a distance of the order ofp, so that 

on the other hand, we find that 
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FIG. 1. Regions ( p , ~ )  in which different methods of describing the scat- 
tering of a free electron of an energy & by a trapped electron E can be used 
(see Sec. 2) .  The transferred energy is exponentially small in the regions 
Ia and Ib, it is of the order of IE / in the region IIa, and of the order of 
e4/&p? in the regions IIb and IIIb. The Fokker-Planck (FP in the sub- 
scripts) approximation for trapped electrons is valid only in the region 
IIb. The impact parameterp*(~,O) for the capture by an orbit is defined 
by Eq. (1 1 )  and the adiabatic size is p, = v, T; p,,,, and p,,,, are the 
impact parameters (distances) at which the transferred energy is of the 
order of lE / and&, respectively; r ,  is the Debye radius (static screening). 

Therefore, Eq. (9)  can indeed be used and we can assume 
that trajectories of the (Ia)  type do not intersect the orbit. 
We can estimate the transferred energy by expanding the 
orbital velocity v(t) as a three-dimensional Fourier series, 
the coefficients and period of which are slow functions of 
time with a characteristic scale S1-I: 

v (f) = z u .  ( t )  exp[2nnit/~ ( t )  1, 
"P- rn  

and we shall estimate the integral 

We shall deform the integration contour to the upper (n > 0)  
or lower (n < 0)  half-plane of the complex quantity t so that 
it passes through saddle points. If n #O, it follows from the 
condition of Eq. (8)  that in each half-plane there are two 
saddle points located at distances of the order of to and a-' 
from the real axis, and they make an exponentially small 
contribution to AE compared with nto/Tand n/RT, respec- 
tively. The term with n = 0 makes zero contribution to A E  
for the following reason. The direction of the vector uo(t) is 
identical with the direction of the vecor L if we can ignore a 
change in the energy. It then follows from the right-hand 
side of the expression in the system ( 6 )  that uo( t ) l r ( t )  and 
the term with n = 0 vanishes, which justifies the initial as- 
sumption of the smallness of the change in the energy of an 
orbital electron. 

In the opposite limiting case when the dipole precession an- 
gle of p = J"_ S1(t)dt is large compared with unity, the 
condition of Eq. (1 1) again selects those trajectories which 
are captured by an orbit. The self-consistent motion of the 
electrons can then be represented as follows. The orbit of a 
bound electron precesses rapidly and the value of the Lenz 
vector (L) averaged over a precession period differs little 
from (Lo cos 8,,O,O). The x axis is assumed directed toward 
the free electron, Lo is the initial amplitude of the Lenz vec- 
tor, and the angle 0, is between the vector - Lo and the 
direction v,. Therefore, the motion of a free electron can be 
regarded as taking place in a central field with a potential 
U ( r )  = -Lo cos O0/r 2. The center captures an electron if 
the condition ( 11 ) is satisfied. We can expect the condition 
( 1 1 ) to be valid, in order ofmagnitude, also in the intermedi- 
ate case when e, - 1. 

When an electron is captured by an orbit (trajectory 
IIa) and if the distances between all three particles are of the 
same order of magnitude (e2/IE I ) and their kinetic energies 
are of the order of IE I, then there is no other quantity with 
the dimension of energy in the problem apart from IE I, so 
that the transfer of energy is also of the order of the binding 
energy of a trapped electron. It follows from Eq. ( 1 1 ) that 
the cross section for inelastic scattering accompanied by the 
transfer of an energy AE- JE I is 

The interaction should result in one of the electrons leaving a 
center because the initially infinite phase space of the system 
cannot become finite. We might expect that exceptional si- 
tuations of formation of a bound state in a system of three 
bodies attracting each other in pairs and arriving from infin- 
ity lo have no bearing on our case. It should be stressed that 
the initial simplifying assumptions ( E (  I E / and even p)e2/ 
1 E ( ) are unimportant in the sense that a rigorous calculation 
of the cross section ( 12) still requires a solution of this type 
of problem for three bodies (m, = m,, m, = a,, Z = 1) in 
its general form, because the moving electrons are in a situa- 
tion when their energies as well as mutual distances are of the 
same order of magnitude. Figure 2 shows, by way of illustra- 
tion, a computer experiment on collisions between two elec- 
trons. 

We shall now consider the limit when a free electron of 
energy E is fast and its velocity v, is high compared with the 
velocity of orbital motion of a trapped electron V, ( E )  IE I ). 
The trajectories of a free electron can be divided arbitrarily 
into three types (Fig. 1 ). In the first (Ib) the time taken to 
travel a distance equal to the impact parameter p is long 
compared with one revolution period T: p)p, EV, Ta (e2/ 
jE 1 ) (E/IE 1 ) '". In this case the interaction of a free electron 
with the other two charges is adiabatic. A direct calculation 
shows that the transferred energy AE is small: 

It therefore follows that a significant transfer of energy AEmexp (-p/v,T), (13) 
occurs if the incident electron is captured by an orbit. If, as 
before, we still assume that the dipole is immobile, this oc- in spite of the fact that the Kepler system is degenerate and 
curs at the changes in the action variables during a scattering event 

are generally power-law small. The transfer of energy is pos- 
EPYE (pt) '=ep cos e , - ~  [(eZ/I E I ) ( IElle) "'1 t~~~ 8,. ( 11 1 sible only in the case of the trajectories IIb and IIIb. We must 
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state more precisely that ifp 5 e2/lE / we have to distinguish 
two impact parametersp - andp +, measured from a trapped 
electron (which is almost immobile during the motion of a 
free electron in a sphere of radius p, ) and from a center 
which has captured an electron, respectively. (The division 
into regions in Fig. 1 in the case whenp 5 e2/ 1 E / corresponds 
to the use of p -  as the ordinate. ) If p +  )e2/&, p q ,  , then 
during the scattering (inside a sphere p, ) both electrons 
may be regarded as free and then for trajectories of type IIb 
when 

the transferred energy is e4/& 4 IE 1 .  In the region IIIb, 
when p-  5p,,, the transferred energy is of the order of or 
greater than 1 E 1 .  In addition to these trajectories, there is one 
more case p +  Se2/&, but among all the trajectories with 
p -p - - e2/l E / an allowance for those which are additional- 
ly curved by the field of the center, is an exaggeration of the 
accuracy. 

It therefore follows that in the limit E) IE I the scattered 
electrons interchange energy "irreversibly" only within a 
sphere of radiusp, The relaxation of other integrals of mo- 
tion of a trapped electron occurs already forp 5 r, ( r ,  is the 
Debye radius). The condition r, )pa ,p* ensures-as shown 
below-that the distribution function of the trapped elec- 
trons is isotropic. 

3. KINETIC EQUATION 

We shall consider the kinetic equation bearing in mind 
that a change in the energy E alters greatly the relative values 
of the various terms in (4) .  We shall consequently divide the 
region of negative energies into three subregions: A, B, C. In 
the subregion A defined by - Te 5 E < 0 it is almost always 
possible (with the exception ofenergies very close to zero) to 
drop the term Cee (f-,  f - ) .  A recombination flux forms in 
the subregion and, as pointed out earlier, photoexcitation 
can be ignored so that only the first three terms remain in Eq. 
(4) :  

In the subregion B we have IE / ) T, , E,  < E < - Te , where 
E, is the characteristic energy at which photoexcitation may 
become significant; it is now possible to ignore all the pro- 
cesses with the exception of the interaction between trapped 
and free electrons, so that we are left with 

The linear integral equation of Eq. ( 15) should be supple- 
mented by a boundary condition which, in the case of such a 
division, is the requirement of matching of the distribution 
functions f- (6) found separately from Eqs. ( 14) and ( 15) 
at E- - T, .  

We shall not consider the subregion C,  where E < E,, 
and we shall assume a strong disequilibrium of f- (E) ,  so 
that the flux from C to B is small compared with the reverse 
flux. This is always true if Te is sufficiently small compared 
with E,. 

Beginning from the subregion A,  we shall show that Eq. 

FIG. 2. Example of a computer calculation of the trajectory of an electron 
(planar projection). The black dots represent the initial orbit of a trapped 
electron. The free electron is far outside the figure on the right. The initial 
data are selected so as to satisfy the condition ( 11 ). The open circles and 
the continuous curve represent the trajectories of an initially trapped and 
an initially free electron in the course of charge exchange. We can see that 
up to that time the precession turns the orbit by an angle of about .rr/4. In 
the course of charge exchange the emerging particle acquires a consider- 
able energy (the points are plotted at equal time intervals). We can see the 
initial precession of the orbit of a newly trapped electron. 

(4 )  is indeed an integral equation. We shall do this using the 
results of Sec. 2 and estimate the rate of change of the energy 
A(E,E) of a trapped electron with the energy E under the 
influence of free electrons with an energy E and a density 
n, =fM ( E ) ~ ( E ) :  

A ( E ,  E)  = J AE (p) n.v.dn,. 

The use of the Rutherford cross section valid in the case of 
free electrons yields the following expressions for the regions 
E)JE 1 (Fig. 1): 

E 
A I I ~ ( E ,  E )  - 

Tee (net E 

E - 
Tee 8) 

~n[ ( L)"'] --A;,,(E. 8 ) .  
IEl 

The contribution of electrons with e(lE I does not contain a 
logarithm and it can be ignored. It follows from the relation- 
ships in Eq. ( 16) that calculation of the first moment of the 
function W(E,E ') gives contributions of the same order of 
magnitude to the integral with respect to E '  - E and these 
contributions are made by all the transferred energies begin- 
ning from e4/&p: and right down to &. We recall that the 
derivation of the free-electron Landau collision integral uses 
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essentially the circumstance that 

where p, = e2/&; E and E' are the energies of the scattered 
free electrons, E)E'. This inequality makes it possible to use, 
with a logarithmic precision, the Fokker-Planck equa- 
t i ~ n . " * ' ~  In this case the cutoff radius is p a ,  but ln(pa/ 
p, ) -ln(c/Ef). 

In the region I E / <Te the distribution function f- (E) 
can be represented in the form f- (E)  = f- (0)  + 6f(E). 
The correction 6f can be estimated only symbolically by 
solving in this region the equation with the Landau collision 
integral (which is valid in respect of the order of magni- 
tude). The coefficient of diffusion in the space of total energy 
[DM (E), see Refs. 12, 9, and 71 is defined by the relation- 
ship: 

where the density of states at E < 0 is 

2 ( E )  =x2/4g (T,) v3 (T,/IE()'/1. (18) 

We find from Eqs. ( 17) and ( 18), assuming that fM (6) = 0 
when E < 0, that the diffusion coefficient is described by 

g(E) D,r (E) (8lBE) f- (E) =G (20) 

yields then the distribution function 

The constant of integration fM (0)  is found from the condi- 
tion of matching to a Maxwellian distribution at E = 0; this 
condition must be introduced in the adopted approximation 
in order to represent the source Cee ( fM, fM 1 E )  [see Eq. 
( 14) 1. The function (21) is identical with that found by 
Gurevich3 for jE ( 4 Te (when Z )  1 ) . 

We shall now consider the subregion B and we shall do 
this by writing down Eq. ( 15) in its full form: 

J[W(E,Ef)f-(E)-W(Ef,E)f-(E')]z(E')dE'=O; (22) 

here, the probability of energy transfer W(E,E ') in the scat- 
tering by slow free electrons differs from zero for E -E ' and 
E ' < E, and the energy relaxation time [see Eq. ( 12) ] can be 
estimated at 

Integrating Eq. (22) and equating the result to the con- 
stant flux along the energy axis, we obtain the required equa- 
tion for the distribution function f- (E), which is estimated 
to be 

or,. (g)% . f- (E) = - 
v3ii 

It should be noted that if Z> 1, the exponent in the above 
expression is 3/2 (Ref. 3 ). Finally, it follows from the condi- 
tion f( - Te ) - fM (0)  that 

n-e-5(mT,.8)"4 (GIN)'". (25) 

The quantities n and N are linked by the linear relationship 
n + NA = N, where ND > NA ; ND and NA are the numbers 
of donor and acceptor impurities. If n 2 NA , then 

The recombination time T, is defined by 

t,=n/G-r ,.,, (n, T,.)/v3. (27) 

This is a simple Thomson-like formula13s6: an electron can 
recombine if it is-in the energy sense-above a center 
(probability v3) and it loses an energy - Te by electron- 
electron scattering in a time re, (n,Te ) .  Multiplying f- ( E )  
by &E), we obtain the number of particles which have an 
energy E: 

At lE I -Eo, Eq. (23) matches the number of free particles 
n+ (E,) -g(Eo)fM (E,) - (n/T, )v112. The divergence of 
the integral for the total number of trapped particles makes 
it necessary to truncate the integral at deep energies E = El ,  
where El < 0. The above formulas are valid if the total num- 
ber of electrons is less than the concentration of all the 
centers (including nonionized centers). The energy El may 
be, for example, the ionization potential. 

The result (27) is predicted in Ref. 2. In our case we 
have Z = 1, so that the scattering is essentially of the three- 
body type and the transfer of energy does not reduce to a 
series of small-angle collisions between the trapped and free 
electrons. Although the diffusion approximation is no long- 
er valid here, Eq. (26) is identical (apart from a coefficient 
of the order of unity) with the result obtained in Ref. 2. 

The Thomson approachI3 used in Refs. 14 and 15 is also 
accurate only in order of magnitude. In general, recombina- 
tion is not due to single scattering and the contribution of 
such scattering to the recombination flux is of the order of 
the diffusion contribution, so that the results of Refs. 2 and 
14-16 are identical with Eq. (27). As pointed out in Ref. 14, 
the coefficient in Eq. (27) should be selected carefully. For 
example, in Ref. 14, where the upper limit for the recombina- 
tion coefficient is calculated, the relevant integral diverges 
linearly and is truncated when the interaction becomes adia- 
batic. This choice of the integration limit is only approxi- 
mate and the required integral is in fact near this limit. One 
should also point out that the location of a "bottleneck" at a 
depth (5/2) T, (Ref. 15) is not justified, since typical energy 
transfers are of the order of Te . 
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FIG. 3. Solution of the balance equations. In Eqs. (32) and (25) the 
unknown numerical coefficients are assumed to be unity. The upper 
dashed line represents the equation re, = r,. The lower dashed line is 
v =  1. Our solution is valid bet_ween these two straight lines. 
E E = 200 K and T, = 4.2 K. Q reaches the value Gums2 when 
G9:10:2 cm-3.sec-1. 

Finally, the theoretical and numerical  calculation^'^^'^ 
based on the Chandrasekhar formulas for binary collisions 
also provide only an order-of-magnitude description of the 
recombination process. The numerical coefficient in Eq. 
(27) is not known. One of the possible ways of finding this 
coefficient is a numerical solution of the integral equation 
(4).  In such a calculation it is necessary to average the trans- 
ferred energy found from the equations of motion over all 
possible ways of approach and to obtain W(E,E ' )  for Eq. 
(4).  

We shall now calculate the rate Z) of the energy losses 
due to the scattering of trapped electrons by phonons. We 
shall assume that energy is lost only because of the spontane- 
ous emission of deformation acoustic phonons, i.e., that the 
lattice temperature is sufficiently low. An allowance for the 
acoustic phonons in the dynamic friction coefficient of elec- 
trons has the effect that the kinetic equation for the distribu- 
tion function of the electrons in the region 1 E / ) Te , E < 0, is 

In our case we have A,, ( Te ) %A,, ( T, ), so that the recom- 
bination time is governed by the electron-electron scattering 
processes. Nevertheless, allowance for A,, in the kinetic 
equation is sometimes important. The expression for 
A,, (E )  can be obtained as follows. When the emission of a 
phonon occurs in the same way as in the case of free elec- 
trons, we then have 

where C andp, are, respectively, the deformation-potential 
constant and.the density of the c r y ~ t a l . ~ , ~  The expressions in 
Eq. (30) are valid ifms2( I E I (ams2, where a = e2/tis, and s 
is ;he velocity of sound. The left-hand inequality means that 

the electron velocity v is higher than the velocity of sound, 
whereas the right-hand inequality shows that a typical ener- 
gy of the emitted phonons is greater than the gap between 
levels. We can show that in the region E)ams the probabil- 
ity of phonon emission falls rapidly and the contribution of 
this region to the integral of G can be ignored. Then, substi- 
tuting Eq. (30) and A,, = IE //T, [for r, see Eq. (23) 1 
into Eq. (28), we obtain 

The selection of the lower limit is unimportant if ams2) Te . 
This is precisely the case we shall consider below because in 
the case of the opposite inequality the value of Z) is known to 
be small against the background Q (in terms of the param- 
eter v ) .  It is clear from Eq. (3  1) that the maximum value 

is reached when, in the vicinity of E = - urns2, the distribu- 
tion function is governed by phonons. 

Substituting in Eq. ( 5 )  the resultant formula for Z) as 
well as the expression for Q = n ( T, - TL )/roc ( T, ), and 
applying Eq. (25), we obtain the following equation for the 
electron temperature as a function of the pump rate: 

at,, r ?  'T. 

At high pump rates we have N z n ,  and, moreover, we also 
find that Q ~ Q ,  so that subject to Eq. (26), we find that 

If n(N, but &Q, then 

0 then reaches the value Gums2 if 

Solving the above inequality subject to Eq. (341, we 
obtain 

At these electron densities the electron temperature is given 
by 

T,=G1/,~ (ea-El-ams?) ' l ~ ~ N ' l t ~ ~ ' l ~ ~ f i " / t ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ " ~ ~ ~ ~  (36) 

If the semiconductor is sufficiently pure, i.e., if 

then @becomes important when N, 5 n 5 &'and the formula 
which defines the electron temperature is similar to Eq. 
(33) : 

This is precisely the case illustrated in Fig. 3. The transition 
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from Eq. (33) to Eq. (37) is manifested in logarithmic scale 
as an inflection. It should be pointed out that if urns2< (E, 1, 
then the contribution of to the balance equation is always 
small. 

We shall now show that the hypothesis that the distri- 
bution is isotropic when E < 0 (and also when E > 0)  does 
not result in additional restrictions. We shall estimate the 
relaxation time T of the integrals of motion M and L of the 
trapped particles. The free electrons passing by at distances 
equal to the impact parameter p, r ,  Zp)e2/JE 1, cause 
precession of the orbit at the frequency given by Eq. ( 7 ) .  The 
angle of rotation of the Lenz vector (or moment) of the orbit 
during the passage of a single electron at a distance equal to 
the impact parameter is 

c-2 m 

The diffusion coefficient of angular deviation is 
T I )  

D - J [ A T  (PI  12nevepdp; 
e211EI 

the same quantity represents the relaxation of the orbit ec- 
centricity. Therefore, the required relaxation time of the in- 
tegrals of motion (apart from the energy) is 

T - D - ' - T ~ ~  (n ,  T.) (IE(/Te)ln-'  ( r ~  E ( l e 2 ) .  (38) 

On the other hand, for the energy relaxation time, we get 
from Eqs. ( 16) and (23 ) 

[ ~ e e  (n ,  T e )  ln-' ( T J  I E I ) , 

I IEI3Te  

Comparing Eqs. (38 ) and (39), we can see that 747,. Final- 
ly, comparing Eq. (21) with a similar expression for the 
recombination time in the case of scattering by phonons (in 
semiconductors) or neutral atoms (in a gas plasma), we find 
that the mechanism in question predominates at pump rates 

G>G8-m/iS ( T . )  eZ, 

where 7 ( ~ )  is the energy relaxation time in the case of scat- 
tering on the thermostat phonons or the neutral atoms in a 
plasma. 

The authors are grateful to A. I. Larkin, I. B. Levinson, 
and L. P. Pitaevskii for valuable discussions, and to V. I. 
Perel' for drawing our attentioin to the case of compensated 
semiconductors. 
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