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The transmission spectra and optical activity of single crystals and polycrystals of the BPI, BPII, 
and BPIII phases were measured. The experimental data were compared with theoretical expres- 
sions derived in the framework of kinematic and dynamic diffraction theory and relating the 
observed blue-phase properties with Fourier harmonics of the dielectric tensor. The absolute 
values and temperature dependences of the Fourier-harmonics were determined. Expressions 
that take into account up to eight Fourier harmonics are obtained by the Landau theory for the 
free energies of cubic-symmetry phases, and the minimum-energy structures are determined by 
numerical methods. I t  is shown that an approximate analytic description of the blue-phase struc- 
tures is possible. In this approximation the structure of the order parameter is similar in all the 
phases and only the amplitude of its spatial modulation can change. In particular, the tempera- 
ture dependence of the order parameter coincides with the corresponding dependence for the 
Landau theory with a scalar order parameter; this agrees well with the experimental data. 

I. INTRODUCTION 

Considerable progress has been achieved during the last 
few years in understanding the liquid-crystal blue phases ob- 
served in a narrow temperature interval between the choles- 
teric phase and the isotropic liquid (see the reviews'-3 and 
the references therein). The molecules in the blue phases 
have a three-dimensional spatial ordering that leads, in par- 
ticular, to finite elastic shear moduli; at the same time, since 
the centroids of the molecules have no long-range order, vis- 
cous flow of matter across the structure of the blue phases is 
possible. The molecule orientations can acquire a spatially 
inhomogeneous structure as a result of their right-left asym- 
metry (chirality); this asymmetry causes the molecule ori- 
entation to vary from point to point and to form a spiral 
structure (one-dimensional for cholesterics and three- 
dimensional for blue phases). I t  has by now been established 
that there exist at least three types of blue phase, BPI, BPII, 
and BPIII, with different spatial structures (the phases are 
listed in order of rising temperature; BPIII is called also the 
"fog" phase). 

An important role in the experimental investigations of 
blue phases is played by optical modes. The most informa- 
tive are measurements that reveal distinctive properties due 
to light diffraction, since the unit-cell size of these phases is 
of the order of the wavelength of light. I t  was concluded 
from the observable optical diffraction reflections that the 
blue phases have cubic  phase^,^-^ and the most probable 
space groups of these phases were indicated. The spiral or- 
dering of the molecules in the blue phases reveals strong 
circular d i ~ h r o i s m ~ , ~  and optical activity, from which one 
can obtain information on the blue-phase structure. Optical 
activity was measured in Refs. 7 and 8, but the inability to 
control the sample quality and the unit-cell orientation made 
difficult a quantitative description of these experiments as 

well as a comparison of the data with one another. The BPI 
blue-phase order-parameter modulus was determined in 
Ref. 9 from the transmission spectra, but without data on 
their temperature dependence. 

The theory of the structure and symmetry properties of 
blue phases was developed mainly within the framework of 
the Landau phase-transition theory. ''-I3 Its predictions 
agree qualitatively with the experimental data, but no de- 
tailed comparison of the theory with experiment has been 
made so far (with the exception of Ref. 6 ,  in which it is 
shown that the intensity ratio of individual reflections is 
close to the theoretically predicted one). 

We present here a consistent comparison of the theory 
with the results of optical experiments, with the blue phases 
of cholesteryl nonanoate as the example. The temperature 
dependence of the transmission coefficient, and the optical 
activity, were measured both in the region of existence of 
blue phases and for supercooling into the cholesteric phase. 
The order parameter and its temperature dependence are 
determined from various experimental data for the BPI and 
BPII phases. 

The organization of the theoretical analysis is the fol- 
lowing. We derive first, within the framework of kinematic 
and dynamic diffraction theory, equations that relate the 
blue-phase optical properties observed in single crystals and 
polycrystals with their structural characteristics ( the Four- 
ier harmonics of the dielectric constant t ,  ) .  These equations 
are used to calculate from the experimental data the Fourier 
harmonics (apart from the phase) under the assumption 
that only one planar mode contributes to each Fourier har- 
monic (vide infra), and obtain their temperature depen- 
dence that follows from the experiment. The temperature 
dependence of;, is next calculated, under the same assump- 
tion, from the Landau theory and the theoretical and experi- 
mental data are compared. 
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II. SAMPLE PREPARATION AND MEASUREMENT 
PROCEDURE 

The measurements were made on cholesteryl nonan- 
oate, which has three blue phases: BPI, BPII, and BPI11.4.6 
BPI and BPII single crystals were grown in quartz cells 
whose surfaces were coated with polyvinyl-alcohol film and 
rubbed with filter paper for alignment. Experiment has 
shown that better crystals are obtained by cooling from an 
isotropic liquid. The normal to the cell surface is then paral- 
lel to [ 1 101 in the BPI phase and to [ 1001 in BPII. We used 
single crystals from 8 to 220pm thick. The sample thickness 
was monitored by interference. An oriented cholesteric is 
obtained by relative shift of the cell cover glasses when the 
sample is in the cholesteric phase. Polycrystalline blue- 
phase samples were obtained in untreated quartz cells 2 mm 
thick by heating from the cholesteric phase. The measured 
BPIII samples were not oriented, since the standard cell- 
preparation methods used to obtain single crystals of BPI 
and BPII do not lead to formation of an oriented structure in 
the BPIII phase. 

The transmission spectra and the light-polarization- 
plane rotation were measured from one and the same 0.1 X 1 
mm section of a sample. The temperature was maintained 
and regulated to within 0.01 "C. The orientations of the BPI 
and BPII single crystals relative to the cell surface and the 
quality of the obtained single crystals were monitored 
against the transmission spectra; the textures obtained were 
also monitored by observation through a polarization micro- 
scope. We used DMR-4 and MDR-23 monochromators in 
the measurements. The light-polarization-plane rotation 
was measured by a modulation method, accurate to -0.5 
degree of angle at the wavelength of an He-Ne laser. The 
intrinsic (molecular) optical activity was 0.27 deg/mm at 
A = 6.33 nm. 

Ill. EXPERIMENTAL RESULTS 

Figures 1-4 show the measured spectral-transmission 
line shapes, the line spectral positions, and the optical activ- 
ity at various temperature. The reflection half-width varies 
little within the phase-existence temperature range, it 
changes insignificantly on going from BPII to BPI, and in- 
creases when a transition is made to the supercooled region 
of BPI; the latter is apparently due to the appearance of cho- 
lesteric-phase nuclei and to degradation of the sample quali- 
ty. The intensity at the reflection maximum (Fig. 1) de- 
pends nonlinearly on the sample thickness (0.19 and 0.047 
as the thickness is decreased from 20 to 10,um), and the half- 
width increases with decreasing thickness of the single crys- 
tal (from 4.3 to 8.1 nm, respectively). The spectral positions 
of the reflections in the BPI and BPII phases (Fig. 2) agree 
with the results of earlier mea~urernents .~ '~  It is known that 
no individual transmission spectrum bands are observed in 
fog phase. Figure 2 shows for BPIII the spectral location of 
the maximum of the selective reflection band in "backward" 
scattering.I5 Note that the maximum ofthe fog-phase reflec- 
tion is shifted towards longer wavelengths relative to the 
reflection of the cholesteric and towards shorter wave- 
lengths relative to BPII. 

711 
A h ,  nm 

FIG. 1. Line shape in BPI transmission spectrum: 1 ) T = 90.88 "C, sam- 
ple thickness L = 10prn; 1 ) T = 90.80 'C, L = 20pm. The dashed curves 
follow from the kinematic theory. 

The temperature variation of the light polarization 
plane rotation at a fixed wavelength are shown in Fig. 3. In 
the region where blue phases exist, the optical activity 
changes by approximately 40 times, while for the fog phase it 
does not depend on whether the BPIII was obtained from 
polycrystalline or single-crystal BPII samples. In the choles- 
teric phase, the measured samples were oriented with the 
spiral axis perpendicular to the cell plane. Strong birefrin- 
gence is observed in the cholesteric polycrystalline samples 
and makes measurements of the optical activity impossible. 
In the case of phase transitions (see Fig. 3 )  jumps are ob- 
served in the rotation of the light polarization plane; it 
should be noted that unlike in Ref. 7 we have observed a 
jump also in a transition from the isotropic liquid to BPIII. 
The optical activity in BPI and BPII single crystals is higher 
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FIG. 2. Temperature dependence of the position of the long-wave reflec- 
tion in BPI, BPII, and BPIII. Solid line-reflection location that follows 
from the Landau theory for the space groups 0 2,  0 5 ,  0 '. 
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FIG. 3. Rotation of the light-polarization plane in the cholesteric, blue, 
and fog phases at A = 633 nm: A-Cholesteric single crystal, L = 50pm; 
.-BPI, BPII, and BPIII polycrystals, L = 50 pm; 0-BPI, BPII, and 
BPIII single crystals, L = 220pm. 

than in polycrystalline samples, and has a stronger tempera- 
ture dependence. 

'Typical examples of the dispersion of the optical activ- 
ity of blue-phase mono- and polycrystals, together with the 
corresponding transmission spectra, are shown in Fig. 4. For 
single crystals, the dependence on the wavelength is stron- 
ger, and reversal of the rotation in the diffractive-reflection 
region is typical also of the cholesteric phase. The curves for 
polycrystals are smoother, and no divergences are observed 
near the "steps" of the transmission spectrum bands. An 
even smoother dependence on A is observed in the fog phase. 

The integral intensity of the reflections in the transmis- 
sion spectra of BPI and BPII single crystals increases with 
decreasing temperature. The measured integral intensities 
are reported below. 

IV. THEORY OF OPTICAL PROPERTIES 

The main purpose of optical measurements in the blue 
phase is to determine its structure, i.e., the spatial structure 
of the order parameter. Following Refs. 10-13, we choose 
the order parameter in the blue phase to be the zero-trace 
part of its dielectric tensor 2. ( r )  . Taking the spatial periodic- 
ity of the blue phase into account, it is convenient to repre- 
sent E ( r )  as a Fourier expansion in the reciprocal-lattice vec- 
tors T: 

where T = 277d - '(hx + k y  + l z ) ,  d ,  is the dimension of the 
unit cell, h, k, and I are the Miller indices, and x, y, z  are the 
unit vectors of the crystallographic axes. 

The theory of optical properties of blue phases is the 
subject of many ~ t u d i e s . ' ~ - ' ~  We consider here in detail cases 
in which terms quadratic in the Fourier harmonics of 2, 
suffice for the description of the light-polarization plane ro- 
tation and of the reflection and transmission coefficients. 
This is valid for thin single crystals, polycrystals with small 
individual blocks, as well as for light propagation outside the 
regions of strong diffractive reflection (specific criteria for 
these approximations will be given below; they all reduce in 
fact to the requirement that the diffracted-wave intensity by 
much lower than that of the incident). From the practical 
point of view, the situations considered here are the most 
favorable for the determination of the Fourier harmonics of 
2, from experimental data, since the optical properties are 
practically independent of the degree of perfection of the 
single crystals or of the shapes of the individual blocks of 
polycrystals, and are determined only by the form of 2,. 

a) Kinematic approximation 

We consider first diffractive scattering of light from a 
thin single crystal in the form of a plane-parallel slab of 
thickness L. Using the results for crystals of arbitrary thick- 
nes~ ,~ . ' '  we obtain for the coefficient R of light reflection 
from a thin single crystal 

where I, is the intensity of an incident wave with polariza- 
tion e,, Id is the intensity of the diffracted-wave component 
with polarization ed , and /e,*&,e,/ * is a polarizational-struc- 
tural factor. The geometric factor R, is of the form 

FIG. 4. Dispersion of optical activity in blue-phase mono- and polycrys- 
tals and in an isotropic liquid: 1-BPI single crystal, T = 90.42 T; 2- 
BPII single crystal, T = 90.95 "C; 3-BPI polycrystal, 90.42 "C; 4--BPI1 
polycrystal, T = 90.95 T; 5-BPIII, T = 91.02 "C ( A )  &isotropic liq- 
uid, T = 92.0 'C ( A  ). The lower inset shows the corresponding transmis- 
sion spectra for unpolarized light. 

where E,  is the average dielectric constant, 

s the normal to the crystal surface, T the reciprocal lattice 
vector, and x, and x, = x, + T the wave vectors of the inci- 
dent and diffracted waves, respectively. The parameter a 
describes the deviation of the wave incident on the crystal 
from the Bragg condition, and vanishes when this condition 
is met. Equation ( 2 )  was obtained under the assumption 
that the parameter a is much less than unity for only one of 
the reciprocal-lattice vectors, and is of order unity for all 
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others. One more assumption used to obtain ( 2 ) ,  viz., that 
the crystal is thin, means that - 

L Z ~ ~ o - 4 ~ 0 2 1  ( x ~ s )  ( x ~ s )  I Ied~TeO1 -' 
for any of the polarizations e, and e, . Expression ( 2 )  reveals 
clearly a characteristic feature of diffraction from small 
crystals: the structure of the blue phase enters (via 2, ) only 
in the polarizational-structural factor, while the dependence 
on the shape and size of the crystal and on the diffraction 
geometry is contained in the factor R.. For a plane-parallel 
slab this factor takes the form (3 )  whereas, say, for a spheri- 
cal crystal or diameter D we have 

R , = C C - ~ E ~ - ~ ( ~ + X ~ / ~ - C O S  x-x sin x), (4) 

where x = aDx,. We note that when the Bragg condition is 
met (a = 0 )  the quantity R, reaches a maximum value 
R, - L  2; the angular and frequency width of the reflection is 
proportional to L - '  -D -'. 

For maximal exclusion of the effect of the experimental 
geometry, it is convenient to transform to the scattered-wave 
intensity I,,, integrated over the wavelength 

where V is the volume of the blue-phase crystal. I t  must be 
emphasized that ( 5 )  contains only the total volume and this 
expression is valid at any crystal shape, and also if the crystal 
is not perfect and consists of individual slightly disoriented 
blocks. 

After measuring I,,, at various polarizations e, and ed 
and at various incidence angles, all the components of the 
tensor 2, can be determined accurate to within a common 
phase shift. The theory predicts that the tensor form of;, for 
the observed reflections is determined mainly by the so- 
called planar mode,''-l3 as is confirmed by experimental 
data.19v20 If only a planar mode is considered, we have 

where E(T, 2)  is the amplitude of the planar mode in the 
expansion ( 1 ), m, = 2-"'(m, - im,), and the unit vectors 
m,, m,, and T / T /  form a right-hand triad. In this case dif- 
fractive scattering is experienced only by light with a definite 
elliptic polarization e, (with polarization-ellipse axis ratio 
sin 8, = r/2x0). The polarizational-structural factor for 
this polarization is JE(T, 2)  )'( 1 + sin2B, )'/4, whereas for 
polarized light this factor takes the form IE(T, 
2)  l 2  ( 1 + sin2@, ) 2/8. Using ( 2 )  and (5 )  we can calculate 
from the experimental data the modulus of the plane-wave 
amplitude. 

b. Rotation of the polarization plane (dynamlc effects) 

The rotation of the polarization plane has been thor- 
oughly investigated in cholesteric crystals for light propa- 
gating along the helix, i.e., at x , l l ~  (and exact solution of the 
Maxwell equations is known for this case). The problem is 
more complicated in blue phases, for which a set of recipro- 
cal-lattice vectors T exists, and vectors T that are not parallel 
to x, can be found for any light-propagation direction. The 
physical cause of the strong rotation of the polarization 

plane in blue phases and in cholesterics is the macroscopic 
twisting of these structures. From a more general view- 
point3s21 one should speak not simply of rotation of the po- 
larization plane, but of spatial-dispersion effects in cubic 
blue-phase structures. In ordinary crystals these effects are 
small because d /A is small, whered is the crystal-lattice peri- 
od. In blue phases, d is of the order of the optical wave- 
lengths, and spatial dispersion effects are generally speaking 
not small. The blue phases are therefore strictly speaking 
optically isotropic only in the limit as A-m. 

We begin the quantitative treatment of diffractive bire- 
fringence and of the polarization-plane rotation with the 
case of perfect crystals. The electric-field vector E ( r ,  t )  takes 
then inside the crystal the form of a Bloch wave 

E (r, t )  = E, exp [ik,r - i,ut], ( 7 )  
T 

where the summation is over all the reciprocal-lattice vec- 
tors T. 

Substituting ( 7 )  in Maxwell's equation, we obtain a set 
of equations that describe the interaction of the electromag- 
netic wave with the crystal 

We confine ourselves to wave propagation outside the region 
of strong diffractive reflection. The amplitude E, of the di- 
rect wave is then large, and the remaining amplitudes E, are 
small and can be obtained from (8b) by perturbation theory: 

( 7 2 0 ) .  Substituting (9 )  in (8a)  we find that the propaga- 
tion of the wave E, is described by the effective dielectric 
constant &,,, which contains diffraction corrections, while 
2, is given by 

The condition for (10) to be valid is that the diffraction 
corrections of E~ be small, i.e., the second term in the right- 
hand side of (10) must be small compared with the first. 
Obviously, this condition is not met if the Bragg condition 

r2+2 (x0z) =o 
holds. We note that a similar method was used to calculate 
the diffractive increments to .? for c h o l e ~ t e r i c s ~ ~  and in the 
case of x rays 2 3 9 2 4  for ordinary crystals. 

At arbitrary direction of x, the tensor 2,, is not Hermi- 
tian and is asymmetric (but the condition 

[^Eel! (XO) I ij=[^eef, (-XO) Ijil 

is satisfied, as it should in the absence of a magnetic field). 
The polarizations of the eigenwaves are then elliptic and 
both gyrotropy and linear birefringence obtain. In the case of 
light propagation along threefold or fourfold symmetry axes 
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the eigenwaves are circular and there is no circular birefrin- 
gence. 

We derive specific expressions for the polarization- 
plane rotation in BPI and BPII under additional assump- 
tions. The first is that only one planar mode contributes to 
each Fourier harmonic t , ,  i.e., 2, takes the form (6 ) .  Under 
this assumption we obtain from ( 10) 

Second, when comparing theory with experiment we neglect 
linear birefringence, since estimates in accordance with ( 1 1 ) 
show that in the region where experimental data are avail- 
able the intrinsic polarizations are close to circular. Under 
this assumption we obtain from ( 11 ) the following expres- 
sion for the specific rotation of the polarization plane: 

cp -= 
6,-e- - 1 e (r. 2) 1 ' [xo2t2+ (x0r) ' ]  (x0r) '  

% O - G -  - 7 + o  L 4&ot3[t4-4 ( x o ~ ) ~ ]  
(12) 

Equation (12) generalizes, to include the blue phase, the 
familiar de Vries formula for cholesterics, and becomes iden- 
tical with the latter ifit is assumed that x,(\T and I T /  = 47r/p, 
wherep is the pitch of the cholesteric spiral [it is assumed in 
( 12) and thereafter that the crystal is non-absorbing, so that 
&(  - 7, 2)  =&*(T,  2 ) ] .  

A shortcoming of Eq. (12) as well as of the de Vries 
formula is that they diverge, unlike in the exact equations, 
when the Bragg condition is met. Actually, Eqs. ( lo)-( 12) 
become invalid only in the immediate vicinity of the region 
of strong diffractive reflection when one of the inequali- 
ties, 17' + 2(XOT) 1 5 X: (&(T,  2)  1 Or I? TZ 2( XOT) 1 5 X& -I, 
holds. It is interesting to note that in the long-wave limit g, /L 
is of the order d 3/R and depends on the light-propagation 
direction, whereas the specific rotation in ordinary crys- 
talsZ5 is of the order of d /A * and is independent in cubic 
crystals of the light-propagation direction. 

Let us consider actual experimental situations. Only 
two types of intense reflections ((100) and (1 10)) are ob- 
served in BPII, whereas rotation of the polarization plane 
was observed by us for light propagation along a fourfold 
axis [ 1001 perpendicular to the sample axis. From ( 12) we 
obtain for this case 

where R ' = R /(2d&Y2). In BPI are observed only intense 
reflections of the type {110), C2001, (21 1) and for the ex- 
perimentally investigated case of light propagation along the 
[ 1101 axis we get 

c) Polycrystals 

Consider the polarization-plane rotation and the wave 
damping on passage of the blue phase through a polycrystal. 
We assume for the sake of argument that these polycrystals 
consist of individual perfect blocks whose crystallographic 
axes are randomly oriented. The per-unit rotation of the po- 
larization plane in such a polycrystalline sample can be ob- 
tained by averaging ( 12) over all orientations of the vector T. 

This averaging yields 

where the summation is only over T having unequal moduli, 
and N, is the recurrence vector, i.e., the number of vectors T 

with given I T I :  Nloo = NZo0 = 6, N l l o  = 12, and N,,, = 24. 
A shortcoming of ( 16) is its divergence (albeit logarithmi- 
cally weak) at x, = r/2, which results from the divergence 
in the initial expression ( 12). 

To  exclude this divergence, we treat the region xo z 7/2 
differently. We assume that the individual blocks have finite 
dimensions, and that the kinematic approximation consid- 
ered above applied to each block. I t  is known26 that the scat- 
tering-induced correction to the effective dielectric constant 
of the medium is proportional to the amplitude $(O)  of for- 
ward scattering by an individual scatterer (in our case, by an 
individual block of the polycrystal) 

where vo is the volume of one block and the bar above $ ( O )  
denotes averaging over the orientations of the blocks, i.e., 
over all possible orientations of T. Using the kinematic the- 
ory of diffraction, we can show that for spherical blocks of 
diameter D and for intrinsic polarization e,, the amplitude 
$ ( O )  averaged over the orientation is of the form 

where x = ax$; for polarization perpendicular to e, we 
have $(O) = 0. Obviously, after averaging over all block ori- 
entations the intrinsic polarizations can be only circular, 
since there are no preferred directions. Projecting the polar- 
ization e, on the circular polarization and averaging $(O) 
over all orientations of the vectors T, we obtain the following 
expressions for the per-unit rotation of the polarization 
plane [from the real parts of ( 16) and ( 17) 1 and for the 
transmission coefficients I, of the waves with circular po- 
larizations [from the imaginary parts of ( 16) and ( 17) ] : 
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where x = TD( y + r/2xO). Expression ( 18), in contrast to 
( 15), does not result in divergence at x, = ~ / 2  and is close to 
(15) at Jx, - 7/2))D-'. 

V. BLUE-PHASE STRUCTURE IN THE LANDAU THEORY 

Phase transitions between an isotropic liquid, blue 
phases, and cholesterics were treated by the Landau theory 
in a number of papers1'-l3 (see also the review3). We omit 
therefore all the calculation details, describe only the general 
scheme, and present the results in a form convenient for 
comparison with experiment. 

The order parameter usually chosen for the considered 
phase transitions is the zero-trace part E ( T )  of the dielectric 
tensor. The expansion of the free energy in powers of the 
order parameter and of its derivatives is of the form1'-l3 

F=F,(^E}+F,{^E}+F,{E^) ,  (20) 

where 

As is customary in the Landau theory, it is assumed that 
only the coefficient a = a ,  ( T - T, ) depends on the tem- 
perature, but not the coefficients c,, c,, q,, p, and y. At each 
temperature there is realized a structure that ensures a mini- 
mum of F. Since the absolute minimum of (20) cannot be 
found in the general case, we shall compare the free energies 
of the isotropic phase (F, = 0) ,  of the cholesteric phase 
(Fc, ), and of several cubic phases. We use for these phases 
the Fourier expansion ( 1 ) of the tensor order parameter and 
assume, in accordance with the experimental data, that only 
a planar mode contributes to each 2, in (1) (this mode en- 
sures a minimum of the quadratic part of ~ , { 2 ) , ' ~ ' ~ )  i.e., 
the tensor E is given by (6) .  The scalar quantities E(T, 2) in 
(6)  can be regarded as components of the order parameter, 
and our problem is to find those E(T, 2) that ensure a mini- 
mum of the free energy (20). These quantities, however, are 
not independent, since the cubic symmetry imposes con- 
straints on the form of 2 ( r )  and by the same token interre- 
lates all the E (0 ,2)  for the equivalent T (Ref. 17), (i.e., those 
T that go over into one another under the symmetry opera- 
tions in the space group @ of the crystal). 

a) Posslble symmetry groups 

We consider the least symmetric cubic groups T I-P 23 
and T 4-P 2, 3, and take into account in ( 1 ) the harmonics 2, 

right up to T = (220). In this case one can choose as the 
independent components the quantities E (  100,2), E (  1 10,2), 
~ ( 2 0 0 , 2 ) , ~ ( 2 1 0 , 2 ) ,  E (  120,2), Re[&(211,2)], Irn[&(211,2], 
and E (220,2). All these E (T, 2) are real, with the exception of 
~ ( 2 1 1 , 2 )  and (E(  100,2) = Oin the T4groupfromsymmetry 
considerations). Expressing all the remaining E(T, 2) in 
terms of the ones listed above, we obtain an expression for 
C(r) ,  and by substituting 2 ( r )  in (20) and integrating we 
obtain F for T ' and T in the form of fourth-degree polyno- 
mials of the independent E(T, 2) .  Of course, most coeffi- 
cients in these polynomials (on the order of one hundred in 
our case) can be obtained only by numerically summing the 
contributions from the different powers of E(T, 2) (these 
coefficients can be calculated also analytically in the case of 
one or two  harmonic^'^'^^). 

To determine the structure of a blue phase and its tem- 
perature dependence, the polynomials obtained were nu- 
merically minimized with respect to E (0,2) and with respect 
to the lattice period. It was found as a result of this minimiza- 
tion that the free energy has [as a function ofe(7,2) 1 several 
local minima. We confine ourselves to three of these minima, 
which minimize the free energy. At one of these minima we 
obtain for the T '  group &(10,2) = &(200,2) = &(210,2) 
= E (  120,2) = Irn[&(211,2)] = 0, i.e., there is realized in 

fact a structure that is more symmetric than T I, with symme- 
try 05-1432. In thisstructure I~(110,2) 1 ismuchlarger than 
/&(212,2) / and 1~(220,2) 1 .  For the second minimum in 
group TI  we obtain ~ ( 2 1 0 , 2 )  = ~ ( 1 2 0 , 2 ) ;  &(200,2) 
= Im[~(211 ,2) ]  = 0, i.e., a structure with symmetry O2- 

P4,32 is realized. In this structure &(100,2)] and 
l&(110,2) 1 are much larger than /&(210) 1 ,  /&(211,2) 1 and 
(~(220 ,2)  1. The third of the minima considered is realized 
in group T4 ,  and in it / ~ ( 2 1 0 , 2 )  = &(120,2) 
= I m [ ~ ( 2 1 1 , 2 ) ]  = 0, i.e.,agroupwithsymmetry 08-14,32 

is obtained. In this structure / ~ ( 2 2 0 , 2 )  / is small compared 
with 1&(110,2) 1 ,  l&(200,2) 1 and l&(211,2)/. We note that 
unlike in Refs. 12 and 13, we take into account a larger num- 
ber of E(T, 2 )  harmonics, and the structures 0 2, 0 5, and 0 ' 
are obtained as a particular case from the less symmetric 
structures T ' and T 4. 

The temperature dependence of the free energy F at 
these three minima is such that the 0 structure turns out to 
be expedient only in a narrow region near the transition into 
the isotropic phase. It appears that no blue phase with this 
structure has yet been observed in experiment, and the feasi- 
bility of its realization will be discussed later on. At lower 
temperature, the free-energy minimum corresponds to an 0 
structure or to a cholesteric structure (the calculated phase 
diagram is given in Ref. 3). In a wide range of the parameters 
contained in F, the difference between the free energies of the 
structure 0 and the competing 0 ' amounts to only several 
percent. Clearly, the expounded approximate theory cannot 
claim such an accuracy, and it is not excluded that in a more 
detailed theory a transition between the 0 and 0 ' will be- 
come possible. The experimentally observed blue phases 
BPI1 and BPI have apparently respective symmetries 0 and 
0 ', and a phase transition between them is possible. 
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b) Temperature dependence of the order parameter 

Let us consider in greater detail the temperature depen- 
dence of the order parameter for the structures 0 and 0 '. 
Numerical calculations reveal two remarkable properties of 
these structures: first, in both structures several order-pa- 
rameter components (~ (100 ,2 )  and E (  110,2) in 0 and 
~(110,2) ,  ~ (200 ,2 )  and ~ (211 ,2 )  in 0 ') are found to be 
much larger than the others; second, the ratio of these large 
components turns out to be almost independent of tempera- 
ture and of other parameters contained in the free energy 
(20). These two circumstances, confirmed by experimental 
data,6 permit the following simplifications of the description 
of the blue-phase structure: first, we can omit all the weak 
Fourier components, and second, we can fix in the theory the 
ratio of the large components, i.e., write them in the form 

e ( ~ ,  2 )  =&A,, (24) 
where the factor E (we shall call it the scalar order param- 
eter), which is the same for all T, contains the dependence on 
the temperature and on the other parameters that enter in 
the free energy, while A, are simply numbers (they are given 
below) which we shall regard as independent of the param- 
eters that enter in the free energy. The blue-phase dielectric 
tensor takes in this approximation the form 

"e (r )  = E Q ~  (r )  , (25) 

where = 0 2, 0 5, 0 ', and the tensor @ ( r )  determines the 
spatial structure of the dielectric constant in a form that 
depends in this approximation neither on the temperature 
nor on other parameters, andis in this sense universal. All 
the components of the tensor Q* ( r )  are expressed in terms 
of A and of trigonometric functions of the coordinates x ,  y, 
and z (Refs. 3, 12, 13 ) : the corresponding formulas are ob- 
tained from pure symmetry considerations. It is interesting 
to note that (25) is similar in form to the corresponding 
relation for nematics 

where Q; = (n,nj - 1/36,j ), n is the director, and E, is the 
anisotropy of the dielectric constant and depends on the 
temperature and on other parameters of the nematic. 

The temperature dependence of the tensor order pa- 
rameter of the blue phases is thus expressed in terms of the 
temperature dependence of the scalar order parameter E. To 
calculate E (  T) we specify actual values of A, obtained by 
minimizing F for some characteristic values of the param- 
eters. Generally speaking, if F takes the form (20), then A, 
is a function of two dimensionless parameters t and k, de- 
fined as t = 12ay/P and k = q, ( 12c, y / ~  ') 'I2. As empha- 
sized above, however, the dependence of A, on t and k is 
exceedingly weak, and we use therefore the values of A ,  ob- 
tained at t = k = 1: 

for 0': A,,,=0,291, All,=0.115, 

for 05: At1,=0.236, (27) 

for 0': At10=0.175, A200=0.187, A211=0.0615, 

for a cholesteric: ACh=0.51. 
The numbers A, were determined accurate to a con- 

stant normalization factor chosen in (27) such that 

Sp[(@@)'] = 2/3, by analogy with nematics, where 
Sp[ (@ )2]  = 2/3; the superior bar denotes averaging over 
the volume of the unit cell. Using the foregoing values ofA, , 
we obtain for the free energy of the blue phases the expres- 
sion 

where = 0 2 ,  0 5 ,  08; for the phase 0': 
C,, = 0,975, B,, = 1,031, r,, = 1,164; for the phase 0 ': 
Cos = 0,997, Bos = 1,124, To, = 1,214; for the phase 0 ': 
co, = 0,953, B,, = 1,017, r,, = 1,132. 

Minimizing (28) with respect to E we find that the tran- 
sition from the isotropic liquid to the blue phase occurs at 

At T g  Y,, the temperature dependence of E is given by 

and takes the form typical of the temperature dependence of 
the order parameter in the Landau theory, particularly for 
the order parameter S of a nematic (the expressions for a 
nematic are obtained from (20)-(30) at q, = 0 and 
B, = ra = 1 ). It follows from (30) that at equal tempera- 
tures the value of& is practically the same for all blue phases, 
owing to the close values of the coefficients C, , B, , and T, . 
VI. DISCUSSION 

The foregoing theoretical formulas relate uniquely the 
experimentally observed values with the structure of the or- 
der-parameter field. We shall show here that these equations 
do indeed describe quantitatively the optical properties of 
the blue phases, so that the Fourier harmonics P, and their 
temperature dependences can be determined. The calcula- 
tions of the space groups possible for blue phases, carried out 
in Refs. 12 and 13 and in the present paper, predict struc- 
tures withgroupso 2, 0 ',and 0 'for theblue phases. Accord- 
ing to experimental data,4-6 the BPI of cholestryl ionanoate 
corresponds to group 0 ', BPII to 0 ', and there is no agree- 
ment concerning to BPIII structure. The fact that light of 
one circular polarization is predominantly scattered in 
BPIII, and that this scattering is frequency-dependent,15 
suggests that in BPIII there is manifested mainly one Four- 
ier harmonic E, with I T /  somewhat smaller than in a choles- 
teric, and the main contribution to it is made by the planar 
mode. We shall assume therefore that BPIII is a polycrystal 
whose individual crystallites have the structure 0 5 .  Figure 2 
shows the reflection positions calculated for the 0 ', 0 ', and 
0 groups and it can be seen that they are closest to BPII, 
BPIII, and BPI, respectively. Some disparity between the 
theoretical and experimental results, particularly the ob- 
served variation of the period with temperature, can be attri- 
buted to failure to take enough Fourier harmonics into ac- 
count in the theory (especially in 0 '). 

Since the ratios of the ~E(T ,  2) 1 have been found by Ki- 
zel' and Prokhorov6 to be approximately constant, each 
IE(T, 2)  / can be determined from any other. Following Ref. 
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FIG. 5. Temperature dependence of the order-parameter Fourier har- 
monics e ( ~ ,  2 ) ,  determined for the cholesteric, BPI, and BPII from the 
following data: A-rotation of the light-polarization plane in an oriented 
cholesteric sample; A-integrated intensity of the reflections of the BPI 
and BPII transmission spectra; O-polarization-plane rotation at 
A = 633 nm in BPI and BPIII single crystals; .-the same for BPI and 
BPII polycrystals. 

6, we used the ratios e2 (  110,2): e2(200,2): 
e2(211,2) = 1:1:0,1, for BPI and ~ ~ ( 1 0 0 , 2 ) :  
e2(1  10,2) = l:O, 15 for BPII. 

Our experimental data and theoretical expressions per- 
mit the modulus of the Fourier harmonics to be determined 
by several methods. Using Eq. (5) ,  we determined JE(T, 2)  1 
for the longest-wavelength reflection from its integrated in- 
tensity (Fig. 5) .  The same figure shows the values of ( ~ ( r ,  
2)  / obtained from data on the polarization-plane rotation at 
the He-Ne laser wavelength in blue-phase polycrystals and 
single crystals [see ( 12)-( 15) 1. The harmonics taken into 
account in the BPI calculations were ( 110) and (2001, since 
the contribution of (21 1) at this wavelength is less than 2%. 
In BPII we took into account the harmonic ( loo) ,  the con- 
tribution of ( 110) being likewise 2%. The values of E ( T ,  2 )  
shown in Fig. 5, determined from various experiments, agree 
within + 6%. The ratios of the moduli of the first harmonics 
at the transition points6 agree within the indicated accuracy 
with our data. The values ofe(r ,  2) obtained in Ref. 9 for the 
BPI phase are somewhat higher than in our case, apparently 
because the mixture used in Ref. 9 has a higher dielectric 
anisotropy. 

Knowing e ( r ,  2)  we can determine from (2  ), ( 13 )- 
( 15), and ( 18) the transmission-spectrum line shape and 
the optical-activity dispersion spectrum for polycrystals and 
single crystals. The dashed lines in Fig. 1 show the transmis- 
sion curves plotted in the kinematic approximation for 
thicknesses L = 10 and 20pm. The dynamic effects are neg- 
ligible for L = 10 pm,  and underestimate the theoretical 
curve by 5% for L = 20pm. The kinematic theory describes 
the experimental curves satisfactorily, as can be seen from 
Fig. 1. The experimental curve is somewhat broader than the 

I l l : l I i l l  
, , ,  

1 ,  ) I  

YO, 3 YI, 0 5 "C 

FIG. 6 .  Temperature dependence of the scalar order parameter E (  T ) .  The 
experimental points are designated in Fig. 5. Solid curve-theoretical de- 
pendence. 

theoretical, probably owing to imperfection of the samples. 
The solid lines of Fig. 4 show the theoretical optical 

activity dispersion spectra obtained at the values of e ( r ,  2)  
taken from Fig. 5 at the corresponding temperature. The 
theoretical curves describe well enough the experimental 
data for both single-crystal and polycrystalline samples; 
some discrepancy near the reflections can be due to the finite 
sizes of the blocks in the polycrystal. The temperature de- 
pendences of the Fourier-harmonic moduli can be described 
with the aid of the function e ( T ) ,  which is determined from 
the experimental values of E(T, 2 )  and the theoretical coeffi- 
cients A ,  in (27).  The values of e ( T )  recalculated for BPI, 
BPII, and the cholesteric are shown in Fig. 6. The same fig- 
ure shows, for the BPIII temperature region, the values of 
e ( T )  obtained from E(T, 2 )  for BPIII under the condition 
that the latter has the symmetry group 0 (since the values 
of the coefficients B, , C,  , and r, for the groups 0 and 0 
are close, so that the temperatures of their transitions to an- 
isotropic liquid and the E ( T)  temperature dependence differ 
insignificantly in the theory). A single theoretical plot of Eq. 
(30),  with variable parameters PB, /yr, ,  a , / y r @  and 
T, = 91.0 "C, was drawn by least squares in Fig. 6 through 
the points E(  T) obtained for BPI and BPII. The ratios for 
this curve are f l  /y = 0.167 and a,/y = 0.0063. When ex- 
trapolated to the BPIII region this curve agrees well with the 
experimental points. The agreement between the theoretical 
curve and the experimental data illustrates the possibility of 
describing the temperature dependence of the order param- 
eter for all blue phases by a single function (30), similar to 
the function that describes in the Landau theory the order 
parameter in nematics. Using the obtained values o f 0  / y  and 
a,/y and the estimates of the parameters a ,  and c,  in (29) 
from Ref. 27, we get estimates for the parameter k z  1.3 and 
for the Frank modulus K = c , e 2 z  lo-'. We note also that 
estimates of the enthalpies AH of the transitions AH BPI 
+BPII, BPII-+BPIII, and BPIII-+ isotropic liquid in ac- 
cord with the formula AH = a,TA(e2) show that AH is a 
maximum for the transition from an isotropic liquid to a blue 
phase, in agreement with directly measured' AH. 

VII. CONCLUSION 

Blue phases are perhaps the only objects for which mea- 
surements of optical activity yield specific information on 
the phase structure. For example, comparison of the data on 
the light-polarization plane near corresponding reflections 

1180 Sov. Phys. JETP 62 (6), December 1985 Belyakov etal. 1180 



FIG. 7. MeasuredI4 and calculated [from ( 18) ] optical activity 
ofBPIII forcholesteryl nonionate: 1 ) experiment; 3, 3,4) calcu- 
lation for crystallites measuring 0.6, 1.2, and 0.5 pm, respective- 
ly. 

from polycrystals and single crystals makes it possible to 
determine the recurrence index and hence distinguish 
between a bcc and a simple cubic lattice. In conjunction with 
other measurements, this simplifies considerably the identi- 
fication of the symmetry group of a phase. Our data favor the 
groups 0 for BPI and 0 * for BPII. Nothing can be said 
concerning BPIII by this method, since the transmission 
spectra show that the BPIII samples are not single crystals. 
I t  was shown above that the observed optical properties of 
BPIII phase and temperature dependence of its order pa- 
rameter can be satisfactorily described by assuming this 
phase to consist ofrandomly oriented crystallites with the 0 
structure predicted by the Landau theory. Under this as- 
sumption it is also possible, using the described theory of 
optical properties [see Eq. ( 18) 1 and assuming that the 
crystallites measure about 1 p m ,  to describe quantitatively 
Collings's experimental data14 on the optical activity of 
BPIII (Fig. 7 ) .  It must be emphasized, however, that other 
BPIII models are also possible, and that this phase calls for 
further study. 

The agreement obtained between the E(T, 2)  harmonic 
amplitudes obtained from various optical experiments, and 
the good agreement between the theory and the optical-ac- 
tivity dispersion curves based on the employed harmonics 
b,, indicate that the theory of the optical properties agrees 
with experiment qualitatively and quantitatively, and that 
the correct values of&(?, 2)  have thus been obtained. On the 
other hand, the employed variant of the Landau phase-tran- 

these parameters. The temperature dependence enters only 
in the scalar order parameter E [see (24) and (30) ]  that 
determines the spatial modulation depth of the tensor order 
parameter, while the pitch of the helix influences only the 
temperatures of the transitions from the isotropic liquid to 
the blue phase and from the blue phase to the cholesteric. 
Clearly, the proposed approximate description of the blue- 
phase structure indicates that the problem contains some 
small parameter whose physical meaning has not yet been 
established. This small parameter is possibly the ratio of the 
volume in which the order parameter ~ ( r )  is essentially biax- 
ial ("disclination" volume) to the total volume of the crystal 
(according to Ref. 3 this ratio is about 3%).  It must be em- 
phasized, however, that the experimentally observed 
changes in the relative value of the Fourier harmonics6 and 
the temperature dependence of the lattice period (see Fig. 2 )  
offer evidence that the tensor form of the order parameter is 
not quite universal, and it would be of interest to identify 
theoretically and experimentally just the Fourier-harmonics 
components with which these changes are connected. None- 
theless, the concept of an almost constant tensor form of the 
blue-phase modification can be a quite useful initial approxi- 
mation (for example, for the understanding of such phe- 
nomena as the presence of shear moduli and fluctuations, or 
of the influence of the external field). 

The authors thank S. M. Osadchii for help with the nu- 
merical calculation and V. M. Filev for useful discussions. 
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