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General equations that permit the effective-dielectric-constant method to be extended to the 
equations for the second moments are derived for an arbitrary randomly inhomogeneous medi- 
um. Some attention is paid in the formalism proposed to the intrinsic thermal radiation and to the 
propagation of a plane wave in an inhomogeneously layered medium. 

1. The concept of effective dielectric constant is used to 
describe the mean field in a randomly inhomogeneous medi- 
um.' The mean field can be interpreted here as the field in 
some regular "effective" medium with spatial dispersion. In 
such a medium, the connection between the electric-induc- 
tion and electric-field vectors is given by 

The problem reduces to a calculation of E'" on the basis of 
information concerning the statistical properties of the ini- 
tial medium. It is impossible, generally speaking, to calcu- 
late quadratic functions of the field from the effective dielec- 
tric constant. For example, the imaginary part of E ~ "  

determines the mean-field damping constant that contains a 
term due to phase fluctuations. The latter do not influence 
the field intensity, so that the energy damping coefficient 
cannot be expressed in terms of Im E'". The analogy with a 
dispersive medium, however, can be extended also to the 
second moments of the field. To do this one must generalize 
in suitable manner the concept of the dielectric constant of a 
medium with spatial dispersion. We use as our basis the 
equations for the bilinear quantities 

which can be obtained by multiplying the wave equations for 
Ei ( r , )  and E f (r,). This generates the functions r i ( r l ,  r,) 
= Di ( r l )D  f (r2),  which are determined in an ordinary me- 
dium by the products E~~ ( r ,  )&$ (r,) r f ,  ( r l ,  r,). It is natural 
to assume that in spatially dispersive medium this definition 
should be replaced by a relation of the form 

, ( r )  = J! r d B  ( r  r ;  r ,  ) ] i , k E ( r l ,  I ) .  (2)  

The function B,, which can be called the correlation func- 
tion of the dilelectric constant, describes the properties of a 
dispersive medium with respect to quadratic characteristic 
field, and is needed, in particular, to calculate energy-depen- 
dent quantities. The correlation functions r;and r f  in such 
a medium break up into the products Di ( r l )D  f (r,) and 
E, ( r l ) E  f (r,) only at / r l  - r,/)l, where I is the characteris- 
tic scale of the dispersion. 

Accordingly, the calculation of quadratic quantities in 
a randomly inhomogeneous medium consists of calculating 
the "effective correlation tensor" of the dielectric constant. 

Quantities such as (Ei ( r , )Ef  (r,))  can then be treated as 
the correlation functions r; in an effective medium. 

We consider a vector electrodynamic problem that sat- 
isfies the wave equation 

4niw 
[ ~ ~ - t k , ~ e ( r ) ] E ( r ) =  - - j ( r )=J(r ) .  

cZ ( 3  

Here B(r) is the fluctuating part of the dielectric constant 
~ ( r )  = (E) + B(r), j ( ~ )  is the current density of the extran- 
eous regular sources, L O is a differential operator, with ten- 
sor of second rank 

A harmonic time dependence of the form exp( - iwt )  is as- 
sumed for the yield. Equation (3)  leads to 

E (r) =EO (r) -ko2G0[e(r) E (r) 1, (4)  

whez Eo(rhis  the field in the absence of inhomogeneities, 
and G O = [L O] - ' is an integral operator and is the Green's 
function of the unperturbed problem. Using a diagram tech- 
nique' or solving directly Eqs. (4)  and ( 5 )  by iteration, we 
can obtain the Dyson and Bethe-Salpeter equations for the 
mean values (E ( r ) )  of the field and for the correlation ma- 
trix 

< r ( r i ,  r,) >=<E(r , )  @E8(r,)  > 
(the symbol e stands for the tensor product of two vectors: 

The equation for the mean field is 

h 

Thz mass operator Q can be expressed in series form in Frms 
of G O and of the moments of the function Z(r);  just as G O, it 
is a tensor of second rank. The full form of Eq. (6)  is thus 

<Ei  (r) >= E: (r) + j! dr' drl' G,.: (r, r') Qjk (rl, r") <Ek(rTf) >. 
( 7 )  

It can also be written in the integrodifferential form 

1160 Sov. Phys. JETP 62 (6), December 1985 0038-5646/85/121160-04$04.00 @ 1986 American Institute of Physics 1 160 



The correlation function satisfies the equation 

<rjj (rl, rz) )= (E i  (rj)  ) (Ej* (rz) ) 

x J I , r f  7 n ( 3 ,  4 ) (9)  
or, in shorter notation 

Here a = [$I -' is the Green's function of Eq. (8)  for the 
mean field, K is the intensity operator and is a tensor of 
fourth rank with integration with respect two variables. 
The subscripts 1 and 2 of the operator G are the serial 
numbers of its operand variable. 

On the other hand, (4)  and (5)  lead directly to equa- 
tions for the mean field and for the correlation functions in 
terms of the operators of the effective inhomogeneities: 

( E  (r)  > = E ~ - ~ ~ ~ G ~ ~ ~ @ @ ( E ( ~ )  >, (11) 

( r ( r l ,  rz) ) - ( E ( r i ) ) @ ( E * ( r z )  ) 
"eff  ^_ eff* 

= k , 4 ~ I o ~ , 0 ' [ i , ' f f  ( r ( r i ,  r2) )- & I  E Z  (E (r l )  )@(E* (rz) ) I ,  

(12) 
A 

where z,, and 3 '" are defined by the relations 

< r ( r ) ~ ( r ) > = i ~ ~  ( E ( r ) > ,  (13) 

( e ( r l ) & * ( r z ) r ( r i , r z ) ) = k ~ f f  (I'(ri ,rz)) .  ( 14) 

Comparison of the two systems ( l l ) ,  (1%) and (6), (102 
alloys us to express the operators be, and B  '" in terms of Q 
and K: 

The operator of the effective correlation function olthe in- 
homogeneities is thus, just as the intensity operator K, a ten- 
sor of fourth rank: 

jfff (rtj (rl, r2) > 

= JJ drf d r f ' [ ~ f f f  (rl, rz; r', r") ] 4jk l ( I 'h ,  (rf ,  rf') ). 

To solve actual problems it may be more convenient to 
introduce the effective-inhomogeneities operator for the sec- 
ond moments, using the equation 

We can then use for the correlation function the equation 

[ I  - o f f  ] ( ( I  2 ) )  = J ( 1 )  (E* ( r ) ) .  ( 17) 
h 

Applying the operator D, to both sides of the Bethe-Salpeter 
equation ( 10) and comparing the result with ( 17) we obtain 

We can introduce also a definition symmetric to (16): 

For real fluctuations of the dielectric constant, the obvious 
equality 

allows us to write down the relation 

7 eff - eff* l i t  *(r, r; r', rtr)]ij,;l = [i, (r, r; rfl, r1)Ijilt, (21 
A h 

which, rewritten in terms of the operators Q and K, is known 
as the "optical theorem": 

Q*k(r, r') 6jLti (r-rf') -Qj; (r, rf') tiik6 (r-r') 

Relations ( 15 1, ( 18), and 20 make it possible to deter- 
mine the dielectric constant Pff (r ,  r') = (&) + Zeff (r,rt ) of 
the effective medium and its correlation function 

B:' (rl ,  rz; r f ,  r") = 1 ( 8 )  12+(~*)g?' (rl, rz; r', r") 

+ ( ~ ) 8 ~ ~ ~ '  (rI, r2; r l ,  rN) + B : ~  (rl, rz; r', rN) .  

2. T i e  presence of singularities in the expressions for 
8 and G mayknot be cgnvenignt in-the calculation of the 
operators Pff ,{ E9 eff) = { B  iff , $ eff, g,""). It is useful in this 
case to introduce the new quantities3 

E (r) +2eo  
F (r) = 

3Eo 
E ( r ) ,  

9- (r l ,  r2) =F (pi) @F* ( r 2 ) ,  

where E~ = const. The function F ( r )  satisfies the equation 

where @ = P . v . ~  '. The symbol P.V. denotes that the op- 
erator G O' presupposes integration in the sense of principal 
value, i.e., contains no 8-singulari2es. Equation (24) for 
E ( r )  is the same as Eq. (5)  but with G O andZ(r) replaced by 
G O' and ~ ~ l ( r ) .  It follows therefore that under the condition 
($(r)) = 0 (from which E, is determined) the same substi- 
tution can be carried ouLalso in211 the relationsihat follow, 
forming the operators Q ' and K ' in terms of Go'  and the 
moments of the functio?~,{(Q in accordaye with the same 
rules as used to express Q and K in terms of G O and ~ $ ( r ) .  A 
similar procedure is used to introduce the effective-inh2mo- 
genesies :per?tors $'" for the mean field and {( eff) 

= { B  ;", ( fff, ( for the correlation function. From (23) 
we can obtain an operator relation that does not contain the 
auxiliary field E ( r ) ,  for example: 

[ E e f f  - E ~ ] ( E > = E ~ ~ ~ ~  1-'(E),  

- eo] (r) = eo [cEff - l / g ~ i f f  1 

x [i -- + %:ff *) -t l / g ~ { f f  1-1 (r), 
8:ff = (E)  + 8fff.  
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These relations allow us to exclude the operators &'"and @"" 
from the wave equations for the mean field. A corresponding 
equation is given in Ref. 4 for the mean field, but the operator 

""is considered in a "bilocal" approximation, i.e., accurate 
to quantities of order ({ *). In this approximation, the fol- 
lowing equations hold 

[to+ko2e0$ eff ](E (r) )=J  ( r ) ,  (25. 

[ ~ ~ + k , ~ ( t : ~  -'/$B;" ) ](r(r l ,  r2) )=J(rl) @(E0(r2) ). ,26) 

The operator 2, differs from 2 O in that it contains the con- 
stant E, in place of (&). 

3. The energy characteristics of the field, such as the 
intensity I ( r )  = IE(r) 1' and the energy flux 

S (r) = (c18n) Re[E ( r ) ~  H' (r) I, 

can be expressed in terms of the correlation-tensor compo- 
nents. Using the equation 

(r) = (ik,) -l rot E (r) , 

we can obtain 

I ( r )  = r i k  r ) ,  
c a a si (r) = - 4nko ~m [- rji (ri9 '2) - - a (x,) 

r,, (rl, r2)] . 
rt-r*-1 

(27) 

In specific cases the mean field intensity in a randomly inho- 
mogeneous ̂ medium can be calculated without the use the 
operators {g "') (in other words, without using the Bethe- 
Salpeter equation). This is the situation, for example in the 
calculation of a fluctuating thermal field in an infinite statis- 
tically homogeneous medium with real fluctuations of the 
dielectric constant: ~ ( r )  = E, + ie, + b(r),  B(r) = B*(r). 
This can be verified by writing down the energy-conserva- 
tion law 

4n 
-2koezlE 1 '  - -(Eej+Ej') , 

16n c 1 (28) 

where the superior bar denotes averaging over the ensemble 
of realizations of the fluctuating currents j ( r  ). Since the ran- 
dom thermal sources are uniformly distributed over the vol- 
ume of the medium, the resultant field is statistically homo- 
geneous. Hence 

or 
2n 

( ) = - - [ E ( r ) j ( ) + E ( r ) j ( r ) ]  (29) 
o 

Recognizing that the mean field satisfies Eq. (5),  and the 
correlation matrix of the sources is of the form5 

we get 

where G(r )  is the kernel of the integral operator 

A A 

G(rl, r2) = G(r, - rz).  
To calculate the correlation tensor of the thermal field 

we must use Eqs. (12) or (17) and substitute in them the 
source correlation function (30). For example, subtracting 
from ( 17) the equation symmetric to it and taking into ac- 
count the statistical homogeneity of the problem, we get 

At r, = r, (32) leads, in particular, to Eq. (3  1 ) . 
4. By way of illustration of the general relations above 

we consider, within the framework of perturbation theory, 
the propagation of a plane wave in a layered randomly inho- 
mogeneous medium. We shall assume that the inhomogen- 
eous medium is located in the region z < 0 and has a dielec- 
tric constant E(Z)  = (E) + B(z), where ( E )  = E ,  + i ~ , ,  and 
E(z) is a real random function. We assume that the field in 
the absence of fluctuations is a plane wave of unit amplitude: 

The Green's function of the unperturbed problem is 

Go (z, z') = - ( i l k )  eixI"-1. 

In the one-dimensional case the system ( 1 1 ) and ( 12) takes 
in first-order perturbation theory the form 

(r(zl ,  z,) >=(E (2,) >(E0(z2) >+ko%s,o~2"~:" E0 (21) E0'(zz). 

(34) 
In a statistically homogeneous medium we can transform to 
difference variables: 

If the correlation radius of the inhomogeneities is small 
enough, the functions B '"and B can be regarded as rapidly 
decreasing in each of the variables. It is recongized here that 
in the limiting case lz, - z, 1-t~ the function B zff factorizes 
into Z"' (2, - z')Eeff* (2, - z" ) and is consequently a quanti- 
ty of next order of smallness. Under the foregoing assump- 
tions, the quantity 2 '"E '(2) in ( 33 ) can be approximately 
calculated in terms of the Fourier component Beff(x) : 

Similarly, ifthe correlation function is calculated from (34), 
we can put 

11 62 Sov. Phys. JETP 62 (6), December 1985 V. L. Brekhovskikh 1162 



xesp (ixr,-ix'n) =exp (-ir.z,+ix*z,) B:" ( x ,  z,-z2, x.) . 
As a result we get for the mean field the expression 

Account is taken in (36) of the smallness of the corrections 
to E '(2) which are contained in (35). A small correction to 
the constant factor has been left out, since we are interested 
in the dependence of the mean field on the coordinate z. At 
E ~ ( E ,  the effective increments Ak '"and Aye" take the form 

k Re eeff (x) ~ k c f f  = - ; ~ y f f  =- k Im- eef f (x)  
2 E l  2 

. (37) 
el 

Calculation of the correlation function under the same 
assumptions yields 

(E(z1)E8(z2) >mexp[-i(k+Akeff ) (2,-22) 

a 

B." (x, O, x.) =J BZ' (x, r ,  X - )  d r .  
-m 

At z, = 0 or z2 = 0 Eq. (38) goes over into (36). Putting 

2, = z,, we obtain for the field intensity an expression from 
which it can be seen that the effective energy damping coeffi- 
cients differs by ( - a) from those of the effective mean- 
field damping. The reason is that the latter contains "imagi- 
nary" damping due to phase fluctuations that do not 
influence the intensity. 

The foregoing examples confirm the conclusion that to 
calculate the second-order moments of the random function 
E(r) we must known the "~econ$-ordzr effective-inhomo- 
geneities operators" such as B '", LY fff, LY;". Of course, equi- 
xalent calculations are possiblein terms of the mass operator 
Q and of the intensity operator K. In particular, in first-order 
perturbation theory B ':= k c  4K, i.e., the operators E"" and 
Be" are equal to Q and K to within constant coefficients. In 
the general case, however, the equations that contain the 
effective-inhomogeneities operators may turn out to be more 
compact, as is the case, for example, in the formulation of the 
optical theorem (2 1 ), (22). The main advantage of the pro- 
posed formalism is that the quantities employed have a lucid 
physical meaning, being functions of the dielectric constant 
of an auxiliary effective medium. This permits the results for 
quantities quadratic in the field in media with spatial disper- 
sion to be used for averaged quadratic quantities in random- 
ly inhomogeneous media, and vice versa. 

The author is grateful to V. I. TatarskiK for numerous 
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