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It is shown that, in the presence of gyrotropy, tangential molecular forces due to a fluctuating 
electromagnetic field can exist between media heated to different temperatures and filling half- 
spaces separated by a plane-parallel vacuum gap. A general expression for such a force is obtained 
in terms of the surface-impedance tensors of the media, and the particular case of weak gyrotropy, 
which demonstrates patently the presence of the tangential force, is considered in detail. 

The fluctuating magnetic field due to polarizability and 
magnetization fluctuations in substances is the cause of a 
number of important physical effects. These include the mo- 
lecular attraction forces (Van der Waals forces) first investi- 
gated in Ref. 1. Another effect of practical importance is 
heat exchange between bodies heated to different tempera- 
t u r e ~ . ~  If the gap between them is small, the heat flux devi- 
ates anomalously from the value given by classical theory of 
thermal radiation. The resultant dependence of the heat flux 
on the gap width is quite unexpected (it can have a mini- 
mum). The present paper deals with one more interesting 
manifestation of the nonequilibrium nearby fluctuating 
field, whereby tangential forces are produced between the 
bodies in the presence of gyrotropy. Just as in Refs. 1 and 2, 
we consider very simple geometric conditions (Fig. 1 ). The 
half-spacesz < 0 and z > a are filled respectively with media 1 
and 2. The plane-parallel gap between them is assumed to be 
a vacuum, and the properties of the media are taken to be 
independent of the tangential coordinates x,=x and x,=y. 
We shall show that under certain conditions there can exist 
forces directed along the boundaries of the media and tend- 
ing to set them in motion relative to each other. We call them 
tangential molecular forces. It will be shown below that the 
conditions referred to are, first, that at least one of the media 
be gyrotropic in the presence of a constant (time-indepen- 
dent) external magnetizing field B, hereafter assumed to be 
uniform; second, the temperatures of the media must be dif- 
ferent. 

1. GENERAL EXPRESSION FOR THE TANGENTIAL FORCE 

We consider first the case when media 1 and 2 that fill 
the half-spaces z < 0 and z > a are nongyrotropic but have an 
arbitrary anisotropy. The spectral density (in the positive 
frequencies) of the tangential force [designated Fa (a) 1 act- 
ing on medium 1 per unit surface is obviously determined by 
the az  components (the Greek subscripts take on here and 
elsewhere the values 1 and 2) of the electromagnetic stress 
tensor Tik (r,w), i, k = 1,2,3 taken at an arbitrary point r 
inside the gap (clearly, the force should not depend on r ) .  
We have thus for the spectral density of the tangential force 
the expression" 

where the asterisk denotes complex conjugation and the an- 
gle brackets statistical averaging. The experimentally ob- 
served quantity is not Fa (w) but the total force obtained by 
integrating Fa (a) with respect to frequency from 0 to + w . 

Since the fluctuating-electromagnetic-field sources dis- 
tributed in media 1 and 2 are statistically independent of one 
another, each of the correlators (...) in Eq. ( 1) can be writ- 
ten as a sum of the correlators (...), and (...), of the fields 
generated by media 1 and 2 respectively. Fa (w) takes then, 
in accordance with ( 1 ) , the form 

1 1 
Fa (o)  = - (E,' (r, o)E,(r, o) >, + - (Ea' (r, o)Ez  (r, o )  )a 

4n 4n 
1 1 + - (Haw (r, a )  H,(r, o )  ), + - (Ha'(r, a )  Hz (r, o) ),f C.C. 
4n 4n. 

The problem of finding the tangential force is thus reduced 
to that of finding of the correlators of the fields generated by 
media 1 and 2. 

A general theory of equilibrium thermal fluctuations of 
an electromagnetic field was developed in Refs. 3 and 4. The 
exposition in Ref. 4, which leads to a generalized Kirchoff s 
law, besides physically more satisfactory, simplifies substan- 
tially the calculations. 

To determine the fluctuating-electromagnetic-field 
correlator generated by medium 1 at a point r it is necessary, 
according to the generalized Kirchoffs law, to calculate the 
thermal losses of the fields in medium 1 due to auxiliary 
fields located at the point r and having a definite orientation. 
The correlators are then obtained by familiar means.4 Simi- 
larly, to determine the correlators of the fields generated by 
medium 2 we must know the thermal losses in medium 2. 

The quantities most suitable for the determination of 
the thermal losses in media 1 and 2 are their surface-imped- 
ance tensors that relate, on the boundaries of the media, the 
tangential components of the electric and magnetic fields 
(see, e.g., Refs. 2 and 5). Expanding the fields E(t,r) and 

0 
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H(t,r) in Fourier integrals with respect to time and to the 
tangential coordinates x = {x,,x2): 

where x = {xl,?t2) is a two-dimensional wave vector, the 
impedance relation on the boundary of medium 1 takes the 
form 

and on the boundary of medium 1 

where !: ,ap and are the two-dimensional surface-im- 
pedance tensors of media 1 and 2, n is a unit vector directed 
along the positive z axis, and summation over repeated in- 
dices is carried out as usual. A minus sign is contained in the 
boundary condition (2)  because the surface impedance is 
defined here relative to a unit normal vector directed to the 
interior of the medium. 

To shorten the tquations we use hereafter matrix nota- 
tion. We use l,  and c2 to denote 2 X 2 matrices with respec- 
tive elements 5 and !:2aS, with the subscripts a and 
numbering the rows and columns, respectively. 

The use of the generalized Kirchoffs law leads to the 
following expression for the spectral density of the tangen- 
tial force Fa (o) acting on the medium 1, in terms of the 
tensors of the two surface impedances (we omit the straight- 
forward but unwieldy algebra) : 

n(Ti)-n(T2) j d 2 x  x a l  (o,  x ) ,  Fa (a) = 2n3w 

where 

n (T) 3 h o  [exp (ho/k,T) - I ]  - I ,  

k,  is the Boltzmann constant, Tis the absolute temperature, 

R stands for the matrix 

the superscript + denotes Hermitian conjugation, 
q = (x2 - k 2,  'I2, x is the modulus of the wave vector x, and 
k = W/C. Finally, $is the vacuum surface-impedance tensor 
(see Ref. 2)  : 

We note first that it can be seen from (3)  that nonzero 
tangential forces can exist only if TI # T2, i.e., in a nonequi- 
librium thermodynamic system. This is of course natural, 
for otherwise a perpetual-motion engine of the second kind 
would be feasible. Next, there can be no tangential forces at 
all between nongyrotropic media (if the latter have arbitrary 
anisotropy). In fact, using the temporal reversibility of the 

microequations of motion, we can show in the usual manner 
(see, e.g., Ref. 6, 9 96) that in the absence of gyrotropy the 
surface-impedance tensors of media 1 and 2 should satisfy 
the following symmetry relations: 

It can be easily verified that this leads to 

Therefore the tangential force is zero, since the integral in 
( 3  ) vanishes. 

Let us examine now the situation in the case when me- 
dia 1 and (or) 2 are gyrotropic and are located in a magnetiz- 
ing field B,. To calculate the correlators of the thermal elec- 
tromagnetic field in this case we must, according to the 
generalized Kirchoff law, calculate the thermal losses for the 
reversed magnetizing field ( - B,). The expression for the 
tangential forces takes then, as before the form (3),  but the 
quantity A, which depends now on B, must be taken for the 
reversed magnetizing field. Thus, in the presence of gyrotro- 
py we have for the tangential force the expression 

If media 1 and 2 are gyrotropic, their surface-imped- 
ance tensors have the following symmetry properties 

5za8(0,  X ;  Bo)=bzpa(~, - x ;  -Bo), 

while A has the property 

Therefore, reversing the sign of the integration variable in 
(6)  and using Eq. (7) ,  we can rewrite (6)  in the form 

Fa (a; Bo) =- n(Ti)-*(T2) d2x x.X (a ,  x ;  B.). (8)  
2n3a 

From a comparison of (8)  and (6) it follows that 

The tangential force thus reverses sign together with B,, i.e., 
it is an odd function of the magnetizing field. 

Of course, the foregoing analysis does not mean that 
tangential forces must exist in the case of gyrotropic media. 
It only shows that the general symmetry properties of the 
kinetic coefficients (in this case, of the surface-impedance 
tensors of the media) do not forbid their existence, as they do 
in the absence of gyrotropy. To verify the existence of tan- 
gential forces, it is simpler to consider some particular case. 

2. TANGENTIAL FORCES IN THE PRESENCE OF WEAK 
GYROTROPY 

Let, in the absence of a magnetizing field, the media 1 
and 2 be homogeneous and isotropic, with respective permit- 
tivities and permeabilities &, (o ), ,u , ( o ) ,  and &,to ), p2(o). 
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We confine ourselves in the calculation of the tangential 
forces to the first order in the field B,. 

As shown above, in the absence of a magnetizing field 
the tangential molecular forces are zero. Thus, the term of 
first order in B, will be the first term of the power-law expan- 
sion. In this approximation, the dielectric tensors of media 1 
and 2 are known [see Ref. 6, 5 1011 to be of the form 

~ Z P  ( a ;  Bo) =ez(o)~Gjk+ibZ ( a )  ejklB0,, (10) 

where ej,, is a fully antisymmetric unit tensor (el,, = 1 ), 
and the coefficients b ,(o)  and b2(w) determine the electric 
gyrotropies of the media. To simplify (without fundamen- 
tally changing) somewhat the calculations we assume that 
media 1 and 2 have only electric gyrotropy, so that the mag- 
netic permeabilities of the media remain unchanged when 
the magnetizing field B, is applied. 

If the magnetizing field is perpendicular to the boun- 
daries of media 1 and 2, i.e., is directed along the z axis, it 
follows from symmetry considerations that there are no tan- 
gential forces in this case. We direct therefore the magnetiz- 
ing field along the boundaries of the media. 

We express the surface impedances of the media, accu- 
rate to first order in B,, in the form 

9 A 

Here 5, and 5., are the surface-impedance tensors in the ze- 
roth approximation, i.e., the impedances of the homogen- 
eous and isotropic half-spaces z < 0 and z > a with constants 
E, y, and ~,y,.  The expressions for these tensors are 

The branches of the roots areAchosen!uch that Re q,,, > 0. 
To find the corrections Sc, and 66, we must solve, accu- 

rate to first order in B,, the equation for the surface-imped- 
ance tensor of a medium with the constants (9)  and (19) 
[see Ref. 51. As a result we get 

t i t  bl 
Gttae s- -- bt % a x ~  

2% 81 
(gaxb+g@xa) + - (btt-~,ti) ( ~ g )  - 

Q t 8 t  x" 15) 

where g = n X B,. Using expressions ( lo)-( 16) we obtain 
from (4): 

where 2 is the zeroth-order term, and the first-order cor- 
rection is 

Here(-) denotes the expression obtained from the first 
term by interchanging the subscripts 1 and 2; in addition, we 
have introduced the notation 

By virtue of the property (5),  2 is an even function of 
the wave vector and makes therefore no contribution to the 
tangential force. We have therefore, according to (8)  the 
expression 

Fa ( a ;  Bo) =- n(T1)-n(T2) J 8% X ~ G X ( O ,  x; Bo).  
2 ~ 3 ~  

Substituting here S d  from (17) we obtain after simple 
transformations the following final expression for the tan- 
gential force acting on the medium 1 : 

where 
m 

It can be seen from ( 18) that the tangential force is directed 
along the vector g = n X B,, i.e., it is parallel to the boundary 
planes of media 1 and 2 and is perpendicular to the magnetiz- 
ing field B,. 

The result ( 18 ) , ( 19 ) shows that even in the particular 
case of weak gyrotropy the tangential force is a complicated 
function of the gap width a. Its behavior at small a can, 
however, be easily understood. Putting a = 0 in ( 19), we can 
easily show that the integral diverges at the upper limit. We 
change therefore in ( 19) to a new variable x = ax. As a re- 
sult we find that as a 4  the function 9 (a) takes the form 

cc 

where 
we= ( l+1/el)  (1+1/cZ*) ex- ( l - l / c i )  ( I - I / € Z * ) ~ - ~ ~  

It follows thus from (20) that at small gap widths the tan- 
gential force is proportional to l/a2. Actually the validity of 
Eq. (20) begins at a d ,  where2 is the smallest ofthe charac- 
teristic wavelengths in the absorption spectra of media 1 and 
2. 

1146 Sov. Phys. JETP 62 (6), December 1985 V. G. Polevol 1 146 



Further simplification is obtained when the dielectric 
constants of the media differ little from unity: 

Then, retaining in (29) only the terms linear in A&,,, , we get 

We write here .st2 in place of A&!, , since E;:, = A&;:, . 
The foregoing consideration of the tangential forces in 

the case of weak gyrotropy was aimed at proving their exis- 
tence. From the experimental standpoint, however, interest 
attaches to the opposite case of strong gyrotropy, when the 
effect is expected to be noticeable. 

Nonetheless, at least a rough estimate of the tangential 
force in the case of weak gyrotropy is of interest. Assume 
that the temperature of one of the bodies is significantly 
higher than that of the other, say T=T,>T,. Assume also 
that only one of the bodies is gyrotropic (say, 2). At small 
gap widths a we then obtain from ( 18) and (2 1 ) for the 
modulus of the total (integrated over all frequencies from 0 
to UJ ) tangential force 

To estimate the integral, the function ( E ;  (w)/w) 
X ( b  ; (w)Bo) can be taken outside the integral sign and as- 
sumed equal to its value at the characteristic frequency w, of 
the Planck distribution. Let T = 1000 K. Then 

F = ~ - ~ e , " ( o , )  (b,N ( aT )  B o )  

We have used equations for media with permittivities and 
permeabilities close to unity. Let, for example &;'(a,) - lo-'. Since the gyrotropy is small by definition, the quan- 
tity ( b  ; (w, )Bo) that describes the additional thermal 
losses due to gyrotropy should be small compared with the 
constant E;(w,) that determines the main thermal losses in 
the system. We put b  ; (wT)Bo - We have then for I: 
the estimate 

at a - 1 pm we get F- dyn. We note for comparison 
that, for example, the Van der Waals attraction force 
between absolutely cold ideal metals at a -  1 p m  is of the 

FIG. 2 

order of We emphasize once more that this rough esti- 
mate, under the assumption of weak gyrotropy, is of little 
interest for experimental observations, where it is natural to 
strive for maximum-gyrotropy conditions. 

Expression ( 18) for the tangential component was ob- 
tained assuming weak gyrotropy, but if the media are iso- 
tropic at Bo = 0 the forces take the same form also for an 
arbitrary magnetizing field. This follows from the fact that 
g = nXBo is the only true vector that can be performed in 
this case. Then, of course, Y is a function of B,, and is 
furthermore even. 

For the direction indicated, it is apparently more con- 
venient to measure the tangential force in the cylindrical 
system shown in Fig. 2, with the magnetizing field Bo direct- 
ed along the axis of the cylinders. Of course, at R)a  the 
surface density of the tangential forces can be estimated us- 
ing the equations for a planar gap. It can be seen from ( 18) 
that in this case the tangential forces are directed in the plane 
of the figure tangent to the surfaces of the cylinders and can 
thus produce a torque. 

The author thanks S. M. Rytov for constant interest in 
the work and for a discussion of its results. 
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