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The behavior of particles and other entities (a broad class of systems) in rapidly oscillating fields 
is analyzed for the case in which there is some set of high-Q vibrational modes which are resonant 
in the field and which are coupled in a nonlinear way with slow motions. These resonances give 
rise to an intense and essentially irreversible energy exchange with the high-frequency field. Some 
characteristic features of the renormalization of the effective elasticity and of the decay of the 
slow motions in multimode resonant fields are derived in the lowest order of nonlinearity as 
functions of the rate at which the resonances are crossed, of the spectrum of these resonances, and 
of the nature of the excitation. In particular, there is a vortical field reaction generated along with 
a dissipative action in motions in multimode resonant fields. The vortical action may be the 
predominant factor in the irreversible energy exchange with the field. The vortical motion driven 
by a "strong" wave, in contrast with other known effects of the stimulated-Raman-scattering 
type, is excited efficiently during a pumping of the field energy either up or down the spectrum. It 
does not fit into the conventional interpretation in terms of wave decay and coalescence processes. 
The analysis is illustrated with some examples, one of which demonstrates the principle of a new 
"parametric motor," different from that discussed by Papaleksi (Collected Works, Vol. 1, Izd. 
Akad. Nauk SSSR, Moscow, 1948 ) . 

INTRODUCTION 

Under conditions such that the characteristic frequen- 
cies of interacting fast motions ("fields") and relatively 
slow motions are widely spaced, it is frequently possible to 
describe interaction effects in terms of an effective potential 
corresponding to the average forces exerted by the high-fre- 
quency field on the states of the slow system. According to 
the concept advanced by Hertz,' the potential energy can in 
general be regarded as being of kinetic origin, i.e., as repre- 
senting the energy of "latent" oscillatory motions. The aver- 
age action on a system of given fields which are oscillating at 
a high frequency is, under certain simplifying assumptions, 
also equivalent to an effective potential which is equal to the 
kinetic energy of the high-frequency "jarring" of the sys- 

as is illustrated in a graphic way by a pendulum with a 
rapidly vibrating suspension point.4 A concept related to the 
effective potential is the "quasienergy."' On the basis of no 
more than the very fact that an effective potential exists and 
certain general properties of this potential, it is frequently 
possible to draw conclusions about the overall picture of 
events under various conditions, without resorting to de- 
tailed calculations. For this reason, the concept of an effec- 
tive potential has proved useful in a variety of fields in phys- 
ics. 

However, a qualitatively new picture of events, which is 
frequently very different from the pictures specified by these 
representations, arises when an interaction with a rapidly 
oscillating field efficiently generates nonpotential forces and 
builds up (or, on the contrary, suppresses) slow motions. 
The nonpotential forces are by no means necessarily an ef- 
fect of the next-higher approximation in the small param- 
eter, with which the concept of a rapidly oscillating field is 

related. The manifestations of these forces are extremely sig- 
nificant and varied when there is a nonlinear coupling of the 
slow motions with high-Q, high-frequency vibrational sys- 
tems ("resonant media") which are excited near resonant 
frequencies. Such situations are quite common, and we are 
led to ask whether, again in such cases, we can see general 
features without resorting to detailed calculations. In the 
present paper we take up this question at the most elemen- 
tary level. 

As an introduction to interactions of this type we will 
discuss the problem of the sharp increase in the mobility of 
particles in rapidly oscillating resonant fields. Indeed, it was 
a study of the mechanisms for increases in mobility which 
was a particular motivation for the present analysis. In this 
connection, and also from the methodological standpoint, 
the present study is related to my earlier paper.6 

The mobility of various kinds of particles (bodies, 
atoms, inclusions, domain walls, dislocations, and so forth) 
may increase substantially in rapidly oscillating fields which 
are at resonance with high-frequency vibrational motions in 
movable objects or their surroundings, as we have learned 
from experiment. One reason is simply that the amplitude of 
alternating influences increases at resonances, with the re- 
sult that we can expect a pronounced change in mobility 
when the energy of the high-frequency vibrations of particles 
becomes comparable to the height of the potential barriers 
formed by obstacles to the motion or when these barriers 
oscillate intensely, so that their effective height decreases 
significantly. 

However, nonlinear mechanisms which result from the 
particular nature of the energy exchange between slow mo- 
tions and high-frequency resonances may have a far more 
important effect on the mobility and may accordingly be 

1128 Sov. Phys. JETP 62 (6), December 1985 0038-5646/85/121128-10$04.00 @ 1986 American Institute of Physics 1128 



manifested at significantly smaller jarring amplitudes. The 
point is that the average force exerted by alternating fields 
generally becomes an essentially nonpotential influence in a 
situation with high-Q resonances, and there is a pronounced 
renormalization of the effective damping for slow motions. 
As a result, the potential barriers may be surmounted easily, 
even when the jarring effects are small. 

Action of this type by resonances on mobility can be 
seen even in the lowest-order nonlinear processes, in which 
the energy of high-frequency oscillation modes c which is 
circulating in a system, including the energy of the coupling 
with slow motionsx, is small enough and can be approximat- 
ed by an expression quadratic in c: 

On the one hand, interactions ( 1 ) generate forces F  that act 
on the slow subsystem; on the other, when motions x ( t )  
cause modulation of the parameters of the resonances. In the 
case of high-Q resonances, small smooth changes of their 
parameters cause pronounced changes in the resonance re- 
gimes, and furthermore with a delay that also increases with 
the Q of the resonances. As a result, the forces ( F  ) (the angle 
brackets mean an average of the fast oscillations c over the 
time) acquire terms which depend strongly and with a delay 
on x ( t ) . This is the reason why the forces ( F  ) are definitely 
not potential forces. The nonpotential nature of the forces 
actually stems from the pumping of the resonances and their 
finite (but large) Q, since these are the reasons why the reso- 
nance regimes are extremely sensitive to changes in the pa- 
rameters w, as a function of x. 

The elementary analysis which we have just presented is 
taken from Ref. 6, where it was pointed out that mechanisms 
of this sort for nonadiabatic interactions with resonances are 
important in a multitude of effects. Some examples are ef- 
fects such as stimulated Raman scattering in resonant me- 
dia, the inverse effects of damping of slow motions by reso- 
nant fields, and the principle underlying the operation of 
parametric amplifiers and oscillators for low-frequency os- 
cillations and waves which use a high-frequency resonant 
pump, beginning with the Mandel'shtam-Papaleksi motor.' 
The analysis in Ref. 6 dealt with the behavior of ferromagne- 
tic particles in a microwave field exciting high-Q ferromag- 
netic resonances in particles. It was shown that in a certain 
interval of the detuning from the ferromagnetic resonance 
the magnetic retardation of the particles gives way to an 
antiretardation of significant magnitude, so that at relatively 
low amplitudes of the microwave field it is possible to effec- 
tively surmount the potential barriers formed by the forces 
of magnetic coupling between particles. 

The fact that the amplitudes w, in ( 1 ) are alternating- 
sign (and, in general, irregular) functions of x does not 
change the basic trend in the renormalization of the damp- 
ing, since the renormalization turns out to be quadratic in 
dw, /ax. When there are inhomogeneities of some type or 
other-and inhomogeneities substantially determine (lim- 
i t)  the mobility-a nonlinear relation such as in ( 1 ) is quite 
typical (also typical, of course, is a relation between x and c 
which is linear in c, but of lower order in the small parameter 
Ic/ *, and is unimportant for estimates of the renormalization 

of the damping when the frequencies of the motions x and c 
are greatly different. For example, the energy of the dipole 
interaction of the particles, 

(r, = ri - r k ,  where ri is the coordinate of the particle with 
dipole moment Mi 1, contributes to the coupling with reson- 
ances of the type in ( 1 ), and also determines the static mag- 
netic forces that shape the potential relieffor various types of 
relative displacements x of the particles. The closer the parti- 
cles are packed, the stronger their coupling that limits the 
mobility. However, there is an equally sharp increase in the 
parameters dw, /ax, and in the case of high-Q resonances of 
Mi ( t )  the increase of their influence on the mobility of the 
particles is even faster than quadratic in dmik /dx, and this 
mobility changes sharply even at relatively small angles of 
the high-frequency resonant precession of M i  ( t ) .  

It is a straightforward matter to analyze these questions 
in a simplified model corresponding to the conditions of a 
single-mode high-frequency resonance, i.e., a one-dimen- 
sional subsystem c in ( 1 ) (Ref. 6) .  Typical of the behavior of 
ferromagnetic particles in microwave fields and of many 
other problems are conditions such that not one but some set 
of c resonances are involved in the interactions. The nature 
of the renormalization of the damping and the effective elas- 
ticity in this case depends on many parameters, and the pic- 
ture of manifestations of the interaction with resonances be- 
comes much more complex. Just what the general features of 
this picture are and just what fundamentally new features 
are introduced by the multimode nature of the problem 
within the framework of interactions ( 1 ) are questions with 
which we are concerned in the present paper. 

It is not difficult to see that a frequent case of interac- 
tions ( 1 )-that in which w, are functions linear inx-is the 
energy of three-wave interactions, which is widely used in 
describing wave For example, when subsystem 
x (with c = 0) is a one-dimensional linear oscillator, while 
subsystem c is two-dimensional, we have a system of three 
coupled oscillators (or coupled waves), for which several 
exact results (if the pumping and damping are ignored) and 
approximate results are quite well known. In particular, 
models of this sort describe the stimulated decay of a 
"strong" wave c of frequency w  into a low-frequency wave x 
of frequency n ( w  and a satellite c of frequency w - and 
also the inverse processes of wave coalescence. However, 
such models as well as more general models have not been 
studied adequately from the standpoint of the present paper. 
In this sense, the analysis below is not simply a methodolog- 
ical analysis concerning familiar nonlinear processes such as 
the stimulated decay and coalescence of waves. This analysis 
also reveals a new category of nonlinear processes, which 
have apparently not been discussed previously and which we 
will call "vortical Raman effects." 

INITIAL EQUATIONS 

We work from interaction model ( 1 ) . The variables c, 
which characterize the resonant field, are assumed to be nor- 
mal variables when the nonlinear couplings with x are ig- 
nored, and the energy of the normal modes is incorporated in 
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( 1 ) . In other words, in the absence of sources and sinks, the 
dynamics of the field obeys the system of equations 

The number of field modes may be unbounded. A dummy 
index implies a summation over the set. We will not discuss 
here the case of an anharmonic (at x = const) resonant sub- 
system. 

To describe the resonant regime of field oscillations we 
must introduce sources of a harmonic pump and compensat- 
ing sinks, i.e., a dissipation. Introducing them in the stan- 
dard we replace (3  ) by the equations 

[d/dt+A (x) ] c=he-'"', (4 )  

where the complex amplitudes h = {h,) characterize the 
sources of an alternating field of frequency w and A (x)  is the 
matrix with the elements 

Akn=iakn+ y k n r  

where the matrix ykn is assumed to be Hermitian, like wkn . 
The sum 

P = y k , ( ~ n s ~ k * ~ , + ~ . ~ .  
is equal to the dissipated power." Where necessary in the 
calculations, we assume that the matrixA is a normal matrix, 
i.e., that the matrices okn and ykn commute. In this sense we 
disregard effects of an additional motion mixing caused by 
slight dissipative forces. We say "slight" here since we are 
interested in conditions of weak dissipation, i.e., high-Q re- 
sonances c, in which the power (P) which is dissipated over a 
time on the order of the reciprocals of the resonant frequen- 
cies is much smaller than the energy in ( 1 ) . 

We characterize the slow motions by real coordinates 
which we assume are also multidimensional: x = {x,). 
Arising from interactions ( 1 ) are generalized forces Fcorre- 
sponding to the coordinates x: 

a a k n  F=- - ck'cn, 
d x 

(5 

where F = {Fa ) and, respectively, (a /(ax = {(a /axa ). These 
forces combine additively with other forces which are acting 
on the slow system in the case c = 0, and determine the dy- 
namics of the slow system. Since the oscillations c depend on 
the previous behavior of x [in accordance with Eqs. (4)  1, 
the forces F generally constitute a complicated retarded 
functional of x ( t )  . An analysis of the characteristic proper- 
ties of this functional is the heart of the present paper. 

In several places, where we wish to illustrate a point, we 
will take x to be the mechanical motion of a particle of mass 
m or the oscillations of an oscillator. In the general analysis, 
however, we actually do not need to be specific about the 
dynamics of the slow system. The applicability of this analy- 
sis thus extends beyond mobile objects. In this analysis, x 
could also be understood as any internal motions of systems 
or low-frequency waves in a medium. Their dynamics does 
not necessarily have to be approximately Hamiltonian; other 
possibilities are any forms of the motion of syster~ls which 
are of a substantially relaxational nature. 

Essentially the only limitation is the slowness of subsys- 
temx, which is actually already incorporated in the interac- 

tion model. When the frequencies of the motions of subsys- 
tems x and c are commensurable, terns ci ck , for example, 
would be just as important as coupling terms with the struc- 
ture ctc,, which are taken into account in ( 1 ) , and terms ei"' 
might play a role in Eqs. (4) along with the resonant pump 
- iut (at frequencies w approximately equal to eigenvalues 

of the matrix wik ) . 
Interactions of x with c which are close in terms of ef- 

fects, and which are taken into account through the func- 
tional dependence w, (x),  occur when there is a modulation 
of the amplitudes, h = h (x) .  An x dependence of h corre- 
sponds to a coupling energy in addition to ( 1 ) , 

~: ,h l )  =ickhkq (5) e i U q  C.C., 

and forces F'h' = - (aHj;:/(ax appear in addition to (5).  
For the forces of both types it is necessary tor recognize that 
the x dependence of h in (4) alters additionally the response 
of the resonant field to motions x ( t )  . The renormalization of 
the effective elasticity and of the damping of the slow mo- 
tions due to these couplings is generally not a small effect. A 
coupling of this type arises in, for example, an analysis of the 
behavior of a dipole particle (x would represent its displace- 
ments and rotation angles) in a harmonic external field 
which excites an "internal" resonant dipole subsystem c. 
This pertains, in particular, to an atom in a laser field which 
is at resonance with optical transitions in the atom. These 
couplings also play a significant role in derivations of the 
mobility of ferromagnetic particles in microwave fields. 

The model selected above for interaction with reson- 
ances [through forces (5 )  and Eqs. (4)  with h = const], 
which we will work from in the analysis below, actually en- 
compasses effects of couplings of h from x through an expan- 
sion of the number of modes c. The additional set of these 
modes, {c,. ), must have suitable interaction parameters, 
and its eigenfrequencies must be far enough from the fre- 
quency o so that the oscillations {ck, ) react only weakly to 
changes in x ( t ) .  Obviously, an expansion of the number of 
modes c also covers the case of "external" resonances asso- 
ciated with the use of resonant systems to amplify a pump 
field. 

ADIABATIC SITUATION AND THE GIVEN-FIELD 
APPROXIMATION 

We begin our study with an analysis of the nature of the 
interactions of motions x with an ideal resonant system c, 
described by Hamilton's equations (3).  We consider the 
case in which the matrices wik and dm, /(ax commute.In this 
case we have 

identically. Indeed, from Eqs. (3),  we find 

The second term on the right becomes identical to the first if, 
in accordance with the commutation condition, we replace 
((amjk /(ax)okn by wjk ((auk, /(ax), use ojk = wj*, , and then 
permute the indices: j+n, n-k, k+j. 
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Equation ( 6 )  means that the entire effect of subsystem c 
on the motions x reduces, in accordance with ( 5  ) and ( 6 ) ,  to 
the influence of a time-independent potential 

where N,, are constants equal to the values of the products 
c,?ck at some time (e.g., the initial time). In this case, multi- 
dimensional motions c can be separated. 

This point can be easily understood by noting that if the 
matrices w,, and dojk /dx commute during the changes in 
x( t ) ,  the matrices wjk for different x ( t )  also commute. 
There exists thus a basis in the variables c in which the matri- 
ces w,, remain diagonal during motions x ( t )  : 

u j k = 6 j k u k  ( X  ( t )  ) .  
Correspondingly, the new variables {c, ) (we will retain the 
previous notation for them) are normal vibration modes 
with time-varying eigenfrequencies {ak 1. Each of the quan- 
tities Ick l 2  is an invariant (an adiabatic invariant) and does 
not change during the motions x ( t )  . 

This adiabatic situation can serve as an illustration of 
Hertz's concept: "Latent" oscillations c having the energy 
( 1 ) generate the potential (7).  This property evidently 
holds whenever an isolated subsystem c is a single-mode sub- 
system. In the case of two modes, c = (c,, c,), the property 
of the separation of the motions c holds if w,, = 0 or (if 
w,,#O) when theexpressionsw,,/w,,and (a,, - w,,)/w,, 
do not change during the change in x ( t ) .  This is the case, for 
example, for a system of two coupled electric circuits with 
identical partial frequencies when there are arbitrary 
changes in their mutual arrangement, which change the in- 
ductive and/or capacitive couplings. This property also 
holds for two magnetic particles represented by dipoles with 
a1  energy ( 2 )  and with oscillations c, and c,, represented by 
modes of a uniform precession of M I  and M, for rather arbi- 
trary changes in r, ,(t) .  [The limitation reduces to the re- 
quirement that the deviations of MI  and M, in the course of 
the motions r,,(t) from their equilibrium configuration 
M,IIM,llr,,(O) must be small. If M,#M,, then we have 
w,, #a,,, but the ratio (w,, - w,,)w,, remains un- 
changed. ] 

The result in (7 )  remains valid if we take the N,, to be 
not fixed values of the products c,?c, but functions of the 
time N,, ( t )  = c,? ( t )  C, ( t ) ,  where {C, ( t )  ) are oscillations of 
{c, 1 which occur in accordance with laws (3)  for a value ofx 
which is constant over time but otherwise arbitrary. In other 
words, the given-field approximation, i.e., the approxima- 
tion in which we ignore the response of the field to changes 
x ( t ) ,  is an exact result in this case. 

In the general case of an arbitrary functional depen- 
dence w, (x)  and for a dynamics of c in accordance with 
Eqs. (4),  the average force exerted by the field also reduces 
to a potential force if we ignore its response to changes in 
x ( t )  . For given oscillations c ( t )  a e - '"I, the forces in ( 5  ) do 
not have high-frequency components and can be expressed 
in terms of a potential which is of the same form as (7).  

Not only for interactions ( 1 ) but also for Hint (x, c, c*) 
of arbitrary structure, the average force F  = - b'Hint /ax is 
very accurately a potential force in the given-field approxi- 

mation [with short-priod oscillations of c( t )  1, if we are deal- 
ing with sufficiently inertial forms of the motions x (with 
large inertial coefficients). In this case, the high-frequency 
components F- (x, t )  = F  - ( F )  add to the potential a con- 
tribution equal to the kinetic energy of the jarring, 
x- = x - (x) (Ref. 3).  The condition under which the os- 
cillations c are fast is that there be a small parameter lx, I /  
I( 1, where I is the scale length of the inhomogeneity alongx 
of the forces exerted on the system. Characteristically, if the 
forces F,  do not exceed ( F  ) in amplitude, we have 

i.e., to incorporate the forces F- is to exceed the accuracy of 
the treatment in terms of the small parameter. 

The given-field approximation is frequently used in es- 
timates of the interaction of forms of motions with greatly 
different frequencies. All-in-all, it yields a correct estimate 
of the forces ( F  ) in order of magnitude. Regarding the func- 
tionalstructure of the force ( F  ), however, it may give incor- 
rect results, making it impossible to draw conclusions about 
the renormalization of the damping of the slow motions and 
even about the effective elasticity. This is true in particular of 
regimes with a resonant excitation of oscillations c. In this 
case, it is very important to take into account the resonant 
pumping of the modes c and the offsetting dissipation of 
these modes. 

QUASISTATIC APPROXIMATION 

In this section we consider extremely slow motions x, 
which are such that the changes w,, ( x ( t ) )  set in more 
smoothly than the establishment of resonant regime of oscil- 
lations c according to (4)  withx = const. This case evident- 
ly corresponds to motions x which are slower than in the 
adiabatic situation, in which the pumping and dissipation of 
the oscillations c are ignored. 

From Eqs. (4)  we find 
t t 

e (t) =e-'.'[dldt+D (x (t) ) ] -lh=e-"' J expt { - J D ( r  ( t ' )  ) 

where 

D (x) = A  (2) --id, (9)  

I i s  the unit matrix, exp, is the chronologically ordered expo- 
nential function, and D -' is the inverse of matrix (9).  

We note that we have dD -'/dt = - D -'AD - ', and 
the series on the right in (8)  is, for slow changes in wik, a 
power series in the small parameter 

where l/n.  is the scale time for the crossing of the reson- 
ances upon changes in w,, and A is the scale of the eigen- 
values of matrix IDI, i. e., of the quantities 
[ y 2 k  + (wk -w)2]1'2- 
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The expression found for the force F as a functional ofx 
by substituting the series (8 )  into (5 )  is complicated. To 
analyze it, we ignore terms O ( E ~ ) .  In this approximation we 
have 

where F '(x) are the forces in the quasistatic limit, E = 0, and 
their components are 

2 is the matrix w,,, and a = { a , )  = D -'h are stationary 
[for a givenx = const in ( 1 1 ) ] amplitudes of the oscillations 
c. The matrix T ( x )  in ( 11 ) has the structure 

The terms in ( 1 1 ) generally do not correspond to a sep- 
aration into potential forces and a damping, since in general 
we have 

d F , O / d ~ ~ f  d F B 0 l d x a ,  raB+Fgrt.  
These inequalities become equalities if the matrices ao/dx 
and D commute, i.e., if the motions c separate. In such a case, 
the term F0 is a potential term, while - Tx represents forces 
of a damping which is linear in the velocity. We first discuss 
the properties of the potential and the damping for this case. 

Separable fast motions. We use a basis in the variables c 
in which the matrix D ( x )  remains diagonal in the course of 
motion x ( t ) ,  i.e., is of the form 

In this basis, we find the following expression for the poten- 
tial of the forces F O (x  ) : 

The relation between the parameters h ,  I2/yk and the pow- 
er P, = 2yk w, a ,  I 2  expended in sustaining the oscillations 
of mode k for a given x = const is 

The potential ( 15) differs substantially from the poten- 
tial ( 7 ) ,  which corresponds to relatively fast (adiabatic) 
changes in x.  

In this basis we have 

The contribution of each of the resonances k to ( 15) is of 
such a nature that there is a tendency for a particle to be 
displaced into the region where w, ( x )  is a minimum. The 
tendency is the same in the case of the potential U, (x ) ,  but 
the corresponding dependence in U,(x) becomes much 
steeper in the resonant region, wk ZW, and it acquires a sub- 
stantially smooth form far from the resonances. For this ra- 
son, U,(x) may, for example, form quite steep wells and hills 
where U, ( x )  behaves smoothly and monotonically. 

To illustrate these arguments we consider a one-dimen- 
sional motion x in the resonant field of two modes with nor- 

mal frequencies 
~k ( 5 )  =00+ (x-xO) U k ?  

where k = 1,2,  and the coefficients v,  and v, differ in sign. In 
this case the potential U, ( x )  has a monotonic behavior: 
linear in x. The potential Uo(x), on the other hand, forms a 
well near the point x = xo under the condition w > w,, as 
shown in Fig. 1. Under the condition w < w,, a hill is formed. 
The width of the well or hill depends on the frequency differ- 
ence w-w,; the minimum width is determined by the width of 
the edges, -yk/Ivk 1; and the depth of the well is -P/wo, 
where P = P, + P, is the power dissipated at the resonances. 
We note, however, that a free particle will not become local- 
ized in such a well because of the negative damping intro- 
duced by forces - r k .  

The damping coefficient r (x  ) approximately dupli- 
cates the behavior of the second derivative of - Uo(x); its 
profile is also shown in Fig. 1. In the potential well, r is 
negative; the particle is driven, and it begins to jump out of 
the well. Around the edges of the well, the damping r is 
positive, and the particle is slowed down, but the net effect is 
(as an analysis shows) that the amplitude of the oscillations 
of the particle continues to grow monotonically. For the sim- 
plified case with which we are dealing here, this growth is 
unbounded [in particular, as long as approximation ( 11 ), 
which requires that k be small, holds]. At w < a 0 ,  when the 
well is replaced by a hill, the T ( x )  profile is inverted. Now 
the damping r is negative around the potential barrier 
Uo(x), and a particle whose velocity is too low to surmount 
the barrier will be reflected and will acquire some additional 
energy in the process. Untrapped particles also acquire ener- 
gy on the average and surmount the barrier. 

In genera1,the structure of the matrix r in ( 1  1) is as 
follows (in the basis in which D is diagonal): 

Since the sum over a,P for a given k obeys for arbitrary x ( t )  

we conclude from ( 16) that the power of the friction forces 
(this power is x r x )  receives a positive contribution from 

FIG. 1. Profiles of the potential Li,(x) and of the damping T ( x )  for a slow 
crossing of two resonances with frequencies o ,  ( x )  and o , ( x ) .  It is as- 
sumed here that we have y ,  = y ,  and Ih, < h , .  U, = n i h , i 2 / y , .  
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interactions with normal modes of frequencies wk > w and a 
negative contribution from modes of frequencies wk <w. 
This is the case for arbitrary forms of the motions x ( t ) ,  for 
aribtrary functions w, ( x ) ,  and for an arbitrary nature of the 
excitation of resonances. I t  follows in particular that if 
w k  > w for all of the modes involved in the interactions there 
should be a damping, while in the case in which we have 
wk < for all these modes we should see an antidamping-a 
buildup of the motions x .  

Nonseparable fast motions. In this case, only the sym- 
metric part of the matrix T in ( 11 ), i.e., the matrix with the 
elements 

r a R + ' l t / z  ( r a i l +  r R a )  

represents the forces of a damping which is linear in the 
velocity. The skew-symmetric part of r ,  which is equal to 
r- = r - r ' ,  represents gyroscopic forces. The power 
which they generate, x r - x ,  is identically zero by virtue of 
the relation T,p + Tp, = 0. 

The forces F0 can also be broken up into two parts: a 
conservative part described by a potential, and a vortical 
part. The potential part o f F 0  is characterized by the matrix 
of elasticity coefficients 

KapL =- ' I3  (iiF,oi8xp+3F,,Dldxa). 
The vortical part o f F  O, like the forces - T+x,  contributes to 
an irreversible exchange of energy with resonances, but the 
work performed by the vortical forces over the cycle of the 
x ( t )  change does not depend on the velocity. Such forces are 
similar to rotational forces (e.g., those which act on a Stokes 
particle in a rotating liquid when the velocity in the flow is 
much higher than that of the particle). The intensity of the 
vortices of the field F O ( x )  is characterized by the skew-sym- 
metric matrix with elements 

whose meaning is clear from the circumstance that the work 
performed by the forces F0 in the motions x ( t )  in a small 
neighborhood of the point x ,  along a contour of areas in the 
x, , Xa plane, is 

9 FO ~ X = Z ~ K , , -  ( x )  . 
Let us examine the distinctive features of the damping 

T+ (x) .  The vortical forces are discussed in a separate sub- 
section. For convenience in comparison with the case of sep- 
arable motions, we use a representation in which, for agiven 
x in r+ (x) ,  the matrix D ( x )  is diagonal. This approach does 
not limit the generality of the discussion. The elements of 
D ( x )  are evidently of the form in ( 14), but ~ ( x )  is no longer 
the same as the derivative of the diagonal matrix with the 
elements in ( 14). In this basis we have 

where g (  k )  are symmetric matrices with the elements 
d o h i '  d u r n  

ga6 ( k )  = ~ e  { - - 
d z a  a x e  

Expression (18) differs from (16) only in the form of the 
matricesg(k), which, for the case of separable motions, be- 
come 

In the particular case in which h, = So, hO corresponds to 
the given x, i.e., in which only a single mode c (that with the 
index 0 )  is excited, matrix ( 18) is again a sum over k; only 
the form of the matrices g ( k )  simplifies: 

This result shows clearly that a modulation of the coeffi- 
cients of the couplings between the resonances add to the 
damping a contribution comparable to that of the modula- 
tion of the eigenfrequencies. 

Each of the matrices in ( 19) has nonnegative eigenval- 
ues, since for arbitrary x ( t )  the quadratic form xg( k )x  takes 
on only nonnegative values: 

I t  thus follows from ( 18) that the sign of the damping r', 
i.e., the sign of the eigenvalues of the matrix T', is deter- 
mined by the position of the spectrum {w, ( x ) )  with respect 
to the frequency w, and it is of the same nature as in the case 
of separable motions c, discussed above. 

Vortical forces. The matrix in (17) characterizes the 
intensity of the vortical forces. For it we find from ( 12) 

where x ( k )  are skew-symmetric matrices with the elements 

We note that the behavior of the vortical forces as a function 
of the frequency differences w, - w is quite different from 
that of the damping forces: The frequency-dependent coeffi- 
cients of x ( k )  in (22) are at a maximum at w = w,, while 
the corresponding factors in ( 18 ) vanish. 

Let us compare the vortical action with the dissipative 
action. Specifically, we compare the average power levels of 
the forces of the two types in the case of small periodic mo- 
tions with respect to some fixed value of x ,  which is taken as 
the origin of the x ( t )  scale: 

(ir+i>= gap ( k )  ( i a i ~ ) ,  

(24) 
X ( t )  ) = 2'h - x a p ( k )  ( i a x p ( t )  ). 

(ok--o) 2+y;" 

Here the angle brackets mean averaging over the period 
of x ( t )  . We consider the expressions 

in the case of harmonic changes in the frequency a: 

Using ( 19) and (24) we find (we are not writing the index k 
explicitly) 

I,==512x,x,~zaz,~ cos (pa-p , )  cos (qa-qp), 
(25') 

~ ~ = ~ ~ z ~ x ~  /zazpI sin ( ( ~ a - p a )  sin ( $ a - ' h )  9 
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a@,, 
za= I za I ei*@= - a,. 

axa 

Hence 
Ig+I,=Q2~a~g I zazg I COS[ ( ~ a - ~ a )  - ( c ~ s - q e )  I 

Since I, 20  [see (21)] ,  we find 

A stronger opposite inequality holds for the corresponding 
frequency factors for I, and I, in (24). The ratio of the k th 
terms in the sums in (24) is 

Here the quantity 

is very large, since the analysis is being carried out in the 
quasistatic approximation, in which the parameter in ( 10) is 
small. 

According to (27), the irreversible energy exchange 
generated by vortical forces may significantly exceed the 
work performed by friction forces, since the factors I, and 
I ,  are generally comparable in magnitude, as can be seen 
from their stucture in (25'). A necessary condition here, in 
additon to the condition that there is a subsantial mixing of 
the multidimensional motions c upon changes in x ( t )  , is that 
the corresponding forms of the motionx must have approxi- 
mately equal frequencies. 

When a motion x is represented by only a single degree 
of freedom, the concepts of vortical and gyroscopic forces 
evidently lose their meaning; the forces F O ( x )  in ( 11 ) are 
potential forces, and I', is the same as the damping I'+, with 
all its properties as discussed in the preceding section. The 
distinctive features in the case of a two-dimensional motion 
x = (x,, x2) can be seen from the example described by the 
equations 

m,xl+klx,=hx2, m2x2+k2x,=-Axl, 
where vortical forces which are linear in x appear on the 
right sides. The solution of these equations is a superposition 
of rotational motions with characteristic frequencies a+ 
and 0- given by 

Q,'='/, (Q12+Ql)  * [ ' I6 (Q,2-Q22)2-A2/m1rn2]'1*, 
where nf = k,/m,. We see that the vortical forces cause ro- 
tational motions to grow only if the frequencies ni are quite 
close together. If the frequencies are separated substantially, 
and the condition (a: - ) 2 ~ 4 R  2/m,m2 holds, the effect 
of these forces is slight. 

We have yet another comment. Vortical (and gyroscop- 
ic) forces arise when the interactions with the resonant field 
are of such a nature that the matrices w, and dw,, /dx do not 
commute; i.e., there is a mixing of the motions c during a 

change in x( t ) .  This condition, however, is a necessary but 
not sufficient condition, as we have already seen clearly in 
the example of a one-dimensional motion x. Another exam- 
ple is that in which, during multidimensional motions x( t ) ,  
only a single pair of elements (mi,, wki ) changes in {w, ), 
and their ratio wik /aki does not depend on x ( t )  . In this case 
we have K - = 0 and r- = 0. The vortical and gyroscopic 
forces are also absent if w, and dw,,/dx do not commute, 
but for a given x only a single mode c is excited [in this case, 
the matrix r (x)  is as given by expression ( 18), with matri- 
ces g(k)  as in (20) 1. Furthermore, vortical forces do not 
arise in the case of the simultaneous excitaiton of a set of 
modes c if the phases of { h ,  ) are selected in a certain way. 

If, for example, subsystem c is nongyroscopic (in this 
case, we can assume, without any loss of generality, that all 
the elements w, and all the corresponding dmik /dx are 
real), then it is easy to see that we have k - = 0 and r- = 0 
when the phases of all the {a, ) are identical or differ by T. 
The presence of a phase shift which is not a multiple of T, i.e., 
the presence of rotating or traveling components in the excit- 
ed resonant field, does not by itself lead to rotational forces, 
since there is the further necessary condition that w, and 
dw,, /ax do not commute. 

The action of these vortical forces is thus a rather 
unique effect of the reaction forces (recoil forces) of reso- 
nant fields. Nevertheless, it may be predominant because of 
strong inequality (27). As the frequency is increased, and 
the quasistatic approximation must be abandoned, the pa- 
rameter @(k )  in (27) becomes modified, but it does not 
remain greater than unity, as before (more on this below). 

RENORMALIZATION OF THE MOBILITY PARAMETERS AT 
VALUES OF E WHICH ARE NOT SMALL 

In this section of the paper we examine the quantity 
SF(t)/Sx(r).  It determines a renormalization of the mobil- 
ity parameters of system x and is a convenient and rather 
comprehensive (along with the value ofFin the caseax = 0)  
characteristic of the interactions if we are concerned with 
the stability of dynamics of oscillations x ( t )  whose ampli- 
tude is small in comparison with the scale I. In the limit E <  1, 
the quantity SF(t)/Sx(r) is represented by the matrices of 
coefficients K * , r * , discussed above. Let us examine the 
particular features of these matrices and the variance which 
arise as the rate of change Sx ( t )  increases with distance from 
the quasistatic limit. 

To find SF(t)/Sx(r) we need to calculate the response 
of a resonant regime of oscillations c to changes 
Sx = x( t )  - x in the limit 8 x 4 .  From (4)  we find the fol- 
lowing expression for the response Sc: 

a A 
6c (f) =- 1 c-(~- ' )*  - 6.z ( r )  e ( 7 )  dr, 

- ca ax 

where A and dA/ax in the integral are functions of 
x = const, and c ( r )  = e-'"'D -'h is a stationary regime of 
oscillations c with Sx = 0. As before, we are using a repre- 
sentation in which A I,, =, is diagonal. Using the spectral 
representation 
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m 

6x ( t )  = 1 6x (8) e-"$ d 8  
-m 

and calculating the response 61; from ( 5) and (28 ), we put it 
in the form 

ca 

BF ( t )  =F-F 1 ai=.=- J [ K  (x, 8) -iQr(x, R) ]6x (R)e-"'d61, 
- m 

(29) 
where K and r are matrices with real elements which are 
even in the variable a. This approach gives the symmetric 
and skew-symmetric parts ofK = K + + K - the meaning of 
elasticity coefficients and vortical forces which are generat- 
ed by interactions with resonances during harmonic changes 
6x(t)  of frequncy a. Analogously, the symmetric ( r+)  and 
skew-symmetric (T- )  parts of r are the coefficients of a 
linear damping and gyroscopic forces. 

The matrices K * are of the form 

where 

andg(k) and x ( k )  are the matrices introduced in (19) and 
(24). the matrix k (x )  in K + is symmetric and independent 
of 0 ;  it represents the elasticity of the forces Fin the approxi- 
mation of a given field and is expressed in terms of a poten- 
tial: 

where the (Nik ) are the amplitudes ara,, which are station- 
are in the case 6x = 0. 

The matrices r * are given by 

In the limit a 4 ,  expressions (3 1 ) remain finite and go to 
their quasistatic limits discussed in the preceeding section. 
The same is true of matrices (30). The terms in the sums in 
(30) and (3  1 ) are structured matrices which do not depend 
on a ,  with weight factors [in the square brackets] which 
increase sharply in the region of Raman resonances, 
w = wk f. n. These factors are dimensionless and do not ex- 
ceed unity in order of magnitude.In K - and T-, these fac- 
tors are characteristically even in w - w,, while in T+  and 
K + they are odd and change sign when the sign ofw - ok is 
reversed. It follows, for example, that when we also recog- 
nize that all the matrices g(k)  are not negative-definite 
[property ( 2  1 ) 1, the modes of the frequencies 
wk > w(wk < a)  make a positive (negative) contribution to 
the damping T+ . 

If, in the estimates of r+ and K -, we take into account 
only interactions with Raman resonances w = wk + f l  (or 

only those with w = w, - a ) ,  i.e., if we retain in (30) and 
(3  1 ) only those terms which depend on {{+ (k )  ) [or only on 
(6- (k))]  in the sums over all k, we find the following result, 
where we are making use of property (26): 

1 (ir+i) 12 1 <iK-x ( t )  ) 1 .  
This result means that for any forms of motions x( t ) ,  for any 
structure of the interactions wik (x),  and for any level of 
excitation of the resonances, the direction of the resultant 
energy flux between c and x is determined by the nature of 
the damping r+. We have either quenching [if only the 
terms which depend on {{- ( k ) )  are taken into account] or 
amplification [only the terms which depend on {{+ (k )  )] of 
the oscillations x( t ) .  If such conditions are to be met, the 
frequencies of the motions must obviously be large in com- 
parison with the frequencies of the damping yk,  and the 
spectrum {w, ) of the modes which are involved in the inter- 
actions must be relatively narrow. 

When the spectrum {a,) contains widely spaced fre- 
quencies, there may be conditions, depending on the position 
of the frequency o ,  even in the case a ) y k ,  such that reson- 
ances w = wk + 0 are effective for certain modes, while re- 
sonances w = w, - are effective for others. The result 
may be a substantial lowering of the value (eigenvalues) of 
T+  but without affecting K -, since K - is even in wk - w.  
Under these conditions we would expect a significant pre- 
dominance of the vortical action of the resonant fields. 

Comparing the irreversible energy fluxes generated by 
the partial contributions from the k th terms to K - and T +  
for arbitrary a ,  we find relations which generalize (27) in 
that @ ( k )  should be replaced by 

Correspondingly, the symbol for "much greater than" in 
(27) would be replaced in the general case by a "greater 
than" symbol, and 0 ( 1 / ~ )  would be replaced by 
O[ (1  + E ~ ) / E ] .  

When we were discussing the quasistatic limit ~ ( 1 ,  we 
mentioned the property that the damping T+  is of one sign 
for all forms of the motions x ( t )  for which the spectrum 
{w, ) of the modes c that are effectively involved in the inter- 
actions lie on one side of the frequency w. We see that this 
property holds for arbitrary values of E. This property may 
be interpreted from the standpoint of processes of a stimulat- 
ed decay, w-m,  + a ,  or coalescence, w + fl-mk, of ele- 
mentary excitations, by associating with the processes the 
first and second terms in square brackets in (3  1 ), which 
differ in sign. In the decay, energy is pumped into the oscilla- 
tions at the frequencies wk and 0 ;  the oscillations x ( t )  are 
amplified; and the contribution to the damping J?+ is corre- 
spondingly negative. In the case of a coalescence, there is an 
energy tansfer from the excitations of frequency n ;  the mo- 
tions x ( t )  are damped; and the contribution to rf is posi- 
tive. 

If we were to pursue this approach systematically, we 
would associate the pumping of vortical energy from c to x 
with decay and coalescence processes. Actually, we are talk- 
ing here about the same approximation, and the same Ra- 
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FIG. 2. The "parametric motor." Movable circuit I11 becomes entrained 
in translational motions along circular trajectories in the x , ,  x ,  plane be- 
cause of a resonant excitation of circuits I and 11, which form the stator. 

man resonances are acting in both T+ and K - in (30) and 
(3 1 ) . The vortical forces do not necessarily arise because of 
the presence of tails of the resonant functions, as could be 
shown simply for the situation y, ) a ,  Iw, - ol. It follows 
from the discussion above that these forces can also be pre- 
dominant in the case y, (R, I w, - w 1 .  In this case, however, 
how would we interpret the circumstance that the pumping 
of vortical energy from c to x does not change sign and oc- 
curs identically efficiently when high-frequency energy is 
pumped either up or down the spectrum? Apparently, to 
speak in terms of frequencies and energy levels, as is custom- 
ary in discussions of stimulated Raman scattering, is not 
appropriate here, or at any rate it is not sufficient for an 
interpretation of the vortical Raman phenomena involved 
here. 

Questions of the existence of vortical forces and mutual 
transfer of the energy of vortical motions, or of the excitation 
of rotational oscillations and waves by this mechanism, have 
apparently not previously been raised in the literature. Al- 
though the mechanism for interactions with high-frequency 
resonances which we have discussed here is quite general, in 
analyzing the stimulated scattering or damping of excita- 
tions by a strong wave of frequency w it is customary to 
retain, from the entire reservoir of waves which interact in a 
nonlinear way, the smallest number necessary for some low- 
order process or another to occur. When this approach is 
taken, the vortical effects which we have been discussing 
here drop out of the picture, since their incorporation re- 
quires resorting to a large number of normal vibrations, of 
both high and low frequencies. This assertion by no means 
implies that the vortical processes are atypical, since they are 
manifested in the same low order in the interaction nonlin- 
earities as the decay and coalescence processes we have men- 
tioned. 

We conclude with a discussion of an example which 
demonstrates the vortical action of multimode resonant 
fields. 

THREE-MODE VORTICAL-ACTION "PARAMETRIC MOTOR" 

Let us examine the system shown in Fig. 2. It consists of 
three high-Q RLC circuits with R ( ( L  /C) '". Circuit I11 is 
movable; it is coupled inductively with fixed circuits I and 11, 
which are supplied power from an external oscillator of fre- 
quency w. As circuit I11 moves along the x,  direction, the 
coupling between circuits I and I11 changes; as it moves 

along the x, direction, the coupling between I1 and I11 
changes. 

We choose the variables c = (c,, c,, c,) to be normal 
when the circuits are separated from each other and the cou- 
pling between circuits can be ignored. In this case,the ele- 
ments wik , which depend on x = (x,, x,), are 

0 1 3  ( x i )  ( x i )  0 2 3  ( x Z )  = o S Z  ( 2 2 ) .  

Let us determine the matrices x (k )  and g (k )  in (30) and 
( 3 1 ) . These are 2 x 2 matrices with k = 1,2,3. They depend 
on the amplitudes a, ,  a,, a,, which are stationary for a given 
x, and on the parameters 

u,=a0,3/dzi ,  ~ ~ = a ~ z s l d ~ z .  

For the matrices x (k we find 

x (1) =o, x (2) =o, 

For the matrices g (k )  we find 

We consider conditions such that the eigenfrequencies 
W,  (x)  and w, (x )  for given geometry x are identical and are 
at exact resonance: w, = 0, = w. In this case, only the terms 
with k = 3 are nonzero in the matrices K - and r+ given by 
expressions (30) and (31 ); in other words, only x (3 )  and 
g(3)  areimportant. They do not depend on theamplitudea,. 
Let us assume that circuits I and I1 are excited in such a way 
that the amplitudes a, and a,, which are stationary for a 
givenx = const, are 7~/2 out of phase. For simplicity we also 
assume v l  la, 1 = v21a2i. For harmonic variations x,,, ( t )  of 
frequency a ,  the ratio of the power levels of the vortical 
forces and of the friction forces is 

1 (it:!; ) 1 = I <l ix z  (t)-x4 ( t ) $ )  1 ya2+ ( O S - ~ ) ~ + Q ~  
(iiz>+<ii.22> 1 Q (as-0) I ' 

(32) 
The first fraction on the right depends strongly on the polar- 
ization of the oscillations x ( t )  . This fraction vanishes in the 
case of a linear polarization (an arbitrary polarization in the 
x,, x, plane) and becomes equal to unity for rotational mo- 
tions x( t ) .  Correspondingly, in the first case we have 
(xK -x( t ) )  = 0, while in the second the ratio in (32) be- 
comes greater than unity at arbitrary values of the frequency 
difference w, - w and of the frequency a. We are talking 
here about rotational motions of the center of mass of system 
111, not about an angular rotation of this system around 
some axis. Reversing the direction of the rotation of the reso- 
nant field (replacing the phase shift 77/2 between a ,  and a, 
by - 77/2) reverses the direction of the vortical action of the 
forces F. This does not occur when the sign of the frequency 
difference w, - w is changed. 

Consequently, not only in the case w, < w ,  in which the 
damping T+ is negative, but also in the case w, > w, when 
r+ is positive, and the oscillations x ( t )  or arbitrary linear 
polarization are suppressed, rotational motions can grow, 
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since the power of the vortical forces is predominant. At 
R%y,, the rotational action is greatest near the Raman re- 
sonances w = w, - R and w = w, + a. 

This example obviously does not come close to exhaust- 
ing the variety of systems and manifestations of the vortical 
Raman effects which we have been discussing here. Study of 
these effects might apparently be both of applied interest, 
e.g., for the development of parametric devices of a new type, 
and of interest for research into new physical phenomena in 
the motion of particles and the excitationof oscillations and 
waves in resonant fields (it might be suggested, e.g., that 
there are gas rotation effects in resonant light fields). 

"An arbitrary complex matrix A can always be written unambiguously in 
the form A = A ' + iA ", where the complex matrices A ' and A " are Her- 
mitian." If we introduce a normalization such that the expression c*A "c 
[i.e., the sum in ( I ) ]  is the energy of the oscillations, then the rate of 
change of this energy, prescribed by (4) with h = 0 and x = const, is 

c*(A 'A " +A "A ')c, in agreement with the expression given here for P. 
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