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We consider the behavior of a two-level system acted upon by two resonant fields, one weak and 
the other strong. We obtain a generalization of Torrey's familiar solution for strong monochro- 
matic resonant excitation. It is shown that the weak field produces in the system undamped 
nutation at the combination frequencies between the frequency difference of the initial fields and 
the harmonics of the Rabi frequencies. The harmonics of this nutation have amplitudes that 
depend resonantly on the amplitude and on the detuning of the strong field. Resonances set in 
when the Rabi-frequency harmonics are equal to the frequency difference of the initial fields. The 
results are generalized to include phase fluctuations of the weak field. They lead to a change of the 
undamped-nutation frequency. The positions of the nutation resonances and amplitudes remain 
unchanged, but their width depends on the width of the phase-fluctuation spectrum. 

A general solution for the behavior of a two-level quan- 
tum system in a resonant external monochromatic field was 
obtained back in 1949 by Torrey.' This solution consists of a 
time-independent stationary part and a nonstationary one 
that describes transient damped processes, e.g., the oscilla- 
tion of the difference between the level populations of the 
system (nutation). The damping is due to relaxation pro- 
cesses in the system. The stationary part of this solution was 
later variously generalized to include excitation by a bichro- 
matic and, in general, a polychromatic intense field (see, 
e.g., Ref. 2 and the citations therein). It was found as a re- 
sult, theoretically and experimentally, that if the modes of 
the external field are of equal intensity there are produced in 
the system quasilevels whose spacing is determined by com- 
bination relations between the intermode distance and the 
subharmonics of the Rabi frequency. These quasilevels 
cause the so-called subradiational structure in the absorp- 
tion of the external field by the ~ y s t e m . ~  

We obtain in the present system a solution, similar to 
Torrey's, for the density matrix elements of a system acted 
upon by two resonant fields, one weak and the other strong. 
The strong-field amplitude is such that nonlinear effects, 

represented in the form 

B ( t )  = E O  e x p ( i o t )  + L o  exp i [o t+Qt+tp( t )+  cpo]+c.c., (1) 

where E, and <, are respectively the amplitudes of the strong 
and weak components. The strong-field frequency w is close 
to the system transition frequency w,, i.e., 
I A 1 = I W  - wol 4~ + oo.  Furthermore, R is the difference 
between the field frequencies ( R x w )  and p ( t )  is the random 
component of the weak-field phase, which shall describe us- 
ing the phase-diffusion mode,' i.e., we assume that 
@(t )  = p ( t )  is a Gaussian 8-correlated random process: 

( ~ ( t )  )=O, ( I n . ( t , ) p ( t z ) ) = 2 y S ( t , - t z ) ,  

( ) denotes averaging over the random-process realizations, 
r is the phase-fluctuation-spectrum matrix, and po is the 
initial phase of the weak field. 

The dynamics of a two-level system in the field ( 1 ) is 
described in a rotating coordinate frame and in the approxi- 
mation of slowly variable amplitudes by equations similar to 
Bloch's optical equations6: 

d a ( t ) / d t = - a ( t )  IT2-AB ( t )  -aC,n(t)sin(Qt+cp(t) +rpO), 

such as saturation and the dynamic Stark e f f e ~ t , ~  are signifi- dp ( t )  ldt 
cant. The weak field leads in this case to the appearance of 
undamped nutation in the system. In addition, the subradia- 

=-p ( t )  /Tz+A'a ( t )  +aeon ( t )  +at;,n ( t )  cos (Qt+ cp ( t )  + q o ) ,  

tion spectrum in the absorption spectrum should be pre- (2)  
served also if the external-field mode intensities are not dn ( t )  ( n ( t )  --no) ]T,-4aEop ( t )  -4a< , [a  ( t )  sin ( ~ t  
equal. It is proposed also that the weak-field phase fluctuates 
about its initial value. Such an approach permits, first, a - - 
more realistic description of the fields actingin the quantum where 

system (for example, the emission of an intensity-stabilized 
single-mode laser is well described by a field model with a 
constant amplitude and with a random phase that follows 
the phase-diffusion m ~ d e l ) . ~  Second, it allows for effects not 
accounted for when the external fields are taken to be mono- 
chromatic. A monochromatic weak field, furthermore, is in- 
cluded in our field as a particular case when the width of the 
phase-fluctuation spectrum is zero. 

Thus, the field interacting with the two-level system is 

a ( t )  =Re a z , ( t ) ,  p ( t )  =Im cszl  ( t ) ,  n ( t )  = o Z z ( t )  - o l i ( t ) ;  

a,, ( t )  are the slowly varying components of the system's 
density matrix, no is population difference in the absence of 
external fields, T, and T,  are the transverse and longitudinal 
relaxation times, A = w - w, is the strong-field detuning, 
and a E, and a go are the interaction energies of the system 
with the corresponding fields in frequency units (interaction 
"frequencies"). For an electromagnetic field that leads to 
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electrodipole transitions we have, e.g., a = 2d /A, where d is 
the dipole matrix element.6 For ultrasonic excitation of a 
quantum system, such as a paramagnetic impurity ion in a 
crystal, a = GHdfi, where G is the constant for the interac- 
tion between an external acoustic field and the effective spin 
of the ion (spin-phonon interaction) and Ho is the intensity 
of the constant magnetic field that lifts the degeneracy of the 
magnetic-field energy levels.' 

Regarding one field as weak compared with the other 
([,,/~~(l) we seek the solution of (2)  in the form of two 
solutions, one in the absence of the weak field (at c0 = 0) 
and the other a correction to the first for the influence of the 
weak field [(t)  : 

a ( t ) = U ( t ) + u ( t ) ,  p ( t )  = V ( t ) +  u ( t ) ,  n ( t )  = W ( t ) + w  ( t ) ,  
(3)  

wherelul(Ul,\ul(iVi, iwi(l Wi.Inthiscasethesystem(2) 
breaks up into two sets of equations, for U, V, and W (zeroth 
approximation) and for u, u, and w (first approximation). 
Substituting (3) in (2)  and retaining terms only of first or- 
der, we get 

where 

x ( t )  = 1 i:;) i , x ( t )  = 1 %;) 1 , 

The solutions (4)  can be written in the form 

I ( t )  = at0 

x ( t )  =erp ( K t )  J erp ( - ~ t )  z ( r )  dt. (6)  

W ( t )  sin 0 ( t )  

W ( t )  cos @ ( t )  
- 4 [U ( t )  sin cf, ( t )  + V ( t )  cos cD ( t ) ]  

Since p ( t )  is a random function, the sblutions (6)  are also 
random functions. We are interested only in the mean values 
of these solutions: 

< x ( t )  )=eKt j e-Ki<,( t )>dt .  ( 7 )  

0 ( t )  = Qt + rp (t! + (PO.  

Since p ( t )  obeys the phase-diffusion mode, we have 
(e * 'Q'')) = e - Y r  (Ref. 8) and hence 

( s i n  @ ( t )  )=e+' s in (Qt+qo) ,  (cos  D ( t )  >=e-"' c o s ( n t + q o ) .  

(8 
Thus 

To calculate exp( f Kt) in explicit form, we must find the 
eigenvalues of the matrices + Kt. The characteristic equa- 
tion for the matrix Kt gives a cubic equation for the eigenval- 
ues A i+ (i = 1,2,3) of this matrix: 

(1 (t)> 

In the approximation in which the field ~ ( t )  is strong and the 
detuning is small (i.e., at a&,> T ,  ',A), and also at T,(T, ,  
the solutions of ( 10) are 

hi+=- t t 
-(1+6'), hz+=- - (1-6') + 2iaeo (1+fi2) t ,  
Tz 2Tz 

= atos-yt 

where S2=A2/8aZ/~~.  We obtain similarly the eigenvalues 
of the matrix - Kt: 

W ( t )  sin ( R t  + T O )  
W ( t )  COS (Qt + ' P O )  

- 4 [U ( t )  sin (Qt -+ T O )  + V ( t )  cos (Qt + TO)] 

The solution (5 )  is reduced with the aid of ( 11 ) and ( 12) to 
a form similar to the solution Torrey obtained1 with the aid 
of Laplace transformation 

C 
X ( t )  =Act'+ ( B  cos st  + -sin s t )  e-"+D, 

S 
(13) 

where 

Solution ( 13) describes transient processes that attenuate as 
t+w, and also the familiar components of the Bloch vector 
D in the stationary state, which describe in our approxima- 
tion the saturation in the system. 

A substantial deviation from ( 13) is obtained when the 
weak field g ( t )  is taken into consideration. The expression 
(6)  is reduced with the aid of ( l l ) ,  (12), and (13) to the 
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form 
7 7 

+Cij sin (sj t+qO) 1, ( 14) 

where 

It follows from (14) that a weak field leads to the appear- 
ance of a large number of nutation frequencies (15) that 
connect by combination relations the frequency differences1 
of the initial fields with the harmonics of the Rabi system 
frequencies s. The damping also acquires qualitatively new 
properties. We investigate first the case when there are no 
phase fluctuations, i.e., we put y = 0. It becomes necessary 
then to discard in ( 14) the terms with exponentials that have 
negative b,, i.e., b, and b,. These terms diverge with time. It 
can be seen from (14) and ( 16) that in the case of a mono- 
chromatic weak field the oscillations of the system's density- 
matrix elements have besides the damped harmonics also 
undamped ones (since b, = 0 1. 

It can be seen from (16) that the phase fluctuations 
increase the damping coefficients b, and can, if the spectral 
width y is large enough, eliminate completely the periodic 
factor x ( t ) .  This calls for satisfaction of the inequality 
bi >si. 

Another important role of the phase fluctuations is the 
following. It can be seen from ( 16) that b, = 0 at y = 2 S 2 / ~ ,  
and b, = 0 at y = ( 1 + 3S2)/2T2, i.e., undamped oscilla- 
tions of the density-matrix elements set in again in the sys- 
tem at certain values of the phase-fluctuation spectrum. The 
physical meaning of this is simple-the damping increase 
due to the phase fluctuations compensates for the divergence 
of the exponentials exp ( - b , ,  t ) .  With further increase of y 
the damping begins to prevail over the divergence, and these 
oscillations also become damped. 

Expressions for the oscillation amplitudes Bij and C, 
can be written in explicit form, but they are too unwieldy and 
will not be given here. A detailed investigation of the depen- 
dences of Bij and Cij on the phase-fluctuation spectrum 
width y and on the detuning A leads to the following conclu- 
sions. First, the undamped oscillations in the absence of 
phase fluctuations (at y = 0)  occur at the frequencies s,,s,, 
and s,, whereas for phase fluctuations with spectrum width 
y = (1 + 3a2)/2T, the frequencies of the undamped nuta- 
tions ares, and s,. The reason is that the corresponding coef- 
ficients in ( 14) (i = 1 and i = 5) are zero for the remaining 
harmonics. This fact can be used in principle to detect the 

presence of phase fluctuations in external fields. Second, it 
follows from ( 14) that the oscillation amplitudes are reso- 
nant. The resonances set in at s, = 0, s = s,, 2s = s,, i.e., 
when the initial field frequencies are equal and when the 
difference of these frequencies coincides with harmonics of 
the frequency of the Rabi systems. As shown in Refs. 2 and 
3, these resonances are manifestations of the splitting of the 
system's levels into quasilevels in an external field. To be 
sure, in these references the exciting-field mode intensities 
were assumed equal. Our calculations shown that a subra- 
diation structure should appear also when one of the fields is 
weaker. Naturally, in this case the term ( 14) in the general 
solution(3) is small and bounded by the factor {,/E,. 

The locations of the aforementioned resonances are in- 
dependent of the phase fluctuations, and only the widths of 
these resonances depend on the width of the fluctuation 
spectrum. In addition, resonances appear in the oscillation 
amplitudes also at A = 0, at S2 = yT2pl ,  at S2 = 1 - 2yT2, 
and at S2 = (2yT2 - 1)/3, i.e., a resonant dependence on 
the spectrum width of the phase fluctuations sets in. This can 
also be used to determine the phase fluctuations of the field 
and their spectral widths. 

To observe damped nutation in experiment it is neces- 
sary that the nutation period be shorter than the irreversible- 
relaxation times. Otherwise the presence of exponential re- 
laxation damping leads to vanishing of the signal before even 
one nutation period takes place. No such restriction applies 
to observation of undamped nutation, and the frequencies 
(15) can be arbitrarily low. The strong-field amplitude, 
however, must be large enough for the resonant Rabi fre- 
quency a E, to exceed the reciprocal transverse-relaxation 
time. This is necessary for the level splittinga4 Since the dy- 
namic Stark effect was successfully observed in optical 
 field^,^ this makes possible also observation of undamped 
nutation in this case. For ultrasonic excitation of a quantum 
system, for example, one can use an MgO crystal containing 
paramagnetic Ni2+ impurities. The interaction,constant, the 
analog of the Rabi frequency, at a relative-strain field ampli- 
tude - at a frequency 101° s- ' will be of the order of lo7 
s-I, which also satisfies the condition a&,> T; ' (since 
T2- s, Ref. 7) .  
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