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The effect of a vibrational level degeneracy on excitation and momentum transfers between 
nonpolar spherical-top molecules, caused by a dipole-dipole interaction, is analyzed in the ap- 
proximation of rectilinear trajectories. The V-V exchange constants and the increments to the 
transport scattering cross sections are calculated. 

A number of various problems involving the effect of 
radiation on molecules, some which are of considerable in- 
terest, involve collisions between molecules excited by a la- 
ser beam. Interest in these questions stems from both con- 
ventional problems [research on collisional line s h a p e s , ' ~ ~  
on collisional relaxation ( V-Tand R-T processes),3s4 and on 
resonant exchange (V-V and R-R p r o c e ~ s e s ) ~ * ~ ]  and prob- 
lems which have arisen with the advent of lasers, e.g., pho- 
toinduced collisions (i.e., collisions of molecules in the pres- 
ence of an intense laser field6,'), photoinduced drift,'-'' laser 
the rmodi f fu~ ion ,~~"~  and their analogs.15 

In  the present paper we study the effect of a level degen- 
eracy on collision processes in molecules. We consider colli- 
sions which occur at distances greater than the gas-kinetics 
distances and in which one of the molecules is vibrationally 
excited. The trajectories of these molecules differ slightly 
from those of molecules which are not excited by a change in 
the dipole-dipole interaction. 

The total rotational angular momentum (J ,  ) of the 
system of two molecules and its projection M, are conserved 
in the scattering. Since the interaction between the mole- 
cules is weak, the absolute values of the rotational angular 
momenta of each of the colliding molecules, I JoI and 1 J, 1 ,  
are also conserved. As a result, the angular-momentum dif- 
ference J, = Jo - J, is conserved in absolute value, while its 
projection onto the coordinate axis before the collision 
(m = Mo - M ,  ) will generally differ from that 
(m'  = M;, - M ;  ) after the collision. 

The dipole-dipole interaction is weak at  long range, and 
its energy is smaller than the difference between the energy 
of the state of the molecules with the rotational quantum 
numbers Jo and J, and the energies of their states with quan- 
tum numbers differing by unity, Jo IfI 1, J, f 1. Neverthe- 
less, this interaction basically determines the probability for 
V-Vexchange, and for molecules with inversion symmetry it 
may even play the decisive role in the change in the scatter- 
ing cross section upon vibrational excitation. In  other words, 
in a collision of molecules there is an interaction between 
two levels which are (Up + 1 )-fold degenerate in m, 

with energies which are equal or approximately equal (when 
the vibrational-rotational interaction is taken into account). 

This interaction might be called a "Q-Q encounter tran- 
sition" in the course of which there is a change in the projec- 
tion of the difference between rotational angular momenta. 
In this situation, the relaxation-time model which is ordinar- 
ily used must be rejected since it is derived under the assump- 
tion that the quantum states are isolated.16 It thus becomes 
necessary to use a dynamic description of the processes of 
interest which occur in systems with degenerate levels. Our 
purpose in the present paper is thus to describe the effect of 
spectrum degeneracy on V-V exchange and on the change in 
the transport cross section upon excitation of one of the col- 
liding molecules. 

After an average is taken over the rotational states, this 
problem becomes equivalent to that of finding four of the 2' 
matrix el%ments (in the two-level model) of the collision 
operator R (v, v', v", v'") in the Boltzmann equation of mo- 
tion for the velocity-dependent vibrational density matrix of 
the molecule, p,,, : 

k,l,s,f 

(1 )  
where % is the Hamiltonian of the molecule. Specifically, we 
are interested in the matrix elements 

~::,0,4 RE, R,',':;, RPP,',: 

Two of them, 

R::: (v, v', v", vm) , R:::: (v, v', vN, vm)  , 

determine the probability for changes in the velocities v" and 
v"' of the colliding molecules by v' and v while the level of 
excitation of each of the molecules is conserved. These pro- 
babilities give for the scattering cross sections of the excited 
molecules expressions which differ from the unexcited-mol- 
ecules scattering cross section defined by the quantity 

because of the change in the dipole-dipole interaction upon 
excitation of one of the molecules. It is this difference in 
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transport cross sections which is the object of our study. The 
probability for vibrational exchange is described by two oth- 
er matrix elements: 

R,': RPP;:. 
As we have already mentioned, in a collision of an excit- 

ed molecule with an unexcited molecule there is an interac- 
tion only between a pair of levels, 

( 0 ,  J " ,  M,; 1,  J i ,  M i > ,  ( 1 ,  J".  M,'; 0 ,  J,. M I 1 ) .  

These levels are degenerate in the projection of the difference 
between the angular momenta of the molecules, so that for a 
description of the collision process it is more convenient to 
use quantum numbers corresponding to the sum of the angu- 
lar momenta ( J ,  , M ,  ) and the difference between the angu- 
lar momenta (J, , m ) rather than the quantum numbers cor- 
responding to the rotational states of each of the molecules. 
In the basis of the quantum numbers J,, J,, M,, m the 
interaction occurs between states 

10, 1,  Jr, Jp, ME, m ) ,  1 I ,  0 ,  J r ,  Jp, M x ,  m l ) .  

We denote the first of these states by m ) ,  the second by 
/ m l ) ,  and their wave functions by $, ( t )  and 6,. ( t ) ,  respec- 
tively. For these states we can write a Schrodinger equation 

Here A, and A,' are the energies of the 2(Wp + 1)-fold 
degenerate states m )  and lm') in the case of noninteracting 
molecules which are separated by a large enough distance. 

The energies A,, and A, may differ in origin. For mol- 
ecules of a common isotopic composition, all the A, and 
A,, are equal if the vibrational-rotational interaction is ig- 
nored. Allowance for centrifugal elongation in spherical 
symmetric molecules causes the values of A,,  which are 
equal to each other, to begin to differ from the values of A,. , 
which are also equal to each other. An external field may lift 
the degeneracy in m and in m'. In a collision of molecules of 
different isotopic composition, the absolute value of the dif- 
ference between A, and A,, may be one or two orders of 
magnitude greater than the vibrational-rotational interac- 
tion. 

The interaction between moleyles is described by the 
dipole-dipole interaction operator V(R ( t ) ) ,  which depends 
on thedistance R ( t )  = ( b  ' + v2t ') I "  and whosematrix ele- 
ments can be written 

where n ( t )  is the unit vector along the direction between the 
molecules, ,&, and ,u are the dipole-moment operators, v is 
the relative-approach velocity of the molecules, and b in the 
minimum distance between the colliding molecules (the im- 
pact parameter). Expression ( 3 )  means that the transition 

matrix element can be written in the form 

V,"" ( t )  

=R-3 ( t )  { (O,  JO,  MoI p o x ( l ,  JoMol)( l ,  J l ,  M I  I plx(O,  J l .  M i ' )  

+(O, J,, M ~ I I J . ~ " I I ,  J,, Mo1)(1 ,  Ji ,  Mil p i y o ,  J i ,  M , ' )  

+ ( O ,  J o ,  Mo I ~ ~ . o ' j  1, Jo, Mo') ( 1 ,  JiMi I yizl 0 ,  Ji M,')  

- 3 [ ( 0 ,  Jo, M o l ~ , " ( l ,  J o ,  M o l ) ( l ,  J i ,  MiIpixlO, J i ,  Mi ' )  cos2xi  

+ ( O ,  J,, M o l ~ ~ . o ~ I l ,  Jo ,  M o l ) ( l ,  J i ,  M i ( y i v j O ,  J i ,  M i 1 )  s i n z x l  

+((O, Jo, MoI~o" l1 ,  Jo, M o ' ) ( l ,  J i ,  M i l~~ . i ' lO ,  J i ,  MI1 )  

+ ( O ,  Jo, Mol ~ o " j  I ,  Jo, Mo') 

X ( 1 ,  J t ,  M1lpixlO, J I ,  M i 1 ) )  sin xi c o s x , ] } ,  ( 4 )  

where thex axis is directed along the relative-velocity vector 
of the particles, they axis is perpendicular to x in the plane of 
the collision, and X, is the angle between the x axis and the 
line joining the centers of the molecules. Expression ( 4 )  re- 
lates the matrix elements of the probabilities for collisional 
transitions in a system of two molecules with the matrix ele- 
ments of the dipole-moment operator, which is responsible 
for the vibrational-rotational transitions of the molecules 
upon irradiation. 

If the matrix elements in ( 4 )  are averaged over the colli- 
sion directions, i.e., if it is assumed that the vector connect- 
ing the centers of the molecules at the time of their closest 
approach is oriented in a random way in space, and if we also 
average over the directions of the total angular momentum 
j,, i.e., over M, , we find that the expectation value of each 
matrix element is zero. We can thus use statistical methods 
similar to those of Refs. 17 and 18 to solve our problem. 
When we take this approach, we find that the leading role is 
played by the mean square interaction matrix element 
( [ V;'(R) ] 2)"2, which depends on only the distance 
between molecuiles. 

If the number of exchanges of quanta during the colli- 
sion is much smaller than 2 (Up + 1 ), the statistics of the 
matrix elements does not play an important role, and the 
calculations can be simplified by using the Wigner distribu- 
tion function of matrix elements. 179L8 I t  should be noted that 
Eq. (2 )  is a system of linear differential equations with time- 
dependent coefficients. For convenience in solving our prob- 
lem we assume that the interaction V( t )  is nonzero for only a 
certain bounded time interval T. We introduce a frequency 
corresponding to T: S1 = 27r/T. This assumption allows us 
to use the method of quasienergy  state^'^^'^ to solve Eq. ( 2 ) ,  
without any loss of generality"; i.e., we can write the func- 
tions 4 and the interaction as Fourier s e r i e ~ , ~ '  

and reduce Eq. ( 2 )  to a system of equations which is of large 
dimensionality but whose coefficients are independent of the 
time. The initial conditions on Eq. ( 2 )  are taken into ac- 
count: 
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We take Fourier transforms for the resulting system of equa- 
tions: 

+ 0, + - 
pmk(o) = e u t h k ( t ) d f ,  qmk(g)= e-itt$mk(t)dt, (8 )  

- ce - rn 

where the superior bar means complex conjugation. 
We introduce the notation 

with corresponding notation for the adjoint operators. After 
the Fourier transformation (8 )  the set of equations, with the 
initial conditions and the definitions in (9 ) ,  reduces to a 
system of equations whose>olution can be written as a power 
series in the interaction iG(Refs.  17-20), where the ojera- 
t o r i  acts on the state of the system ( m ) ,  / m l )  ), while Gacts 
on the quasienergy variables. 

A 

Corresponding to each matrix L :' of the operator L 
upon the transformation to a quasienergy representation 
there is a large-dimensionality matrix: L :'-L $f'. The 
expression for L can be found by a method like that of Refs. 
19 and 20, which allows us to ignore in the averaging opera- 
tions all terms of theAseries except those which are quadratic 
in the intzraction i G .  To find the expectation value of the 
operator L it is necessary to follow the averaging operations 
with a multiplication of the matrix L ::f ' from the left and 
the right by vectors (..., eikn' ... ) and (..., e - lkn' ... ), to sum 
the resulting expressions over the system variables m and m', 
and to take the inverse Fourier transforms subject to the 
initial conditions. 

We seek the probability (p,, ) that a molecule which is 
initially unexcited will be in a vibrationally excited state at 
the time t. Corresponding to the excitation probability p, , is 
the matrix 

which could hardly be derived for the general case, but 
which can be derived in the two limiting cases: 1)  The dis- 
tance between the levels of the colliding molecules, or the 
characteristic frequency fl,zv/b, is much greater than the 
interaction between molecules, U-p2/b3, i.e., the case A) U 
or no) U. 2)  The interaction between the molecules is much 
greater than the distance between levels, U)A. 

Under the condition A) U or fl,) U, we need consider 
only the first nonvanishing term of the series 

where 

After taking inverse Fourier transforms and summing 
over the quasienergy variables, using 

and taking the limits to+ - w and t+ + W ,  we find 

where K, (z) is a modified Bessel function. Integrating ( 14) 
over 2.rrbdb, we find the cross section for the transfer of a 
vibrational quantum: 

where b, is the minimum possible impact parameter. I t  is 
found from the condition for the applicability of perturba- 
tion theory, but it cannot be smaller than the gas-kinetics 
diameter of the colliding molecules. 

In the limit n,)A in which the reciprocal of the flyby 
time of the molecules past each other is greater than the 
distance between levels, we find 

If the distance between levels exceeds the reciprocal of the 
flyby time, A)fl,, we have 

We recall that the subscript 0 labels one of the W, = 1 possi- 
ble initial states over which the averaging is to be carried out. 
For convenience we introduce the notation 

In both cases, ( 16) and ( 17), the cross section for the trans- 
fer of a quantum is proportional to the square of the interac- 
tion. This is a perfectly natural result, since in this limiting 
case we are considering only the first nonvanishing pertuba- 
tion-theory term. 

For the typical molecular parameter values b ,  = 5 A, 
( (  ) )  = (0.3D)', and v = lo5 cm/s, we find uol = 51.6 
A2 from ( 16). An estimate of the transfer cross section from 
( 17) for quasiresonant vibrational exchange in a collision of 
molecules of different isotopic composition, for the case 
A,. = A = 20 cm-', b, = 5 A, = (0.3D)2, and 
v = 3 lo4 cm/s, yields u,, = 9.2.  l op3  A2. In order to cal- 
culate the total cross section for the transfer of a vibrational 
quantum with A =:20 cm- ' and at small impact parameters, 
we need consider only Q-Q encounter transitions. 

Up to this point we have been dealing with the case of a 
weak interaction. In the case in which the interaction 
between the molecules is substantially greater than the 
distance between levels (USA), we can simplify the origi- 
nal Schrodinger equation in order to find the probability for 
a transfer of excitation. Ignoring the terms A,?, and - 
A,. $,. , and noting that the system variables and the time 
variables are separated, we find 
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Transforming to the reduced time 
t 

and using the solution methods described in Ref. 19, we find 
explicit expressions for poo and pl ,: 

poo=l/z+Jl(z)/z ,  p l l = 1 / 2 - J l ( ~ ) / ~ ,  ~ = 8 ( ~ / $ )  I h <  !p,m')2)t /b3,  

(20) 
where 4 (2) is a Bessel function. In the limit t - + ~  we have 
r-+2b/v and 

~ ( t - m )  =16(2/3)1'2( (pmm' )2 ) /bZv .  (21 

Expressions (20) and (2  1 ) reflect the circumstance that in 
the case of a strong interaction (small impact parameters 
and large matrix elements of the transition dipole moments) 
the probability for the transfer of a vibrational quantum is 
large. It follows from (20) that the cross section for the 
transfer of a quantum is given by 

be 

bool=n j [ 1-1, ( I )  -lo ( I )  1 b db, (22) 
b ,  

where the impact parameter b, is on the order of the gas- 
kinetics size of the molecule, and b, is the impact parameter 
at which the interaction between the molecules is compara- 
ble to the distance between levels, which we have ignored in 
Eq. (2 ) :  

( V 3 )  '"< (pmnL')z>/b23=A. (23) 

If the differences between A, and A,, are zero, the integra- 
tion in (22) can be extended to - cc. Noting that the prob- 
ability for a transfer of excitation during the collision cannot 
exceed unity, we can set the lower limit of the integration in 
(23) equal to zero; we then find the following expression for 
the total cross section for a resonant transfer of a vibrational 
quantum: 

It follows from (24) that the cross section for the resonant 
transfer ofa vibrational quantum does not depend on the size 
of this quantum. We put (24) in the form 

''2 n  ( (pmm' )  2>/hS 
oO1=64 (+ ) - nL2 

3  Aovlc ' 

where A is the radiation wavelength corresponding to this 
vibrational transition, of frequency w .  The cross section for 
the transfer of a vibrational quantum is proportional to the 
product of the square of the corresponding wavelength and 
the ratio of the interaction between molecules at a distance 
equal to this wavelength to the Doppler broadening. 

In the case of an interaction of a vibrationally excited 
molecule having a rotational quantum number J, and an 
unexcited molecule having a rotational quantum number J,, 
the distance between levels is determined by the vibrational- 
rotational interaction: 

where aB is the constant of the vibrational-rotational inter- 
action. 

If the square of the distance b, in (23),  over which the 
interaction between the molecules is equal to the distance A 
in (26),  is substantially smaller than the cross section for the 
transfer of excitation in the purely resonant case, the cross 
section for the transfer of excitation is 

The rate constant K, for the transfer of a quantum, if given 
by 

m m m  

= jdu  j d j 0  j d l lo ( lo ,  I,, u )  uf  ( v ,  T , ) l l ( I I T . ) f ~ ( J ~ ,  T.). (28) 
O F 0  

were f(v, T, ) is the velocity distribution of the molecules: 
f, (Jj ,T, ) is the distribution of molecules in rotational states; 
J = 0,l ;  and T, and Tr are the translational and rotational 
temperatures. 

For an ideal gas at thermodynamic equailibrium in 
terms of the rotational and translational degrees of freedom 
at kTr )B, where B is the rotational constant, and using the 
relation 

which holds for molecules with characteristic parameter val- 
ues B = 0.1 crn-I, aB = 0.001 cm-I, ( (  P:') ') = (0.30)' 
and T, = T, = 300 K, we find from (28) 

where m,  is the reduced mass of the colliding molecules, and 
k is the Boltzmann constant. If T, = T, = T, then we have 
K cc T - ' I 6 ,  and for m ,  = 50 a.u. we have 

K ( T )  =5,3. 10-lo (300/T)114 cm3/s . 
The average cross section for the transfer of a quantum is 

oolc=K ( T )  (8kT/nm,)-'"=150(300 T )  'h [A2]  

At T = 300 K ,  the cross section a,,' is nearly four times 
smaller than the cross section for the purely resonant case. 

I t  follows from the condition for the applicability of the 
semiclassical approach that under the condition U >  Ro we 
can use equations from classical mechanics to find the incre- 
ment in the transport cross section, 6a,, : 

bs  

bo ,.=2n [ I -cos y. ( 6 )  ] b  db. (30) 
b ,  

where b, is the impact parameter at which we have 
U(b,) = u/b3, a n d x  is the angle made with the x axis. Not- 
ing that x is small, we can write x = 6P,, /Po where SP,, is 
the classical momentum which is acquired (the momentum 
transfer) in the direction perpendicular to the initial relative 
velocity (along they axis), and Po is the momentum of the 
particle with respect to the scattering center. For small val- 
ues o fx ,  the expression for Sg,, simplifies: 
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6p.1 6otr=n / (Ii) b db.  
I 

At small values of SP,, we can also assume 

where SS, is the change in the action. 
Let us consider the case in which the condition U >  a, 

holds and the distance between levels is greater than the in- 
teraction: A > U. In this case we can write 

t 

The quantity (U(t  ) ) corresponds to the opeKator in the qua- 
sienergy representation, written as the sum 2(,) , for which 
the fipt nonvanishing term of the series in the magnitude of 
the &G, is written 

A 

y e  carry out the same operations with 21,) as we did with 
2, ,; we find 

1 

With A = 0  we have ( U ( t ) )  = 0; the expectation value of 
the momentum transfer is zero in the case of an exact reso- 
nance. This result reflects the fact that in a single interaction 
between molecules having a random distribution of vibra- 
tion phases the momentum transfer can be of either sign. 
From ( 3 2 ) ,  ( 3 3 ) ,  and ( 3 5 )  we find 

a I 

6Pcl(t+m)= 
4( (gorn') 2, 

h 
J dtV ( t )  1 dt, V ( t , )  sin A (t- t i)  . 

From ( 3  1 ) and ( 3 6 )  we find an estimate of the increment in 
the transport scattering cross section: 

where E is the kinetic energy of the molecule with respect to 
the center of mass. 

If we are interested in the change in the transport 
properties of the molecules in a mixture of isotopes, we can 
substitute some typical molecular parameter values [ b ,  = 4  
A, Eo = erg, (p,"')2 = (0.3D12, and A = 20 cm-'1 
into ( 3 7 ) ;  we find b, = 5.8 A, and a b :  . 3 . 3 .  10 -5>Sot r  
> a b  5.7 . In other words, the change in the trans- 
port cross section due to the vibrational excitation of one of 
the molecules is exceedingly small. 

As we mentioned earlier, the expectation value of the 
momentum transfer is zero in the case A = 0 .  The physical 
meaning of this result is that there are equal probabilities for 

the acquisition of momenta in the positive and negative di- 
rections along they axis. In other words, in calculating the 
increments in the transport cross sections in this case it is 
necessary to consider only those terms which correspond to 
even powers of the momentum. 

If the condition U >  fl, holds and the distance between 
levels is substantially smaller than the interaction, we have 

where r is the reduced time given in ( 19) .  To find the expec- 
tation value of the square of the interaction, we sum all or- 
ders of perturbation theory in & (Ref. 19) .  Since the vibra- 
tional phases of the molecules, the directions of their dipole 
moments, and the directions of the line connecting the 
centers of the molecules are all random, the summation 
leaves only the even-powered terms of the Fourier trans- 
forms of the interaction operators, as we just mentioned. The 
set of these terms transforms into a finite algebraic expres- 
sion for the Fourier transform of the quantity corresponding 
to ( ( U )  ,). Taking the inverse Fourier transforms with the 
help of the expression corresponding to ( (U) 2 ) ,  as we did in 
finding p ,  , and p,,, we find 

From ( 3 1 ) ,  ( 3 2 ) ,  and ( 3 9 )  we find 

The increment in the transport scattering cross section is 
thus directly proportional to the gas-kinetics scattering 
cross section multiplied by the ratio of the squares of 
the energy of the dipole-dipole interaction at the distance b ,  
to the energy of the kinetic motion of the colliding par- 
ticles. Expression ( 4 0 )  holds for both flo > A and a, < A. 
With E =  erg, ( ( p ; ' ) 2 )  = (0.3D12, b ,  = 4  A, and 
v = 3  lo4 cm/s, we find b,/b, = 0.22, and the change in 
the transport cross section for these paramet? values is 
So,, =: 10-4ab :.In our case we have b, = 4  A and So,, 
~ 5 . 1  . A*, which is substantially smaller than the gas- 
kinetics cross section. 

These results show that the transfer of a vibrational 
quantum is a very efficient process in the resonant case. At 
velocities - lo4 cm/s the cross section for the transfer of a 
quantum is more than several hundred square angstroms. 

Averaging the cross section ( 2 4 ) ,  for the resonant 
transfer of a quantum over the velocities, we find the quan- 
tum transfer constant to be 

and independent of T. Allowance for the vibrational-rota- 
tional interaction makes the constant of the resonant trans- 
fer of a quantum slightly dependent on the temperature: 
K cc T - ' I 6 .  The reason for this behavior is that the rotational 
numbers of the colliding molecules become progressively 
more different as T increases, and the resonant nature of the 
vibrational transition is disrupted. 

If the distance between levels exceeds the dipole-dipole 
interaction, the increment to the cross section for the trans- 
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fer of a quantum is substantially smaller than the gas-kinet- 
ics dimensions of the molecules. At E s A  > U, this process is 
dominated by collisions with impact parameters on the or- 
der of or smaller than the gas-kinetics dimensions of the mol- 
ecules. In calculating the cross sections for the transfer of a 
quantum at b < b ,  we need to consider transitions other than 
Q-Q encounter transitions. 

Significantly, the increments in the transport scattering 
cross sections are small even for the purely resonant case. 
The reason for this result is that the dipole-dipole interaction 
of nonpolar molecules, one of which is excited, is small in 
comparison with the kinetic energy of these molecules at 
room temperature. The existence of a level spacing greater 
than the interaction causes the increment in the transport 
cross section to become even smaller [see ( 3 7 ) ] .  If the level 
spacing is a few reciprocal centimeters, the increment in the 
transport cross section will not exceed a few hundredths of 
1% at typical values of the molecular parameters 

We wish to thank N. V. Karlov and Yu. N. Petrov for a 
discussion of this study. 

"Since the time interval T is arbitrary, as are the derivatives of arbitrary 
order of the interaction at the ends of this interval. 

"In writing expression (6)  we have taken into account the circumstance 
that the variables of the system (m and m') and the variables of the 
harmonics ( k  " ) have been separated. This separation is aconsequence of 
the dependence of the effect on the mean square matrix element of the 
interaction operator. 
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