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It is shown that allowance for the weak interaction between the conduction electrons and the 
lattice nuclei in an electric conductor can lead to the appearance in the conductor of a current of 
strength proportional to the magnetic field intensity and direction perpendicular to the directions 
of the magnetic induction B and electron spin (s) vectors: i = a, [ (fi- 's) X B] . Here the spins of 
the electrons in the conductor are assumed to be polarized in a direction different from the 
direction of the vector B ( a  ferromagnet with high coercivity). The Kubo theory of linear re- 
sponse to an external field is used; the weak interaction is taken into account with the aid of the 
Salam-Weinberg Hamiltonian. The use of a simple model leads to the relation a, =: 10-'6aE (for 
heavy metals, e.g., P t ) ,  where gE is the normal electrical conductivity. A possible experimental 
setup in which a magnetized conductor is placed in an electromagnet is discussed, and the inter- 
fering factors are evaluated. The Hall effect, which attends the flow of current in a conductor 
located in a magnetic field, is considered with the aid of the Boltzmann kinetic equation. 

1. The parity nonconservation effects due to the interac- 
tion between weak neutral currents of electrons and nuclei 
have been extensively discussed in the last decade.' These 
effects were first observed in atomic experiments,' and have 
been theoretically investigated for atoms and molecules in 
the gaseous and liquid phases , '~~  superconductors,' helical 
 crystal^,^ semicond~ctors ,~  and dielectrics.' 

In the present paper we consider the possible phenome- 
non of electric-current flow in a conductor located in an ex- 
ternal constant magnetic field when allowance is made for 
the weak interactions. We show that, in the case when the 
electron spins are oriented (i.e., in ferromagnets), there 
arises a current with density 

i=o,[(fi-'s)X B ] ,  (1  

where (s) is the mean value of the electron spin, B is the 
magnetic induction, and a, is the coefficient of proportion- 
ality, which plays the role of conductivity. The relation ( 1 ) 
is similar in form to Ohm's law: 

where E is the electric field intensity and a, is the electrical 
conductivity. The vectors i and E are polar, whiles and B are 
axial; therefore, Eq. ( 1 ) can hold only when spatial parity is 
not conserved. 

In Sec. 2 of the present paper we derive an expression 
for the force that acts on a conduction electron in a magnetic 
field with allowance for the weak interaction with the lattice. 
Two possible approaches are available for the description of 
the phenomenon of electrical conduction in the kinetic re- 
gime: we can use either the Boltzmann kinetic equation or 
the Kubo theory of linear response to an external perturba- 
tion. Each of these approaches has its own advantages, and 
we shall use both. To begin with, in Sec. 3 we briefly state the 
principles of the Kubo theory. In Sec. 4, using this theory 
and a simple model, we derive expressions for the current in 
both an electric and a magnetic field with allowance for the 

weak interactions. In Sec. 5 we show that the model consid- 
ered leads directly to the simplest expression for the electri- 
cal conductivity, namely, the Drude formula. In Sec. 6 we 
obtain the basic expression for the conductivity in a magnet- 
ic field, and estimate the magnitude of the proposed effect. In  
Sec. 7 we consider a possible experimental setup. Finally, in 
Sec. 8, using the Boltzmann equation, we describe the Hall 
effect, which attends the flow of current in a magnetic field. 

2. The effective nonrelativistic Hamiltonian for the 
weak interaction between neutral electron currents and the 
nuclei in a crystal has the form' 

1 
A.= - Qs [ i ,  6 (x-a) ] , m 

a + 

where Q rGgZfi2/2"2~2,  G= lo-'( l/m, )*, m is the elec- 
tron mass, m, is the proton mass, Z is the nuclear charge (in 
units of the electron charge e ) ,  c is the velocity of light, g is a 
dimensionless constant (for heavy atoms in the Salam- 
Weinberg theory g=: - 0.75), 6 = - ifiV, s is the electron 
spin, and [. . . ] + is the anticommutator." The summation 
in (3 )  is over all the lattice vectors; for simplicity we consid- 
er a lattice with one atom in the unit cell, and assume that in 
a cell with a = 0 the coordinate of the atomic nucleus R = 0. 
We thus limit ourselves to the consideration of lattices pos- 
sessing a center of inversion. 

In the presence of an external magnetic field, the 
expression (3 )  should, on the basis of gauge-invariance con- 
siderations, be replaced by 

where A is the vector potential of the external field. The 
Hamiltonian for a conduction electron in an electric and 
magnetic fields can be written with the required accuracy in 
the form2' 
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where Vis the lattice potential and p is the scalar potential of 
the external field, 

e e R. = - (Bs) , P = ~ +  - A + I Q S ~  6 (x-a) . 
mc C a 

To compute the velocity 8 of, and the force F acting on, 
the electron, we use the formulas 

, .  i 
Vex= - , [A,xI- ,  (6) 

where [ .  . . ]-denotes the commutator. The evaluation of 
the commutators yields 

The first term in (9 )  gives, when allowance is made for the 
relation 

( E , ~  is the unit antisymmetric tensor), the Lorentz force3' 

iL)-  e P .  -- 
C 

[GxBl,, (10) 

where ir, is defined by ( 8) .  The second term represents the 
usual electrostatic force 

where E = - Vpl is the intensity of the external electric field 
and E,, = - VVis the intensity of the internal crystal field. 
Finally, the third term in ( 9 )  reduces, when allowance is 
made for the relation [s,, , s, ] - = i+kWAsA , to the expres- 
sion 

which plays a major role below. 
3. In order to see how the current ( 1)  arises, let us use 

the linear response theory developed by Kubo, and used nor- 
mally to describe irreversible processes.697 The basic equa- 
tion in this theory is the equation where 

~. 

where b ( t )  is the density-matrix operator and f i  is the Ha- 
miltonian of the system. I t  is assumed that the Hamiltonian 
has the form 

A=Bo+A ( t )  H', ( 14) 

where 2, is the Hamiltonian of the unperturbed system, 2 ' 
is the perturbation operator, and /i ( t )  is the switching-on 
function. 

The problem can be formulated as follows: at some mo- 
ment of time t, the system is in a thermal-equilibrium state, 
which is described by the density matrix 

A 1 
Po= - exp (- $), 

20 
A 

where Z,, = Sp exp( - H,/kT) is the partition function. At 
the subsequent moments of time t > to the perturbation (ex- 
ternal field) is switched on, and there arises a nonequilibri- 
um state that leads to the appearance of a current. The cor- 
rection to anAarbitrary physical quantity, corresponding to 
the operator A,  can then be computed with the aid of pertur- 
bation theory, using the equilibrium operatorb,. 

For the correction 8, to the density matrix we obtain 
from ( 13) the equation 

dp ih--i=[Ho, ;,I-+A@) [A' ,  pol-, 
d t (16) 

the solution to which can be represented in the form 
t 

i 
x [ ~ ' b l - e x p { ~ ~ ~ ( t - t O } .  . . (17) 

A 

The change that occurs in a physical quantity A when the 
field is switched on (the linear response of the system to the 
perturbation) can be written as6-': 

Here A^(t) and 2 ' ( t  ' )  are the operators in the interaction 
representation, 

and the summation in ( 19Ais over the complete set of eigen- 
functions of the operator H,. 

4. Let us consider with the aid of ( 18) the response of 
the system to external electric and magnetic fields, which we 
shall assume to be stationary (the entire time dependence is 
contained in the function A ( t )  ) . Since the Lorentz force 
( 10) does not give rise to a current, let us tak%the last two 
terms in 9) as the perturbation Hamiltonian H '. Then the 
operator H '  has, in the second-quantization representation, 
the form 

1 
B1= ! h (x) (x) dx - - j (x) A (x) dx. 

C 
(20) 

Here ii(x) is the charge-density operator: 

and 3'') ( x )  is the spin-current density operator9: 

h 

where Y ( x )  is the second-quantized wave function. 
The linear response of the electron system in a conduc- 

tor4' to an external field-the electric current-is obtained 
from the formula ( 18) if we set in it 
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wherej(x) is the current operator. According to the results 
obtained in Sec. 2, we sho~1d:et in the commutator contain- 
ing the first term in (20) j  = j'OJ, with 

We then obtain the usual electric current 
t 

I:.)=- '1 h(t') dt' 1 dx 1 ax'(( fir (x t ) ,  8(x'tr) ]-))p (x'). 
to  (24) 

We mu;t s!t in the commutator containing the second term 
in (2 )  j = j'"', where 

Thus, the following current arises in a magnetic field: 

~ l l ( ~ ' '  
I 

i 
= -5 h(tf)dt' I d x i  d~'d{j:~' (xt) ,j."' (x't') 1-))A.(x'). 

(26) 

In a real situation there is always some finite relaxation 
time r (e.g., the interval between two collisions of an elec- 
tron with the lattice) during which the evolution in time of 
the state is determined by the interaction with the external 
field.5' In this case equilibrium in the system is established by 
the collisions, and the presence of the current is due to small 
deviations from the equilibrium configuration. Such a situa- 
tion is described by the kinetic theory. In particular, Eqs. 
( 1 ) and (2 )  are kinetic equations. 

The rigirous transition from Eqs. (24) and (26),  which 
were derived from quantum mechanics, to the kinetic equa- 
tions, which are time irreversible, is, in principle, a compli- 
cated problem. Various approaches to this problem are ex- 
tensively discussed and summarized in, for example, Ref. 7. 
In the present paper, for this transition, we use the simplest 
model of the irreversible process. We shall assume that each 
collision momentarily switches off and immediately switch- 
es on again the external field. In such a situation the time 
integration in (24) and (26) should be carried out over the 
period of growth of the current: from to = 0 to t = r. In this 
case the relaxation mechanism is considered to be extran- 
eous with respect to the system in question, and is not includ- 
ed in the quantum-mechanical description of the p roce~s .~ )  

We make the assumption, and this is the major simplify- 
ing assumption that we shall use, that the operators in (24) 
and (9 are time independent. This means that we assume 
exp(iH,r) =: 1. We know from the theory of the electrical 
conductivity of metals that to the conduction electrons cor- 
responds a state band of width AET =: kT in the vicinity of 
the Fermi surface. This result is a consequence of the Pauli 
principle. ' O  Accordingly, only the contribution of the "diffu- 
sion band" AET at the Fermi surface remains when the aver- 
aging (19) over the states is carried out in (24) and (26).  
Using the estimates given in, for example, Ref. 10 for the 
relaxation time r in the heavy metals, we find that 

f i - 'A.ET~=l  at T z 3 x 1 0 2  K. Thus, the condition 
exp (iHor) =: 1 is, strictly speaking, fulfilled only in the 
"kinetic limit," when r-0. We shall nevertheless use this 
condition, for this will enable us to obtain a simple relation 
between oB and o, . 

Now the integrands in (24) and (26) do not depend on t 
and t ', and the current I, depends linearly on t. The current 
averaged over the interval between two collisions is clearly 
equal to 

In the approximation being used, the computation of 7, is 
equivalent to integration over t from 0 to +r in (24),  (26):  

where the symbol ( (  ...)), indicates that the summation 
over the states is carried out within the limits of the "diffu- 
sion band" at the Fermi surface. 

5. Let us, to begin with, consider the normal current in 
an electric field. Going over in (28) to the matrix elements in 
the coordinate representation, we obtain 

where 8"' = m - 'a, E is the intensity of the external field, N, 
is a normalization integral, and s ( F )  denotes averaging over 
the "diffusion band". 

Let us normalize the conduction-electron wave func- 
tions to the volume Vof the conductor. For example, in band 
theory the IC: are the Bloch functions1': 

$ ( ) -,$ ( ) =N-'h ikx  S X - , k x  e u,k(x), (31) 

where k is the quasimomentum, a is the band number, and N 
is the number of unit cells in the volume V. We assume that 
the functions u,, are normalized in the unit-cell volume 
Vo = V/N: 

vo 

Then 

where the summation is over all the lattice vectors. Using the 
periodicity property of the Bloch functions, i.e., the fact that 
u,, ( X  + a )  = uak ( x ) ,  and the condition (32) ,  we obtain 
Ns = 1 

The quantity (30) is the current due to one electron in 
the entire volume of the conductor. The current density in 
the conductor is obtained by multiplying (30) by the elec- 
tron concentration n. Taking into account here the fact that 
the conduction-electron concentration is equal to 

no=nnp, 
where 
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we write 

Thus, we obtain for the electrical conductivity a, the well- 
known expression, i.e., the Drude formula, 

6. Let us now go over to the investigation of the current 
in a magnetic field with allowance for the weak interactions. 
Evaluating the commutator in (291, and going over to the 
matrix elements in the coordinate representation, we obtain 

7;"' = - - eZsQ w,( 6 (x-a) ) [B(s)l., 
B 

8 6 

(36) 
mc s ( F ,  

where (s) is the mean value of the electron spin. We assume 
here that we are dealing with a magnetized sample in which 
the spin polarization is complete and is the same in all the 
states." 

Let us estimate the magnitude of the proposed effect. 
The computation of the matrix element in (36) with the 
Bloch wave functions ( 3  1 ) leads to the result 

( 6 (x-a) ) = $J uako(x) 6 (x-a) uu. (4 dx 
a a 

vv 
Denoting the weight of the ns wave in the Bloch func- 

tion u,, by y,, and using in the case of heavy atoms the 
statistical-model estimate for the wave function on a nu- 
c l e ~ s , ~  we obtains' 

where a, is the Bohr radius, x,  = 4/n3 is a numerical factor 
stemming from the normalization of the ns function, and R is 
the relativistic enhancement factor (e.g., for Pt, R z 8 . 0  
(Ref. 1)) .  Then 

W. ( 6 (x-a) ) =xRZa?n~, 
e ( P )  a 8 8  

where K = ~ , x ,  y i .  Writing the expression for the current 
density similarly to (34) in the form 

we find from (36)-(39) that 

where a = e2/fic is the fine structure constant. Taking into 
account the fact that 2 - ' 1 2 ~ m 2 z  3 X lo-", and assuming in 
the case of a heavy atom (e.g., Pt, Z = 7 8 ) ,  for which the 
dominant contribution to (38) is made by the 5s and 6s 
states, that xR z: lo-', we obtain a, z 10-'6aE. 

We must further investigate the question of the possibil- 
ity of the effect's being imitated by the impurities and the 
lattice defects (dislocations). The effect of the defects and 
impurities manifests itself in the fact that the space-inversion 
symmetry of the potential V ( x )  is violated in some unit cells 
not as a result of weak interactions. Evidently, the participa- 
tion of the spin-orbit interaction is also necessary for the 

appearance of the imitating effect. 
The expression for the spin-orbit interaction operator 

has the form" 
1 .A,,=- - [sVV]p, 

2mZcZ (42) 

and in an external magnetic field we have, when allowance is 
made for gauge invariance, 

Now the momentum $ in ( 5 )  should be replaced by the 
expression 

fnd the current 0 ~ e r a t o r 3 ' ~ )  , by thecorresponding operator 
j'""). Then within the framework of the approximations be- 
ing used we obtain 

where S is the relative concentration of the distorted lattice 
sites. But the quantity ( V V ) , ,  = (E,, ), is the average in- 
tensity of the crystal field acting on a conduction electron, 
and should be equal to zero. Thus, the current (44) does not 
occur. 

7. Let us now discuss a possible experimental setup. As 
can be seen from (40),  the magnitude of the effect depends 
directly on the magnetic-induction strength B, which it is 
advantageous to make as large as possible. In this case it is 
necessary that the magnetic field does not reorientate the 
spins of the magnetized conductor; as follows from (40),  the 
direction ofthe polarization (s) should not coincide with the 
direction of the vector B. Therefore, it is necessary to use 
ferromagnets with a broad hysteresis loop and a large coer- 
cive force H, (i.e., precisely those that are used as perma- 
nent magnets). We can take, for example, the Pt-Co alloy, 
for which Hc z lo3 Oe and the remanence B, =: lo3 G (gen- 
erally speaking there exist materials for which H, =: lo5 
Oe. ) l 4  

As the source of the external magnetic field we can use 
either a permanent magnet or an electromagnet, i.e., a cur- 
rent carrying coil (see Fig. l ) .  Ohm's law for the closed 
circuit with the current i ,  assumes the form 

where E ,  is the intensity of the field associated with the cur- 
rent i ,  and the quantity 

plays the role of the intensity of a field produced by extran- 
eous forces. The quantity Hex, is then the intensity of the 
"extraneous" magnetic field9' (in the situation considered in 
Fig. 1 Hex, = Hz) .  The current strength in the closed circuit 
is determiced as usual by only the strength of the extraneous 
electromotive force U::, : 

eff I,=R-'Uext , (47) 

where R is the total resistance in the circuit. The Joule law 
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FIG. 1. 

also has the usual form: 

where Q, is the heat released in the closed circuit with the 
current i ,  . 

Taking account of the estimate given above for o,, we 
obtain in the case of a field with Hex, zH, =: lo3 Oe the esti- 
mate E:ft z 10-l3 e s u z 3  X V/cm. Let the conductor 
be a 1 x 1 cm square platinum plate of thickness 1 mm. Then 
from the formula R = l /oES,  where I = 1 cm is the length, 
S = 0.1 cm2 is the transverse cross section of the conductor, 
and a, z 105 R- '  - cm-I ( T =  3~ lo2 K ) ,  we obtain 
R z lop4  SZ; Uzf, = E :: I=: lo- ' '  V; and I, z lo-' A. Tak- 
ing account of the fact that the conductivity increases by 
approximately a factor of lo4 when the temperature is 
lowered to T z 1 0  K (Ref. lo) ,  at T z  10 K we obtain 
R =: l op8  fl; U:fr =: lo-'' V; and I, =: A. 

We should bear in mind that, in experiments with an 
electromagnet, the instability of the current i, (see Fig. 1 ) 
and the attendant variation of the magnetic flux linked with 
the loop carrying the current i ,  lead to the imitation of the 
effect in question. In this case the induction emf Uind is given 
by the formula 

where @ is the magnetic flux linked with the loop. Let the 
instability of the field H2 be equal to dH2/dt, let S ' = 10 cm2 
be the area of a turn of the coil, and let the entire magnetic 
flux @' = S 'B, produced by the coil go through the loop with 
the current i , :  @' = @. Then 

Uind (B) lo-' g2(e). 
dt sec 

If we want to exclude spurious effects (i.e., if we want to 
ensure that Ui,, < u::, ), then, as follows from (49),  we 
should fulfill the condition dH,/dt < Oe/sec in the case 
when Hex, z 10-e. 

Using the well-known formula H, = 4m12, where n is 
the number of turns per unit length of the coil, and setting 
n = 10 cm-I, we obtain the condition for the stability of the 
current I,: dI,/dt < l op6  A/sec (the current in the coil 
should be 12z 10 A for it to produce a field of intensity 
Hz z 10' Oe).  Here it should be remembered that the loop 
with the current i ,  can be geometrically positioned so as to 
diminish the spurious effect. 

8. Besides the drift corresponding to the current ( I ) ,  
the electrons in the external magnetic field also undergo dis- 

placement under the action of the Lorentz force, which 
leads, as in the case of a normal electric current, to the Hall 
effect. To investigate this effect, it is convenient to go over to 
another method of describing kinetic phenomena, namely, 
to the Boltzmann equation. 

We can, in accordance with the expressions ( 12),  (40) ,  
and (41 ), asume that the electrons are acted upon by an 
effective force 

" diffused" throughout the volume of the conductor. Let us, 
as usual, write the Boltzmann equation for the distribution 
function f ,  for the electrons with quasimomentum k in the 
form 

( )  + (  ( $ 1  -0, (50) 
sc field 

where the first term takes into account the scattering pro- 
cesses; the second term, the diffusion process; and the third 
term, the effect of the external fields. Assuming the devi- 
ation from equilibrium to be small,lO' we set f, = f + g, , 
where f i  is the distribution function for the equilibrium 
state. Then 

The collision term has, in the usual approximation,'" 
the form 

where T is the relaxation time. Finally, 
dk e 1 ( )  field = - - v ~ ~ ~ = - ( E ~ ~ ~ ~ ~ [ v ~ x B ~ ~ I ~ ~  d t  h 

where BSelf is the magnetic induction of the magnetic self- 
field of the conductor and Eex, and He,, are the intensities of 
the extraneous electric and magnetic fields. Under the ex- 
perimental condition in our case Eext = 0, and, according to 
the footnote in Sec. 7, Hex, = Be,, . 

Taking account of the fact that V, E ,  = fiv,, we can 
write 

df rO 
V k f k =  V k f k a +  V k g k = h k  - + V k g k .  

d E k  
(54) 

Then, discarding the terms of higher order in smallness, we 
obtain from (51),  (52),  and (53),  the Boltzmann equation 
in the form 

g k  e =--- 
t 

fic ( [ v r  x H ,,,I + [ v k  x BselfI) V k g k .  (55) 

Let us hereafter simplify the situation by limiting our- 
selves to free electrons, for which fik = mv, and, as usual, 
seek the solution to (55) in the form 

a f" g = e t -  ( va ) .  
d E  

For the vector a we obtain the equation 
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where a, = er/mc. That solution to (57) which is obtained 
through a number of identity transformations has the form 
(for brevity, we set H-Hex,, BzBSelf  and h r f i - '  (a,/ 
~ . E ) ( S ) ) :  

a= ( 1 + a o 2 ( H + B ) Z ) - ' { [ h ~  HI + a , [ H x [ h ~ H ] ]  

+ao2(H+B) ( B  [ h  xH] ) ). (58) 

Substituting the values of the constants into the expression 
for a,, we find that a,$- 106c-'r for H Z  lo3 Oe. Using the 
previous estimates for r ,  we see that the inequality a,$c 1 is 
satisfied at all temperatures. Then, neglecting the terms con- 
taining (a,$)2 and (a$)', we obtain in place of (58) the 
expression 

a- [ h x H ]  +a,[HX [ h x  HI] .  (59) 

Using for the current the expressionI5 

i=-rj  v,p. d k ,  (60) 

and substituting (56) into it, we obtain in the free-electron 
model, which corresponds to the case of an isotropic solid, 
the expression 

where 

The expression (62) for the electrical conductivity is, in 
principle, more exact than the formula (35).  We shall as- 
sume, however, that the ratio a, /a, is given as before by the 
formula ( 4  1 ) . Then 

The first term in the formula (63) duplicates (40) ,  
while the second describes the Hall effect, which in the pres- 
ent case consists in the fact that the current acquires a com- 
ponent in the direction parallel to the vector ( s ) .  It can be 
seen that this component is small compared to the first term 
in (63),  since it contains the small parameter u,$. Notice 
that, up to the terms of the order of (a,$)*, the field B,,,, 
exerts no influence on the current. 

The author thanks V. G. Gorshkov, V. F. Ezhov, M. G. 
Kozlov, A. N. Moskalev, V. V. Flambaum, and I. B. Khri- 
plovich for a discussion. The author is also grateful to Yu. E. 
Lozovik for valuable consultations. 

'In ( 3 )  we have discarded the nuclear-spin-dependent part of the interac- 
tion. In the first place, this part makes, in the case of heavy atoms, a 
minor contribution (approximately 1/Z of the contribution made by 
( 3 )  ). In the second place, the observation of the corresponding effect 
requires the polarization of the nuclear spins. 

'This convenient form of the Hamiltonian was suggested by V. V. Flam- 
baum and I. B. Khriplovich. 

'Here we neglect the terms containing the derivatives of the S function. 
This is equivalent to the replacement of the contact interaction ( 3 )  with 
the lattice nuclei by an effective interaction "diffused" throughout the 
crystal, in the same way as is done in the description of the parity non- 
conservation effects in superconductors.' 

4We consider each electron separately within the framework of the single- 
particle approximation. 

'In this sense there is no difference between the stationary external field 
and any electron-lattice interactios that can be considered to be suffi- 
ciently weak, e.g., the interaction H, 

'Although the growth of the current constitutes a departure from equilib- 
rium, the picture is repeated in each time interval (to, T), and the cur- 
rent-flow process is, on the whole, a stationary process. 

'Like Stoner, we prefer to regard as directly polarized the conduction- 
electron spins, and not the atomic-electron spins. Here it is a question of 
convenience, whereas in actual fact the situation is apparently an inter- 
mediate one."'.1Z 

'It is known that ferromagnetism is explained by the presence of d and f 
electrons in the atoms forming the lattice. It should be remembered, 
however, that the degree of hybridization (i.e., of mixing of the states 
with different orbital angular momenta) when we go over from an isolat- 
ed atom to a lattice can be as high as 50% (Ref. 13). Thus, the Bloch 
functions for the conduction electrons always contain contributions 
from the s waves. 

'Generally speaking, the magnetic induction, i.e., the microfield acting 
on an electron in the conductor, should enter in formula ( 1 ). But since 
we are dealing with an already magnetized sample whose magnetization 
does not change in the presence of the He,, field, we can assume that the 
current is determined by the quantity He,, . 

"We also make the simplifying assumption that there are no temperature 
gradients and that the medium is homogeneous: f, does not depend on x. 
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