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A new nonlinear hydrodynamic structure has been observed experimentally: the Rossby autosoli- 
ton. It is an isolated vortex that, despite viscosity, is undamped and exists as a self-organized 
structure in axisymmetric zonal counter-flows in a rotating parabolic layer of "shallow water,'' in 
which it is maintained in a steady state by these flows. The vortex is identified as a Rossby soliton 
(a  strongly nonlinear solitary wave) by the following criteria: It exists in a system with a meri- 
dional gradient of a Coriolis force, has a radius greater than the Rossby-Obukhov radius, is an 
anticyclone, and lags the global rotation of the system. The experimentally realized Rossby auto- 
soliton can be regarded as a steady model of Jupiter's Great Red Spot, confirming qualitatively 
the soliton theory of this natural phenomenon. The autosoliton is generated by a centrifugal 
instability which arises in differentially rotating shallow water when the central part of the water 
has a more rapid rotation; under other experimental conditions, it simulates a mechanism of 
formation of galactic spiral structure. In contrast to the Red Spot model based on thermogyro- 
convection in "deep water," this soliton model gives a natural explanation for the drift of the 
natural vortices in the atmospheres of Jupiter and Saturn and their cyclonic-anticyclonic asym- 
metry. The model can be brought into good quantitative agreement with the data of Red Spot 
observations if the wave motion in not only the horizontal but also the vertical is taken into 
account. 

1. INTRODUCTION 

In the work reported in Refs. 1 and 2, we created experi- 
mentally for the first time and investigated a Rossby soliton 
in a model of a homogeneous planetary atmosphere realized 
in the form of a layer of "shallow water" with free surface, 
the layer rotating together with its vessel of parabolic shape. 
The Rossby soliton is a solitary nonlinear vortex. In the non- 
sustained regime, i.e., in the absence of external "pumping" 
(by, for example, the zonal counter-flows considered be- 
low), it keeps its shape for a time appreciably greater than 
the time of dispersion spreading of a linear wave packet of 
the same size (cf. Secs. 1 and 3). The vortex rotates in the 
Rossby regime, i.e., the frequency w of its intrinsic rotation is 
small compared with the rotation frequency no of the system 
as a whole: 

The direction of rotation of the soliton is anticyclonic, i.e., 
the curl of its velocity is antiparallel to the vector no. The 
vortex is in a state of geostrophic equilibrium-the Coriolis 
force acting on the circular stream of particles around the 
vortex axis is equalized by the gradient of the hydrostatic 
pressure. Because of the presence of the so-calledp effect (a  
dependence of the vertical component of 82, on the meri- 
dional coordinate), the vortex drifts in the opposite direc- 
tion to the rotation of the system as a whole. (The possible 
existence of such a soliton in a layer of shallow water rotat- 
ing together with a vessel of parabolic shape was pointed out 
in the theoretical study in Ref. 3a.) 

In its physical parameters and propagation properties 
(size, direction of the rotation and the drift, and the drift 
velocity), the Rossby soliton found and studied in Refs. 1 
and 2 was qualitatively similar to the remarkable natural 

vortex in the Great Red Spot of Jupiter and can be regarded 
as a laboratory model of it, supporting qualitatively the soli- 
ton theory of this natural p h e n o m e n ~ n . ~ ~  However, this 
variant of the model had at that time an obvious shortcom- 
ing, in that the laboratory soliton was created by a localized 
source as a result of brief rotation of a "pumping disk" situ- 
ated in the plane of the bottom of the vessel. The lifetime of 
the soliton formed after the excitation pulse was about 20 sec 
and was limited by the time of viscous damping. In the case 
of the Red Spot vortex, the characteristic time of viscous 
damping can be estimated at7" 

where Ho is the equivalent depth of the atmosphere, and v is 
the kinematic viscosity; for Ho 25 km, v=: ( 1-2) cm2/sec, 
and no=: 1.6.10-4 sec-' (the rotation period of the planet is 
=: 10 h),  r,,,, 10' yr.'' 

But the natural vortex of the Red Spot has already been 
observed without significant changes for about 300 years.' It 
is therefore clear that its steady state can be explained only 
by "sustenance" from outside. This function is most prob- 
ably performed by the zonal counter-flows (shear), which 
give rise to winds along the parallels whose amplitude and 
direction vary along the meridian (Fig. 1 ); the instability of 
these flows evidently sustains the Red Spot vortex, compen- 
sating its viscous and, possibly, other momentum 10sses.~" 
According to the theory of Refs. 9 and 10, the picture of 
zonal flows shown in Fig. 1 arises as the result of nonlinear 
evolution of two-dimensional turbulence in the atmospheres 
of rotating planets: Vortices combine subject to a restriction 
of the vortex scale along the meridian (the Rhines length (3)  
(Ref. 9) but with no restriction along the parallel, as a result 
of which closed zonal flows are formed, their direction 
changing sign periodically along the direction of the merid- 
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FIG. 1 .  Zonal flows in the upper atmosphere of Jupiter: wind velocity (m/ 
sec) as a function of geographical latit~de.'~. '~ At the point A (at which 
the vorticity of the flows is anticyclonic) is the Red Spot vortex; at the 
point B (cyclonic vorticity) there is no vortex, while at the point C (cy- 
clonic vorticity, velocity gradient of the wind several times greater than at 
the Red Spot) cyclonic "barges" e ~ i s t . ' ~ ~ , ' ~  

ian (see Fig. 1 ). 
The width of these flows is 

where u is the amplitude of the flow velocity, P = ( 2 n J R  ) 
cos p,  R is the radius of the planet, and p is the geographical 
latitude. 

To give the soliton model properties closer to those of 
the Red Spot, it was natural to attempt to keep the soliton, 
having produced it by a local pulsed source (for example, by 
the same pumping disk), in a steady regime by the addition 
of zonal counter-flows around the vortex that can sustain it. 
We made such an experiment and obtained a negative result, 
namely, if the flows had a velocity sufficiently small for them 
not to be subject to intrinsic instability they broke up ahead 
of the soliton since their velocity profile did not correspond 
to that of the soliton. But if the velocity of the flows was 
sufficiently great, then (by the development of intrinsic in- 
stability) they generated several of their "own" vortices, ig- 
noring the task put upon them of sustaining the single (ini- 
tially specified) soliton. 

Besides this negative result, the experiment did have a 
very positive consequence-it stimulated a program of ex- 
periments to study the stability of zonal flows, which was 
begun in Refs. 1 1 and 2 (see also Ref. 6b). This work showed 
that by means of zonal counter-flows in a rotating parabolic 
layer of shallow water one could already (without any addi- 
tional local source) create steady trains of anticyclonic vor- 
tices-Rossby solitons. It was also found that the number of 
vortices in such a train that fit onto the perimeter of the 
system decreases with increasing velocity of the counter- 

flows, and this offered the prospect of the generation of low 
modes of the instability, including the first. 

The decisive step was taken in the work reported here 
(see also the brief communication of Ref. 12). On the basis 
of the previous experimental equipment,'.' we made an ex- 
periment in which the distance between the flows and their 
velocity were greatly increased. This experiment led to the 
creation of the Rossby autosoliton-an anticyclonic vortex 
existing by itself on the complete perimeter of the system, 
formed from the unstable counter-flows and existing in a 
steady state under conditions of a smooth profile of the 
flows." The experiment is described and its results are ana- 
lyzed in Sec. 2. 

Further, in Sec. 3, we describe experimental data on the 
generation of steady cyclonic structures by counter-flows 
with a strong meridional gradient of the velocity; the cy- 
clones corresponding to these structures are fundamentally 
different from the anticyclones-in the nonsustained regime 
they decay comparatively quickly because of dispersion, and 
their lifetime in our experiments is appreciably shorter than 
the time of dispersion spreading of a linear packet of Rossby 
waves, so that they are not solitons. The interpretation given 
for these results makes it possible to explain the existence of 
long-lived cyclonic structures in the atmosphere of Jupiter 
(as exceptions), and also in the Earth's atmosphere. 

In Sec. 4, we consider manifestations of two different 
instabilities of zonal flows in rotating shallow water. As is 
shown by the experiment of Ref. 13 in accordance with the 
theory of Ref. 14, one of these instabilities, the analog of the 
classical Kelvin-Helmholtz instability, is stabilized (sup- 
pressed) if the jump in the flow velocity exceeds by a suffi- 
ciently large amount the characteristic velocity of waves on 
the shallow water. This fact, which is analogous to the sup- 
pression of the two-dimensional instability of a two-dimen- 
sional shear discontinuity in a compressible medium,I5 is a 
good illustration of the physical analogy between two-di- 
mensional gas dynamics and shallow-water dynamics.I6 An- 
other instability observed in differentially rotating shallow 
water is the centrifugal instability. It was predicted theoreti- 
cally l7 for a differentially rotating thin galactic gas disk and 
has been identified experimentally for the case of shallow 
water in the simulation18 of the hydrodynamic mechanism 
of generation of galactic spiral structure. The centrifugal in- 
stability, which develops if the central part of the medium 
rotates more rapidly than the periphery, persists even at the 
large values of the velocity jump for which the Kelvin-Helm- 
holtz instability disappears. As the experiment shows, it is 
the development of the centrifugal instability in shallow wa- 
ter that leads to the formation of the Rossby auto~oli ton '~ 
and also simulates the mechanism of formation of spiral 
structures in the gas disks of galaxies. l8 

In Sec. 5, the soliton model of the Red Spot is consid- 
ered with allowance for the fact that the wave motion of this 
natural vortex evidently has a three-dimensional nature, i.e., 
includes vertical oscillations. It is shown that in this way it is 
possible to improve the two-dimensional model3' (trans- 
forming it into a three-dimensional one) and obtain good 
qualitative agreement between the theoretical model and the 
observational data (see Ref. 6).  
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FIG. 2. Experimental arrangement: 1 ) vessel with nearly parabolic profile 
of the bottom rotating counterclockwise about the vertical axis; 2)  water 
that spreads over thebottom of the paraboloid when it rotates; 3) and 4 )  
rotating rings producing counter-flows with velocity shear; the directions 
of the arrows showing the flows as seen from above correspond to an 
anticyclonic shear; 5 )  camera with adjustable rotational velocity a,,; 6)  
semitransparent mirror; 7 )  Dove prism of the rotoscope. 

In Sec. 6, we consider the alternative model of the Red 
Spot and other atmospheric planetary vortices based on 
thermogyroconvection in deep water and compare it with 
the model developed in the present paper on the basis of the 
Rossby autosoliton in shallow water; the conclusion is 
drawn that, in our view, the soliton model is better and ex- 
plains more fully the properties of these natural vortices. 

2. THE ROSSBY AUTOSOLITON 

The basis of the experiment is a vessel (Fig. 2) with an 
approximately parabolic profile of its bottom, diameter 28 
cm, and depth 12 cm (for more details, see Refs. 12 and 2).  
The working liquid (water), which is distributed in a thin 
layer over the bottom of the vessel when it rotates, was sub- 
ject to the effect of two counter-flows moving along the par- 
allels around the axis of the system. The flows relative to the 
rotating vessel were produced by the differential motion of 
two sections of its bottom, which were displaced relative to 
the vessel in opposite directions and carried along the layers 
of liquid situated above them. The internal section consisted 
of the entire central part of the bottom with a diameter of 10 
cm; the outer section, a ring of width 2.5 cm, was situated at 
a distance of 11 cm from the inner section (the last two dis- 
tances are measured along the meridian of the paraboloid). 
Between them was a section of the paraboloid itself, rotating 
as a whole. The width of the gaps between the sections (0.5 
mm) was much lesss than the working thickness of the liquid 
layer ( H o  = 0.5-1 cm). 

The pattern of the flows and generated structures were 
made visible by white test particles floating on the surface of 

the water on the background of the black bottom of the ves- 
sel, and it was observed through a rotoscope constructed on 
the basis of a Dove prism. The rotation frequency fl  of the 
prism and the corresponding rotation frequency of the coor- 
dinate system in which a cine film was made (f, = 2f1) 
could be varied in a controlled manner independently of the 
rotation speed of the vessel. The photographing was done by 
means of a camera that rotated coaxially with the vessel, the 
rotation of the camera being synchronized with the rotation 
of the Dove prism in such a way that the obtained photo- 
graphs were identical to the picture observed through the 
rotoscope. In these experiments, the camera rotated around 
the axis of the device together with the observed vortex, 
which drifted relative to the paraboloid in the opposite direc- 
tion to its rotation. The main results of the experiment are as 
follows. 

1. For the appreciable separation in this experiment of 
the counter-flows, their instability led, as in Refs. 12 and 2, 
to the generation of large-scale vortex structures (with scale 
greater than the Rossby-Obukhov radius determined below) 
only in the case of anticyclonic direction of the flows, when 
the curl of their velocity, the vorticity, is antiparallel to the 

FIG. 3. Rossby autosoliton: examples of visualization for several different 
velocities of the counter-flows. The white lines are the tracks of test parti- 
cles floating on the surface of the liquid on the background of the black 
bottom of the paraboloid; a, = 12.6 sec- ', exposure 1/3 sec. Thedistance 
of the center of the vortex from the rotation axis is about 6 cm. The vortex 
rotates and drifts clockwise. 
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FIG. 4. Phases of the drift of the Rossby autosoliton in 
the opposite direction to the rotation of the vessel. The 
vessel rotates counterclockwisr. 

angular velocity vector of the paraboloid; but if the velocity 
curl of these (fairly widely spaced) flows is cyclonic, large- 
scale vortex structures are not generated. This cyclonic-anti- 
cyclonic asymmetry observed in a system with a pronounced 
B effect is a fundamental nonlinear property of Rossby vorti- 
ces and is due to the fact that large anticyclones in the non- 
sustained regime can be Rossby solitons but large cyclones 
cannot-as the experiment of Refs. 1 and 2 showed, the cy- 
clones decay comparatively quickly, since for them, in con- 
trast to the anticyclones, the dispersion spreading is not 
compensated by nonlinearity. 

2. Figure 3 shows the picture of the flows (of anticy- 
clonic direction) and the vortex structure generated by 
them. The main element of this structure is the vortex of oval 
or approximately circular shape, which lags behind the glo- 
bal rotation of the paraboloid (i.e., it drifts in the opposite 
direction to this rotation-"to the west"). It is an anticy- 
clone-the liquid rotating around the local axis in the direc- 
tion opposite to the rotation of the vessel is elevated. The 
vortex exists for an arbitrarily long time, preserving its shape 
well (the limits of its spontaneous variation are illustrated by 
the example of Fig. 3). The photographs of Fig. 3 were taken 
by the camera rotating around the axis of the vessel with the 
same frequency with which the vortex rotates about the 
same axis (drifting relative to the paraboloid, the vortex is 
not displaced relative to the camera). The sequence of analo- 
gous photographs rotated relative to each other by the angle 
determined by the drift of the vortex during the time between 
the exposures demonstrates the different "phases" of its azi- 

muthal motion with respect to the paraboloid (Fig. 4).  
The dimensions of the vortex are 6-9 cm along the par- 

allel and about 6 cm along the meridian, i.e., (3 -4 ) rR ,  where 

r,= (g'H,) '"/2Q, cos a ( 4 )  
is the Rossby-Obukhov radius, g* is the acceleration of the 
resultant of the force of gravity and the centrifugual force 
due to the global rotation, and a is the angle between the 
rotation axis of the system and the local normal to the equi- 
librium surface of the liquid in the absence of the flows. The 
vortex drift velocity V, ,  is about 8 cm/sec and approximate- 
ly twice the Rossby velocity corresponding to the "nominal" 
rotation frequency of the paraboloid, i.e., corresponding to 
constant thickness of the liquid layer (in the experiments, 
the rotation velocity of the vessel was somewhat greater than 
the nominal velocity). The Rossby velocity is determined by 

where H is the depth of the liquid layer, f = 2f2, cos a is the 
Coriolis parameter, and y is the coordinate measured along 
the median. In the paraboloid, g* =g/cos a and for 
H = H,, = const 

VR=L/2HoQo sin a. 

We use here the relation (5 ) , which differs from the expres- 
sion given in Ref. lb  by havingg* taken in front of the differ- 
entiation symbol; the expressions ( 5 )  and (5') are, as an 
analysis by A. V. Khutoretskii and G. G. Sutyrin shows, 
more accurate. For a planet, there is hardly any difference 
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FIG. 5. a )  Depth profiles of the liquid in the meridional section of the 
rotating paraboloid: the dependence of the depth of the liquid on the dis- 
tance to the rotation axis (the depth is measured along the normal to the 
surface of the bottom at the given point) is the region exactly opposite the 
vortex ( 1 )  and in the region of the vortex ( 2 ) ;  3 )  the velocity profile 
within the vortex (the velocity is measured relative to the flow, as shown 
by the arrows in the lower figures). b) Profiles of the linear azimuthal 
velocity of the particles on the surface of the liquid in the frame of the 
rotating vessel. Dependence of the velocity on the distance to the axis of 
the vessel: 1 )  in the absence of the vortex, 2 )  in the vortex generation 
regime in the region exactly opposite the vortex, 3 )  within the vortex. 

from Ref. lb, since on a planet g* z g ,  but in the case of the 
paraboloid (5') gives a Rossby velocity half that of Ref. lb. 
It should also be noted that the use of (5') leads to much 
better agreement between experiment and theory (see Refs. 
1 and 2). 

The amplitude AH of the elevation of the vortex above 
the surface of the liquid (compared with the level of the 
surface of the liquid on the opposite side of the vessel), deter- 
mined from the condition of geostrophic equi l ibr i~m, '~~ is 
somewhat less than 1 cm, i.e., M / H o z l  is somewhat 
greater than in the experiments of Refs. 1 and 2. 

These properties of the vortex permit its identification 
as a Rossby soliton. (In connection with the group of ques- 
tions discussed here, it is helpful to draw attention to the 
interesting theoretical study of Ref. 19. ) 

3. Figure 5a shows the profiles of the height of the liq- 
uid: 1 ) outside the vortex (on the side of the vessel opposite 
to it), 2)  within the vortex. Figure 5b shows the velocity 
profiles in the vortex and in the flows. It can be seen that the 
vortex, which arises because of the instability of the axisym- 
metric counter-flows, radically changes their profile. 
Whereas the flow profile had the form of the step function 1 
before the formation of the vortex, in the regime with it this 
profile has the form of the smooth curve 2. The velocity 
profile in the vortex itselfis shown by the two curves 3 in Fig. 
5; in the case of Fig. 5a, the velocities of the particles in the 

vortex (denoted by Av) are measured relative to the flow, as 
is shown in Fig. 5b by the arrows between curves 2 and 3 (as 
positive direction of the velocity, the direction of the rota- 
tion of the system is taken). It is readily seen that the flows 
with the new profile are consistent with the spatial structure 
of the vortex and sustain its steady state, "twisting" the vor- 
tex and compensating its viscous (and, possibly, other) 
losses. 

4. The maximal velocity of the local rotation of the liq- 
uid in the vortex (see curve 3 in Fig. 5a) is about 15 cm/sec 
and appreciably exceeds its drift velocity, this in fact corre- 
sponding to the presence in the vortex of a clearly defined 
region of trapped particles, as can be clearly seen in Fig. 3 (in 
this connection, see Ref. lb) .  The maximal vorticity, the 
velocity curl of the vortex, appreciably (by 5-6 times) ex- 
ceeds the vorticity outside the vortex (on the opposite side of 
the vessel), just as is observed in large vortices in the atmo- 
spheres of the planets.20a 

Thus, the Rossby vortex created in the present study 
has all the characteristic properties of the Rossby soliton 
that we observed earlier in Refs. 1 and 2 and has in addition 
three new properties of a fundamental nature: First, despite 
the presence of viscosity (and other possible dissipation 
mechanisms), the vortex exists for an arbitrarily long time, 
i.e., it is an autosoliton. Second, like the large vortices in the 
atmospheres of the giant planets,6b it is not an element of a 
closed train of vortices but is a solitary formation, the only 
one on the entire perimeter of the system. Third, its creation 
does not require a special source-the autosoliton is generat- 
ed by the nonlinear evolution of unstable axisymmetric 
counter-flows in rotating shallow water and rearranges their 
spatial profile in such a way that the new profile corresponds 
to a steady structure of the generated soliton. In other words, 
the autosoliton is the result of nonlinear self-organization of 
a Rossby soliton in a system of zonal counter-flows. It can be 
regarded as a realization of a steady laboratory model of the 
Great Red Spot, lending strong support to the soliton the- 
ory3-6 of this natural phenomenon. 

Our next task is to identify the instability that generates 
the Rossby autosoliton. The experimental data considered in 
Secs. 3 and 4 will help us to understand the nature of this 
instability. 

3. CYCLONIC STRUCTURES 

The question of the nature of the instability that gives 
rise to the anticyclonic vortex-the Rossby autosoliton-is 
intimately related to another question-that of the genera- 
tion in our experiments of steady cyclonic structures physi- 
cally similar to the so-called White Ovals (or "barges") ob- 
served in the northern hemisphere of Jupiter at 14" northern 
latitude.'Ob These are elongated cyclonic vortices measuring 
about 7.5 thousand kilometers along the parallel and not 
more than 1.5 thousand kilometers along the meridian. De- 
spite the fact that these vortices pulsate strongly in time, 
they already exist not less than several tens of years and are 
the only exception to the rule according to which all the 
long-lived vortices observed on the giant planets are anticy- 
~ l o n e s . ~ ~ " ~ ~  

Our experiments (see, for example, Ref. 13) showed 
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FIG. 6. Arrangement of experiment with a shear discontinuity: 1 ) bottom 
of vessel with paraboloidal bottom, 2 )  and 3 )  rings rotating in opposite 
directions relative to the paraboloid (seen from above, the directions of 
the arrows correspond to a cyclonic shear). The layers of water resting on 
the rings are hatched. 

that by means of unstable counter-flows it is possible to gen- 
erate steady trains of large-scale cyclonic vortices with di- 
mensions exceeding rR despite the fact that, as already 
pointed out above, solitary cyclones with such dimensions 
(in contrast to the anticyclones) decay comparatively rapid- 
ly in the nonsustained regime. Such generation of steady cy- 
clonic structures is realized in the experiment illustrated 
schematically in Fig. 6. In this scheme, in contrast to the 
scheme of Fig. 2, the flows have the cyclonic sign of the 
vorticity (the angular velocity of the exterior flow is greater 
than that of the interior) and, which is particularly impor- 
tant, they are as close together as possible, namely, the width 
of the jump A in the velocity, i.e., the characteristic linear 
scale over which the change in the velocity occurs, is only a 
few millimeters (since A ZH,), and this is much less than 
r, . The configuration of Fig. 6 can be called a shear discon- 
tinuity. For this geometry of the experiment, the instability 
of the flows is manifested so rapidly that its growth rate 
exceeds the decay rate of the cyclonic vortices (including the 
decay rate of their viscous damping), and steady cyclonic 
structures are generated. Figure 7 shows one of the examples 
of such structures-a train of four cyclones (azimuthal 
mode m = 4) drifting in the direction of the global rotation 
of the paraboloid. The diameter 2a of these vortices is several 
times the radius r, and large compared with H,. As in the 
case of the previously described autosoliton, the number m 
of vortices on the perimeter decreases with increasing rela- 
tive velocity of the flows (see below). 

The experimentally observed basic difference in the effi- 
ciency of the generation of the cyclones and Rossby anticy- 
clones can be explained as follows. Under the conditions of a 
"shear discontinuity" between the counter-flows, when 

where u is the velocity of the flows. When u k VR , A 5 2rrR 
this growth rate certainly exceeds the decay rate of the dis- 
persion spreading of the cyclones, which is determined by 
the characteristic dispersion timeZZ 

Therefore, under the conditions of the shear discontinuity 
the counter-flows can even generate steady cyclones despite 
the fact that in the absence of the flows the cyclones decay 
comparatively quickly. (After the formation of the vortices, 
the velocity profile of the counter-flows becomes smoother, 
the growth rate of the cyclones falls, and as a result a steady 
state is established in which there is an equilibrium between 
the excitation of the vortices by the flows and their damping 
or decay.) But if the flow profile is smooth from the begin- 
ning, i.e., 

then the growth rate of the instability of the flows with re- 
spect to the generation of vortices whose dimensions are 
comparable to (albeit larger than) r, is greatly r e d ~ c e d ~ " ~ ~ :  

At the same time, the condition y > y, for the excitation of 
cyclones ceases to be satisfied, and accordingly large-scale 
cyclones are not generated under the conditions (8a). 

With regard to the (anticyclonic) Rossby solitons, 
they, as long-lived (nondispersive) formations, are sus- 
tained in a steady state by the flows even under the condi- 
tions (8a). 

In our view, it is just such a situation that obtains in the 
atmospheres of Jupiter and The vortex of the 
Red Spot and all the other long-lived vortices in the atmo- 
spheres of these planets (apart from Jupiter's "barges") are 
anticyclones; they are generated by zonal flows with smooth 
meridional velocity gradient corresponding to the condition 
(8a). But with regard to the cyclonic "barges" (Jupiter, 14" 
northern latitude), they are excited by (cyclonic) flows sa- 

the growth rate of the instability of the flows with respect t~ FIG. 7. Example of the generation of steady cyclonic structures in the case 
ofa pronounced velocity profile ofthe zonal counter-flows13 (in the geom- the generation of a train of vortices with period A>A can be etry of Fig. 6) .  The white circle passing through the centers of the vortices 

estimated approximately as2' is the line of the velocity "discontinuity" of the counter-flows. 
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FIG. 8. Example of the generation of steady anticyclonic structures under 
the conditions of the geometry of Fig. 6. 

tisfying the relation (6a)-for them, the meridional velocity 
gradient is several times greater than at the Red Spot, and A 
is accordingly several times smaller.20b 

This, in our view, is the interpretation of the pro- 
nounced cyclonic-anticyclonic asymmetry observed both in 
the experiments (Refs. 1, 2, 11, and 12) as well as in the 
atmospheres of the giant  planet^.^^,'^^ A distinctive feature 
of these planets is the smallness of the ratio of the radius rR 
to the radius R of the planet; on Jupiter and Saturn rR z 6000 
km and R z 70 000 km, and accordingly the regime (8a) can 
be realized on them. In contrast, in the atmosphere of the 
Earth, where rR z 3000 km and R z 6400 km, the regime 
(6a), corresponding to Jupiter's "barges" (White 
Ovals),20b is almost always realized. Therefore, under ter- 
restrial conditions the large planetary vortices can be either 
anticyclones or cyclones--everything depends on the sign of 
the vorticity of the flows that excite these vortices. (In addi- 
tion, for the reasons given above, the vortices of the Earth's 
atmosphere, which are not large compared with the radius 
r,  , need not be Rossby vortices; see Ref. 25.) 

4. NATURE OF THE INSTABILITIES THAT GENERATE 
ROSSBY VORTICES 

We now show how the steady cyclonic structures de- 
scribed in Sec. 3 and the Rossby autosoliton described in Sec. 
2 are generated by two different instabilities. 

In our Ref. 13, we showed that cyclonic structures of 
the type of Fig. 7 are generated under the conditions of the 
geometry of Fig. 6 only when the magnitude of the jump at 
the shear discontinuity of the flows satisfies the condition 

The experiment also shows that if under the condition (9)  
the sign of the vorticity of the counter-flows is reversed then 
the generation of steady anticyclonic structures occurs. 
They differ from the trains of cyclones described above by 
the sign of their vorticity and the drift (with velocity close to 
VR ) in the opposite direction to the global rotation of the 
system. An example of such a structure is shown in Fig. 8. 

But if the jump in the velocity at the shear discontinuity 
exceeds the quantity on the right-hand side of (9),  namely, 

then, in accordance with the thoery of Ref. 14, there are no 
cyclonic structures and the flows are macroscopically la- 
minar, ke., do not generate large vortices with dimensions 
appreciably greater than the thickness of the layer of shallow 
water. This fact is illustrated by Fig. 9, which shows the 
suppression of the generation of the large cyclones when the 
condition (10) is satisfied and their appearance when the 
jump in the velocity across the shear is reduced from large 
values to the excitation threshold (9).  

It is easy to see that the condition ( 10) is analogous to 
the condition for stability of a shear discontinuity in a homo- 
geneous compressible medium with respect to two-dimen- 
sional perturbations perpendicular to the plane of the dis- 
continuity 15: 

where c, is the velocity of sound. 
The conditions ( 10) and ( 11 ) become identical if we 

make the substitution 

This is one of the manifestations of the analogy between two- 
dimensional gas dynamics and the dynamics of shallow wa- 
ter with a free surface: Gravity waves on incompressible 
shallow water, i.e., the raising and lowering of its surface, 
propagating with characteristic velocity ( g*Ho) 'I2, are 
physically equivalent to sound waves in an actually com- 
pressible two-dimensional gas-dynamical medium.16 (It  is 
here appropriate to note that the existence of this analogy 
makes it possible, by means of experiments on differentially 
rotating shallow water-under conditions of a different ge- 
ometry-to demonstrate the mechanism of generation of 
spiral structure in the gas disks of galaxies with an analogous 
rotation profile. 18) 

FIG. 9. Stabilization of shear-discontinuity instability in the case of cy- 
clonic vorticity of the flows13: a )  dependence of the azimuthal scale of the 
vortices on the velocities of the flows measured at the discontinuity on the 
surface of the water ( I  is the region of the instability); b) dependence of 
the threshold u, of stabilization of the shear-discontinuity instability on 
the depth of the liquid: 1 )  velocity of the rings. 2)  velocity of the flows on 
the surface of the water, 3 )  theoretical velocity (2g*H,,)'12. The broken 
curve shows the instability threshold for increasing flow velocity. 
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the Rossby autosoliton (m = 1 ) is observed when the veloc- 
ity of the counter-flows is sufficiently great. This occurs 
when the velocity of the outer ring (producing the exterior 
flow) is - 350 cm/sec, i.e., at Mach number 

when the "cyclonic" Kelvin-Helmholtz instability de- 
scribed above is absent (see also the end of Sec. 5) .  The result 
( 13) and the alternation of the azimuthal modes of the insta- 
bility (analogous to what is observed when spiral waves are 
generated on shallow water1') indicate that the Rossby au- 
tosoliton is generated by the centrifugal instability of the 
differentially rotating liquid." So it must in accordance with 
the theory of Ref. 17b, which takes into account the small 
but finite width of the jump in the velocity at the "shear 
discontinuity." The centrifugal instability develops when 
the rotational angular velocity of the system decreases (suf- 
ficiently rapidly) toward the periphery; under appropriate 
experimental conditions, it simulates the hydrodynamic 
mechanism of formation of galactic spiral structure." 

We note that the difference between the pattern of the 
vortices observed in the present work and in Refs. 1 1,12, and 
2 from the pattern of spiral waves1' generated by the same 
instability is due to the fact that the vortices are observed in 
the actual region of the velocity gradient of the flows, where- 
as the spirals are observed far from it. 

We must here consider the question why the observed 
structures are Rossby vortices. The point is that vortex 
trains superficially similar to those shown here (Figs. 7, 8, 

FIG. 10. Trains of autosolitons: the modes m = 4 ( a )  and m = 3 (b). and 10) are also observed in entirely different experimental 
situations that either have no relation to the Rossby regime 
( 1 ) at all or, at least, to the regime of generation of Rossby 

In establishing the similarity between the stability con- 
dition ( 10) of the considered shallow water configuration 
and the Landau stability condition ( 11 ), we must also note 
one fundamental difference. It is due to the fact that the 
condition ( 11 ) is derived for a flat discontinuity, whereas 
here we consider experiments with rotating shallow water 
and, accordingly, curvilinear discontinuities. This differ- 
ence leads to a new feature: As the experiment shows, the 
suppression of the instability of the shear discontinuity (the 
Kelvin-Helmholtz instability) occurs in the system shown 
in Fig. 6 only when the angular velocity of the rotation of the 
system increases toward the periphery; in other words, when - - - -  
the vorticity of the flows is cyclonic, i.e., coincides with the 
direction of the angular velocity vector of the system. For 
the opposite (anticyclonic) vorticity of the counter-flows, 
an increase in their relative velocity merely leads to succes- 
sive replacement of the azimuthal modes of the instability- 
the higher the velocity, the lower the mode n ~ m b e r . " ~ ~  A 
similar behavior is observed when the flows are sufficiently 
far apart, i.e., under the conditions of Figs. 2 and 3. As exam- 
ples, Fig. 10 shows pictures of them = 4 and m = 3 modes of 
the instability observed at velocities of the exterior flow 
equal to u = 200 cm/sec and u = 250 cm/sec. Figure 11 
shows the sequence of alternations of the azimuthal modes of 
the instability with increasing velocity of the exterior flow in 
the geometry of Figs. 2 and 3. In this geometry, generation of 

vortices. We give some examples. One of them is the experi- 
mental study of Ref. 24 of the Kelvin-Helmholtz instability 
in counterstreaming concentric gas jets. By the design of the 
authors, this was done under conditions for which the 
counter-flows are symmetric with respect to the laboratory 
frame of reference, which, thus, is inertial; therefore, the 
inertial forces (centrifugal and Coriolis) can be ignored, 
and, therefore, the regime of the experiments of Ref. 24 is not 
the Rossby regime. Accordingly, theP effect is also absent in 
these experiments. In addition, in Ref. 24 the Mach number 
Ma+O. Very effective generation of vortex trains is demon- 
strated in Ref. 25, which simulate the polar cyclones on the 

FIG. 1 1 .  Alternation of instability modes ( m )  with variation in the veloc- 
ity of the outer ring (in the geometry of Fig. 2 )  producing the outer flow. 
The arrows in the graph indicate the direction in which the velocity of the 
ring is changing. 
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Earth. In them, counter-flows are produced by the action of 
the Coriolis force on the forced pumping of water through a 
rotating annular layer with horizontal bottom. The most ef- 
fective generation of steady vortices occurs under the condi- 
tions when the liquid is forced along the edges of the annular 
gap and flows together in the middle (where, thus, eddies are 
formed); it is readily seen that for such a direction of the 
motions cyclones are generated. In this system, a significant 
p effect is absent (the vortices have hardly any dispersion) 
(see the photographs). 

In contrast to these experiments of Refs. 24 and 25, in 
our experiments we observe a significant influence of disper- 
sion (B effect) on the properties of vortices of opposite signs, 
and this leads to such a pronounced nonlinear effect as the 
cyclonic-anticyclonic asymmetry in the Rossby regime; 
moreover, a pronounced asymmetry is also observed when 
the conditions of generation of the vortices of opposite signs 
are (in contrast to the conditions of Ref. 25) the same but the 
vortices have different lifetimes, the cyclones dispersing 
comparatively quickly. In addition, in contrast to Ref. 25, in 
which the vortex dimensions satisfy a < rR , for the vortices 
observed in our experiments a > rR.  

5. THREE-DIMENSIONAL (QUASITWO-DIMENSIONAL) 
SOLITON MODEL OF THE RED SPOT 

Thus, we have considered two instabilities of rotating 
shallow water that qualitatively simulate in a two-dimen- 
sional system the mechanism of formation of global vortices 
in the atmospheres of large planets; above all, we have con- 
sidered the soliton conception of the natural vortex in the 
Great Red Spot. It is now natural to attempt a quantitative 
comparison of the two-dimensional soliton model of the Red 
Spot3" and the data of astronomical observations. Such a 
comparison, made in Ref. 6, gives the following results. It is 
found that the ratios of the observed values of the drift veloc- 
ity of the vortex, V,, , the frequency w of its rotation about 
the axis, and the dimension a of the vortex to the theoretical 
values are 

- 1/50 for V,,, -30 for w and - 1/6 for a. ( 14) 
It can be seen that there are very appreciable deviations of 
the predictions of the two-dimensional theory from the ob- 
servational data, the deviations, moreover, being in different 
directions. 

In an attempt to "reconcile" our soliton conception 
with the observations, we now take into the fact that the real 
vortex of the Red Spot is, from the wave point of view, strict- 
ly speaking a three-dimensional and not a two-dimensional 
formation. For it is formed in an atmosphere in which the 
density is not constant at different heights, decreasing with 
increasing height in accordance with a law intermediate 
between the adiabatic and the i~othermal.'~ Under these 
conditions, vertical oscillations can take place in the vortex 
(as in a medium stable with respect to vertical convection). 
These oscillations can be taken into account (at the level of 
linear Rossby waves) in just the same way as is done for 
synoptic Rossby vortices in the ocean." In this case it is 
found that the dispersion relation for the Rossby waves re- 
mains unchanged as regards its structure but instead of the 

"two-dimensional" Rossby-Obukhov radius rR determined 
by (4)  it contains the "three-dimensional" Rossby radius ri, 
which depends on the well-known Vaisala-Brunt frequency 
of the vertical oscillations of a fluid stable with respect to 
convection. As in Ref. 27, but now not for the ocean but an 
isothermal atmosphere, as shown in Ref. 6, we obtain 

where the subscripts 2 and 3 relate to the two- and three- 
dimensional cases, respectively. These relations are written 
down for the first vertical mode of the oscillations: k, = n/ 
Ho. Following Ref. 6, we now assume that a three-dimen- 
sional soliton solution analogous to the considered two-di- 
mensional solution but differing from it by the replacement 
of rR by ri exists. This assumption is justified fairly rigorous- 
ly in the theoretical study of Ref. 28. Assuming for the pa- 
rameters of the required soliton the relations ( 15) and com- 
paring them with ( 14), we conclude that this soliton model 
can be brought into good quantitative agreement with the 
observations if the two-dimensional model of Ref. 3a is aug- 
mented (in the indicated manner) by taking into account the 
three-dimensionality of the wave motion. Perfected in this 
manner, the model should evidently be described as a quasi- 
two-dimensional rather than a three-dimensional model. 

Taking into account this result, i.e., knowing the quan- 
titative corrections, we restricted ourselves in the experi- 
ments described above with the Rossby autosoliton to the 
construction of a two-dimensional model of Jupiter's Red 
Spot, demonstrating all the qualitative properties of this nat- 
ural vortex. 

In speaking of a comparison of our model with the prop- 
erties of natural vortices, it is important to consider the ques- 
tion of the value of the Mach number in our experiments in 
which stationary Rossby vortices are generated by counter- 
flows. Experiments in which the basic parameters and the 
geometry of the flows were varied in three forms of the ex- 
perimental equipment (see above and Refs. 1 1-1 3 and 2) 
showed that the relative velocity u of the flows needed for 
excitation of a train of vortices of a given mode m increases 
with increasing no, Ho, and distance L between the flows 
(see Fig. 2).  This corresponds to the following relationship: 
The difference of the flow velocities over the vortex scale 
(ua/L) must ensure a rotation velocity of the vortex appre- 
ciably exceeding the drift velocity, which is - VR . It is under 
such a condition that we see a vortex with a well-defined 
region in which particles are captured (see Fig. 3).  This rela- 
tionship has the form 

where the coefficient C is of the order of a few units and 
depends on some details of the experiment. This relationship 
leads to a fairly large Mach number under the geometrical 
conditions of our work (see Sec. 4). It must however be 
recalled that in considering natural vortices we take into ac- 
count quantitative corrections associated with the three-di- 
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mensionality of the wave motion (Sec. 5); the Ma, which in 
accordance with ( 16) is proportional to VR , is reduced in 
accordance with ( 15) by several tens of times and thus can 
be reconciled with the value of Ma corresponding to natural 
conditions (for which Ma( 1 always). 

To conclude this section, we note a further interesting 
fact: In the oceans of the Earth there are observed to be 
monopole anticyclonic Rossby vortices-long-lived local- 
ized structures that form at the boundary of layers with sev- 
eral different densities and have the form of "lenses." Their 
characteristic scale somewhat exceeds the internal Rossby 
radius, and they are characterized by a pronounced cy- 
clonic-anticyclonic asymmetry. These vortices (which exist 
at a depth of a few hundred meters from the surface of the 
ocean) can be regarded as "internal" Rossby solitons (see 
Refs. 19, 27, and 29). 

6. ALTERNATIVE MODEL 

We now consider the alternative model of global vorti- 
ces in the atmospheres of the giant planets advanced by Hide 
and his co l lab~ra tors .~~  This model is constructed on the 
basis of thermal convection in a rotating liquid and has been 
studied in small devices constructed as follows. In a liquid 
enclosed in the space between cylinders rotating around a 
vertical axis and having a horizontal bottom, a controllable 
radial temperature gradient is produced, this giving rise to a 
definite density gradient (of the order of fractions of a per- 
cent). This gradient, being noncollinear with the accelera- 
tion due to gravity, produces in the liquid a flow-a so-called 
thermal which has an azimuthal direction. If the 
temperature of the liquid (and with it the density) has a 
nonmonotonic radial variation, i.e., the density gradient 
changes sign somewhere in the gap, counter-flows develop in 
the liquid. They have either cyclonic or anticyclonic vorti- 
city, this depending on the nature of the density extremum 
(maximum or minimum). The experiment of Ref. 30 
showed that under certain conditions the flows become un- 
stable in such a device and generate trains of vortices with 
different mode numbers. It is possible to choose conditions 
for which the liquid has a minimum of its density in the 
middle of the gap (i.e., the temperature is maximal there) 
and the mode m = 1 is generated, just one anticyclone exist- 
ing on the perimeter of the system (though, it is true, a weak 
cyclone can be seen ahead of it) .30 Such a vortex structure is 
proposed in Ref. 30 as a model of the Red Spot. In the experi- 
ment of Ref. 30, a density extremum of the opposite sign 
(maximum of the density and, accordingly, minimum of the 
temperature) could not be created, and the corresponding 
situation was calculated numerically on a computer. Ac- 
cording to the calculation, a structure of the type of the cy- 
clonic barges on Jupiter must arise. 

This model differs very appreciably from the soliton 
model considered above. Its main differences are as follows. 
1. The horizontal scales of the vortices (like the gap between 
the cylinders) is appreciably less than the depth of the liquid; 
in other words, we are, by definition, dealing with "deep 
water." Such a situation evidently differs very significantly 
from the natural conditions on the planets. Thus, in the case 

of the Red Spot the horizontal scale of the vortex probably 
exceeds the vertical by three orders of magnitude. 2. The 
generated vortices do not have dispersion and hardly move 
relative to the vessel, so that the observed drift of the plan- 
etary vortices is not explained. 3. The pronounced cyclonic- 
anticyclonic asymmetry is also not explained. 4. If the prop- 
erties of the Red Spot vortex are to be interpreted on the 
basis of this model, it is necessary to assume that at the center 
of the Red Spot there is a maximum of the temperature 
(minimum of the density ), but this is in qualitative disagree- 
ment with the observational data-in the Red Spot vortex 
there is a minimum of the temperature (Ref. 26). 5. The 
vortex scales are much less than the "two-dimensional" 
Rossby-Obukhov radius and are approximately equal to the 
"three-dimensional" Rossby radius r i .  6. For this model, 
allowance for the compressibility of the medium is funda- 
mental. 

However, despite these differences,the model has cer- 
tain features similar to those of the soliton model considered 
above. First, in both models self-organized vortices arise 
through the instability of zonal counter-flows (although the 
flows themselves are produced in different ways). Second, 
the sizes of the vortices are physically comparable-they are 
determined by the Rossby scale, albeit by the two-dimen- 
sional radius rR in our model and by the three-dimensional 
Rossby radius ri in Hide's model.30 It is not impossible that 
the further development of experiment and theory could 
give rise to a new model oflarge planetary vortices based on a 
synthesis of these models. 

We thank V. K. Rodionov for assistance in the experi- 
ments and A. M. Fridman, A. V. ZhutoretskiI, and G. G. 
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"This estimate is correct provided that r,,, is much greater than the 
period of intrinsic rotation of the vortex; in the case of the Red Spot this 
condition is satisfied (the intrinsic period is about a week) but in the 
ex~eriments of Refs. 1 and 2 it is not: therefore, an estimate intermediate 
between (2)  and rvir = H : / Y  is evidently closer to the reality in Refs. 1 
and 2. 

"We employ the expression autosoliton, following B. S. Kerner and V. V. 
Osipov, to designate a self-sustaining soliton which is undamped in a 
system with dissipation. 

"This improved model is evidently better described as a quasi-two-dimen- 
sional model. 
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