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A system of exact nonlinear dynamic equations for metals is derived. It consists of equations from 
the theory of elasticity, a kinetic equation for the conduction electrons, and Maxwell's equations. 
These equations are coupled to each other. The current density in a metal is calculated for an 
arbitrary time-dependent deformation. 

In many problems in the theory of metals it is necessary 
to use a complete system of dynamic equations, consisting of 
equations from the theory of elasticity a Boltzmann kinetic 
equation for the conduction electrons, and Maxwell's equa- 
tions for the electromagnetic field; these equations are cou- 
pled with each other. These equations have been derived by 
many investigators, most comprehensively and systemati- 
cally by Kontorovich (Ref. 1 and the bibliography there). 
All of this work, however, has dealt with linearized equa- 
tions. In addition to the obvious deficiency of linearized 
equations-they cannot be applied to nonlinear problems, 
e.g., that of the interaction of oscillation modes-there are 
some fundamental questions in this case which can be re- 
solved systematically only by an exact nonlinear approach. 

The most important question is a description of the dy- 
namics of electrons in a time-varying deformed crystal lat- 
tice. In an exact description, all the physical quantities char- 
acterizing an electron, as in an undeformed crystal, are 
periodic functions of the quasimomentum, but the periods 
are functions of the coordinates and the time. The boundar- 
ies of the Brillouin zone in this case depend not only on the 
deformation at a given instant but also on the velocity of the 
lattice. If we expand all quantities in powers of the vectors 
lattice displacement, an apparent aperiodicity arises in the 
expressions for physical quantities ( the energy, etc. ); the 
aperiodicity is completely analogous to the secular terms in 
the theory of nonlinear oscillations. The kinetic equation 
becomes incompatible with the condition of periodicity of 
the distribution function. Kontorovich' overcame this diffi- 
culty by somewhat artificial methods: by transforming to a 
noninertial comoving coordinate system and by essentially 
postulating the form of the noninertial terms in the electron 
Hamiltonian. Nevertheless, we must not fail to point out 
that the final linearized equations found by Kontorovich are 
correct. 

In the present paper we derive a complete system of 
exact nonlinear dynamic equations for metals. The only con- 
dition which must be satisfied for the applicability of these 
equations is that the properties of the lattice, the electron 
distribution function, and the electromagnetic field must be 
slowly varying functions of the coordinate and the time at 
the scale of interatomic distance and atomic times, respec- 
tively. 

1. ENERGY AND HAMlLTONlAN OF AN ELECTRON 

Our problem includes a formulation of a nonlinear the- 
ory of elasticity. The formulation which is most convenient 
for our purposes is as follows (cf. Ref. 2 ) :  We denote by 
a, (r , t)  ( a  = 1,2,3) the primitive translation vectors of the 
crystal lattice at a given point r at a given time t. We intro- 
duce local reciprocal-lattice vectors a" ( r , t ) ,  which satisfy 
the relations 

aaaR=GaP, aaiaka=6ik. ( 1 )  

We also introduce an invariant metric "tensor" ga0 = a, a" 
and its inverse, by virtue of ( I ) ,  the tensor g"", which is 
equal by definition to a" a". 

We denote by N" the integer coordinates of the lattice 
ions, expressed in units of the corresponding periodicity vec- 
tors a,, so that the differential coordinates dr, which is a 
physical infinitesimal (i.e., large in comparison with the lat- 
tice constant but small in comparison with the distance over 
which the properties of the lattice vary substantially), at a 
given time can be written 

With dN" = 0, the time dependence of the coordinates r is 
evidently determined by the lattice velocity v(r , t ) :  d r  = vdt. 
In general, we can therefore replace ( 2 )  by 

We wish to stress that the quantities Nu = N" ( r , t )  are sin- 
gle-valued functions of the coordinates and the time only if 
we are dealing with a deformation of the crystal in the ab- 
sence of dislocations. I t  is this case with which we will be 
concerned below. 

Using ( 1 ) ,  we find from ( 3 )  

so that 

The three functions Na ( r , t )  thus completely determine the 
configuration and velocity of the lattice. The use of these 
functions (in place of the three components of the displace- 
ment vector) as unknown functions is more convenient in 
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formulating a nonlinear theory of elasticity. 
The following expressions for the time derivatives of the 

translations vectors are consequences of ( 1 ) and ( 4 ) :  

The lattice density is 

where M is the mass of the ions in a unit cell, and g = detg,/, . 
Using the identity dg = - gg,pdga8, we easily see that a 
continuity equation follows automatically from ( 4 )  and ( 5  ) : 

Before we determine the Hamitonien H which appears 
in the Boltzmann equation and the energy t of an electron, 
we note the following. In this theory which we are construct- 
ing we are assuming that the quantities a, and v vary slowly 
in space and time, and we are expanding in derivatives of 
these quantities. In the expressions for H and 2 it is then 
sufficient to retain only terms of lowest order. In this ap- 
proximation, H and t are the same as their values in a lattice 
with constant but otherwise arbitrary vectors a, and v, i.e., 
in a crystal which is uniformly deformed (periodic) and in 
uniform motion. 

We first assume v = 0. The wave function of an electron 
which belongs to a definite energy band and which is execut- 
ing a semiclassical motion must be treated' as a function of 
the discrete coordinates Na : 

+(,va, t )  .- exp{( i /h)S , (Na.  t )  }, 

where S, is the classical action. In the immobile periodic 
lattice with which we are concerned at this point, the Hamil- 
tonian is known to be equal to the energy E = ~ ( k ,  ,ga", 
which is a periodic function of the components of the invar- 
iant quasimoment ka with periods 2x4 and which depends 
on the invariant characteristics of the unit cell, determined 
by the quantities ga". In this case the derivatives of the ac- 
tion are 

( a ~ , / d t )  sfL=-e (k,, g"" , (aSoldNa) (8 )  

At v#O the action S can be found by means of the well- 
known laws4 by which the one-electron wave functions 
transform under Galilean transformations. We write 

where m is the mass of a free electron. 
Differentiating S, we find the quasimomentum 
p= (dS/dr) ,=k,CN"+mv=aakatrnv, 

and thus k ,  = a, ( p  - mv) and the Hamiltonian 

H ( p ,  r, t )  =- (JSldt)  , = - k , ~ ~ + ~ + r n u ~ / 2 = & ~ p v - r n v ~ / 2 ~  
(10) 

Here E = &(aa (p  - mv),  f B  ) is a periodic function of the 
quasimomentum p with periods 2?riiaa determined by the 
local values of the reciprocal-lattice vectors. 

The electron energy t is given directly by the Galilean 
transformation equation 

where p,, is the average value of the electron momentum in 
the system with v = 0. This value is equal to the product of 
the mass of the electron and its velocity, which is equal to the 
derivative of the Hamiltonian with respect to the quasimo- 
menturn. As a result we have p, = mdc/dp and thus 

The energy t is a periodic function of the quasimomentum p. 
The Hamiltonian (10) is not periodic. I t  is this Hamil- 

tonian which makes the kinetic equation compatible with 
the condition of a periodic distribution function. We write a 
kinetic equation for the electron distribution function f(p,  r, 
t ) ,  taking into account the electric and magnetic fields, E 
and B: 

where I is a collision operator. 
The condition for periodicity of the distribution func- 

tion 
f ( P ,  r, t )  =f (p+2nfiaa (r ,  t ) ,  r, t )  

is compatible with Eq. ( 12), since the function on the right 
side of the last expression satisfies the same equation as f (p ,  
r, t ) ,  i.e., Eq. (12),  as is easily verified. 

Aperiodic quantities can be eliminated from considera- 
tion if we replace p by the quantities k, as the arguments off. 
The function f(k,, r, t )  satisfies the equation 

where 

and all quantities are differentiated with respect to the co- 
ordinates and the time at constant k,. All the quantities 
which appear in Eq. ( 13) are periodic in k,. 

To expand the equations in powers of the strain, we 
should set Nu = N," - ua, where Noa = aOar, and the a," 
are the reciprocal-lattice vectors of the undeformed crystal. 
The quantity u = a,, u" is then the displacement vector of 
the ordinary theory of elasticity. Differentiating Nu with 
respect to the coordinates and the time, we find the devia- 
tions, linear in u, of all quantities from their values in the 
undeformed crystal: 

where u, is the strain tensor. Linearizing ( l o ) ,  we find 

Here ~ ~ ( p )  and A,, ( p )  are, respectively, the values of the 
function &(ao, p,ga") and of its derivatives with respect to 
u,,  at u,, = 0. Expression ( 14) was derived by Landau and 
then by Kontorovich. ' 
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2. DERIVATION OF THE DYNAMIC EQUATIONS OF THE 
LATTICE FROM CONSERVATION LAWS 

The energy density and momentum density of a metal 
are given by the following expressions in the quasineutral 
approximation, in which we should ignore the displacement 
current in Maxwell's equations: 

where p,, H ,  and 2 are given by ( 6 ) ,  ( l o ) ,  and ( 1 1 ) ;  
$, (ga" is the elastic energy of the immobile lattice; and 

Here the integration is over the Brillouin zone which 
corresponds to the local vectors a".  The boundaries of the 
zone may be regarded equally well as displaced by m v  or as 
not displaced, since all the quantities to be integrated in ( 1 5 )  
and ( 1 6 )  are periodic in p. 

The dynamic equations of the lattice are embodied in 
the momentum conservation equation 

where n,, is the symmetric momentum flux tensor. As usu- 
al, the latter is determined by the condition that conserva- 
tion of the total energy, i.e., an equation of the form 

&+div Q=O ( 1 8 )  

with some Q, follows automatically from Eq. ( 1 7 ) ,  kinetic 
equation ( 12), and Maxwell's equations. To  actually find 
this condition we must differentiate ( 1 5 )  with respect to the 
time and express the time derivatives of all quantities in 
terms of spatial derivatives. 

There is an important circumstance to be kept in mind 
here. The integration over p  is over a region which depends 
on the coordinates and the time. The integration operations 
( . . . ) thus generally does not commute with differentiation 
with respect to r and t .  The commutators are defined by 
certain integrals of the distribution function along the 
boundary of the Brillouin zone. Similar integrals arise when 
we eliminate f with the help of Eq. ( 1 2 )  after integrating by 
parts (over p)  in the terms which are proportional to the 
product of d f  / d p  and the aperiodic factor d H  /dr .  Each of 
these integrals vanishes for metals having a closed, purely 
electron Fermi surface, since in this case there is a rather 
large region near the boundaries of the Brillouin zone in 
which the condition f = 0  holds. If there are open or hole 
surfaces, the situation is different, but in general all the sur- 
face integrals will cancel each other out. The simplest way to 
see this is to replace the function f(p, r, t )  and Eq. ( 12) by 
Eq. ( 13)  for the function f(k, , r, t )  with universal periods, 
to carry out all the necessary differentiations and integra- 
tions by parts, and to then go back to the original representa- 
tion in the expressions for the fluxes Q and n I k .  When the 
calculations are carried out in this order, surface integrals do 
not appear at all. Correct expressions for Q and 17, in the 
general case can be found by working in the p  representation 

and by bearing in mind the simplest case, that of closed elec- 
tron Fermi surfaces. 

We differentiate the energy in ( 15) with respect to the- 
time, using identity ( 7 )  and Maxwell's equations 

4n 1 .  
div B=O, rot B = - c j, rot E=- -B, c ( 1 9 )  

where j is the current density; by virture of the condition of 
electrical neutrality, the current density is 

We find 

where S is the Poynting vector. Since E = ~ ( k ,  ,ga", where 
k, = a, ( p  - m v ) ,  we have the following equation with 
p  = const: 

where 
has (P) = (aeIagab) ha. 

Using identity ( 2 2 ) ,  we find 

We can transform the time derivative of the elastic ener- 
gy of the lattice analogously: 

&,=- ( ~ V ) 8 ~ - 2 u ~ ~ a ~ a k B ~ u i / ~ x ~ ,  
where uap = dt9, /dga".  

Substitution into ( 2 1 )  reveals that the derivative v ap- 
pears in the expression for @ with the same coefficient as in 
the expression for V P ,  which can be found by differentiating 
( 1 6 ) .  It is thus a simple matter to eliminate v. When we then 
express P and f in terms of spatial derivatives with the help of 
Eqs. (17) and ( 1 2 ) ,  respectively, we find, after some 
straightforward manipulations, 

where t ,  = ( 1 / 4 ~ )  ( B ,  B ,  - B  2 S ,  / 2 )  is the Maxwell ten- 
sor of the magnetic field. 

If the operator I represents elastic collisions of electrons 
with lattice defects or with each other, we would have 
(&If) = 0 .  When electron-phonon collisions occur, the elec- 
tron energy is not conserved, and phonons must be taken 
into consideration. All the equations above, including kinet- 
ic equation ( 1 2 ) ,  actually apply to any quasiparticles in 
crystals, in particular, to phonons. To  take phonons into 
account, it is sufficient to substitute the sum of the corre- 
sponding integrals of the electron and phonon distribution 
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functions into the equations containing integrals of the elec- 
tron distribution function. I t  must be kept in mind, of 
course, that for phonons we have m = e = 0. The last term in 
(24) in this case is equal to the sum 

( ~ I f ) f  ( ~ p h I p h f p h ) ,  

which vanishes by virture of the conservations of the total 
energy of the quasiparticles. Comparing (24) and ( 18), we 
can determine the unknown fluxes: 

The complete system of dynamic equations of the metal 
consists of kinetic equation ( 12), momentum conservation 
equation ( 17) ,  Maxwell's equations ( 19), and the quasineu- 
trality condition. The latter is written in the form (Z /  
M ) p ,  = ( f ) ,  where Z is the total charge of the ions of a unit 
cell. Transforming to an integral over the invariant quasimo- 
mentum k,, we find ( f )  = g-"'( f ), , where 

Substituting in expression ( 6 )  for the lattice density, we can 
rewrite the quasineutrality condition in the more convenient 
form 

3. CURRENT DENSITY IN A DEFORMED METAL 

When the electron mean free path I is vanishingly small, 
the solution of the kinetic equation is a local equilibrium 
function f = f,(& - p ( r , t )  ), where p ( r , t )  is the chemical 
potential, and f, is the Fermi function (for simplicity we 
assume T =O). The dependence o f p  on the coordinates and 
the time is determined by the quasineutrality condition 
(26) .  

By virture of the inversion symmetry of a uniformly 
deformed lattice, current density (20) vanishes in a state 
with f =A,; vanishing along with it is the last term in expres- 
sion (25) for FI,, . The next-to-last term can be transformed 
in the following way. We evaluate the derivative of the elec- 
tron energy density with respect toga": 

8 , i = ( & j a ) = g - " ' ( ~ f o ) k .  

We have 

The last term in braces vanishes by virtue of the S-func- 
tion nature of the derivative df,/d~ and condition (26) .  As a 
result we find 

d Z , r / d g U P = 8 e t g a , / 2 + ( h a ~ / o ) .  
We see that the next-to-last term in the expression for n,, 
causes a renormalization of the energy, $,-2Y, + W,, , in 
this case, and Eq. ( 17) converts (as it should) into the usual 
equation of the nonlinear theory of elasticity. 

To  calculate the current density we need to go to the 
next higher order in the approximation in I and to take into 
account the deviation Sf of the distribution function from the 
locally equilibrium value f,. I t  is convenient to calculate Sf 
from kinetic equation ( 13).  Substituting f = f, + Sf into this 
equation, and retaining Sf only in the collision integral and 
in the term with the field B', we find 

We have omitted from the left side of this equation 
terms which are even under the inversion k, -+ - k, . These 
terms would be important in a calculation of the electron 
viscosity, but they do not contribute to the expression for the 
current. It follows immediately from the form of Eq. (27) 
that the current density is 

wheredv/dt = v + (vV)v, and 6 ( B )  is the conductivity ten- 
sor of a uniformly deformed immobile metal. The current 
density is Galilean-invariant, as it should be in a neutral sys- 
tem. 
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