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Numerical methods are used to solve the nonlinear equations of the Ginzburg-Landau type 
describing the superconductivity of the twinning plane in tin and niobium. The shape of the field- 
temperature phase diagram is determined and is found to be in good agreement with the available 
experimental data. The nature of the change in the phase diagram is tracked as the Ginzburg- 
Landau parameter is increased. The basic properties are determined for superconductivity local- 
ized at the twinning plane. 

1. INTRODUCTION 

It has been established by KhaYkin and K h l y u ~ t i k o v ' ~ ~  
that the presence of a twinning plane in crystals of tin, indi- 
um, rhenium, and thallium gives rise to superconductivity 
localized around the twinning plane. This twinning-plane 
superconductivity (TPS) arises at a temperature Tc above 
the critical temperature T, of the bulk metal. All of the 
superconductors mentioned belong to type I. Recently, how- 
ever, superconductivity of an isolated twinning plane has 
been detected and studied in niobium, a type-I1 supercon- 
d u ~ t o r . ~  There are also results4 which indicate that the criti- 
cal temperature of niobium increases when a set of twins is 
produced by plastic deformation. The field-temperature 
(H,T)  phase diagram for the TPS in niobium has a funda- 
mentally different character from that of tin (the most thor- 
oughly studied superconductor exhibiting TPS) . In niobium 
the TPS exists3 at all temperatures 0 < T < Tc in fields some- 
what in excess of the upper critical field of the bulk metal, 
while in tin the existence region of the TPS is limited2,' to a 
narrow temperature interval near T, . 

In all cases, however, the critical temperature for TPS is 
only slightly higher than the critical temperature of the bulk 
metal, i.e., T, = (Tc - T, )/Tc (1 ( - lo-* in tin and nio- 
bium). This circumstance is due to the proximity effect of 
the normal, nonsuperconducting (at  T >  T, ) bulk metal. 
However, even though T,( 1, the change in the properties of 
the superconductor near the twinning plane can be extreme- 
ly important. This has been demonstrated most clearly in the 
experiments of Khlyustikov and KhaYkiq6 who observed 
that the critical temperature more than doubled in tin sam- 
ples having a high concentration of twins. Analogous results 
were also obtained in microscopic particles of tin containing 
twinning  plane^.^ An estimate shows5 that a still greater in- 
crease in Tc can be achieved by optimizing the size of the 
small twinned particles of tin. 

The mechanism for the enhancement of superconduc- 
tivity near the twinning plane has not been explained. It has 
been ~uggested ' .~  that the mechanism may involve a soften- 
ing of the phonons and the appearance of new phonon modes 
near the twinning plane or perhaps the appearance of an 
external group of electrons (absent in the ordinary three- 
dimensional crystal) moving along the twinning plane. A 
preliminary theoretical analysis7 has shown that the pres- 
ence of a lattice-dilatation wave at the twinning plane should 

lead to an increase in the electron-phonon interaction con- 
stant. 

In any case the "enhancement" of the superconductivi- 
ty occurs in a thin layer near the twinning plane, with a 
thickness on the order of a few interatomic spacings, i.e., the 
layer is thin compared to the correlation length 
go = 0.18v,/Td of the superconductor. Therefore, to de- 
scribe the TPS a model of the superconductor has been pro- 

in which the dimensionless electron-phonon inter- 
action constant A has a maximum near the twinning plane in 
a layer of thickness d ( l 0 .  A similar model was considered 
independently in Refs. 10-12. 

Near the critical temperature T, of the bulk metal the 
TPS can be described in the framework of a modified Ginz- 
burg-Landau theory in which the free-energy-density func- 
tional contains an additional 6-function termss9 
- y a ( x )  l$(r) 1 2 ;  here $(r)  is the order parameter for the 

superconductor, and the twinning plane is the plane x = 0. 
An analogous approach has been used previously to de- 

scribe surface magnetism13 and to treat structural phase 
transitions in systems with defects.I4 In our case there is 
actually only one free parameter, y, which is related to the 
increase in the critical temperature for TPS in comparison 
with T,, i.e., to r0 (the relationship of y to the increase in 
the constant A near the twinning plane has been found8s10 
from the solution of the integral equation which determines 
Tc ). Using the experimental values of T, and the familiar 
properties of the superconductivity of the bulk metal, one 
can obtain a complete description of the twinning-plane su- 
perconductivity and, in particular, its behavior in a magnetic 
field. It should be emphasized that in a type-I superconduc- 
tor the modified Ginzburg-Landau theory describes the TPS 
at all temperatures where it exists, since this region is limited 
to the neighborhood of T, .5 

In Refs. 8, 9, and 5 the critical fields of the transition 
and the phase diagram for TPS were found for an extreme 
type-I superconductor (having a Ginzburg-Landau param- 
eter 3t-*0), and the upper critical field and the magnetic 
moment near Tc were determined. The results were in quali- 
tative agreement with the experimental In princi- 
ple, however, the theory permits an exact quantitative de- 
scription, and so one wonders what causes the quantitative 
disagreement between the experimental and theoretical re- 
sults. We have therefore carried out in this study a numerical 
solution of the nonlinear Ginzburg-Landau equations de- 
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scribing the TPS and have found the shape of the phase dia- 
gram, the magnetic moment in a field, and the dependence of 
the order parameter on the coordinate in a field for the case 
of the TPS in tin, for which x = 0.13; for completeness we 
also give some of the results from a previous brief communi- 
~ a t i o n . ~  We have also determined the properties of the TPS 
for superconductors with other values of x ;  in particular, we 
have made a detailed analysis of the case x = 1, which corre- 
sponds to the TPS in niobium3 ( a  type-I1 superconductor). 
In addition, we discuss the diamagnetic susceptibility for 
TPS and develop a method for calculating the upper critical 
field throughout the entire temperature interval. We briefly 
discuss the possibility of a Kosterlitz-Thouless transition in 
the case of an inhomogeneous twinning plane. 

2. DESCRIPTION OF THE TWINNING-PLANE 
SUPERCONDUCTIVITY 

When the critical temperature Tc for superconductivity 
localized near the twinning plane is slightly higher than the 
corresponding value T, in the bulk metal,'' the characteris- 
tic length scale{(r,) = {,[T, /(T, - T, ) ] ' I2  for the TPS 
turns out to be large compared to (,, i.e., ((T,)>(~. As a 
result, one can describe the TPS at temperature near T, in a 
modified Ginzburg-Landau theory with a free-energy-den- 
sity f u n ~ t i o n a l ~ . ~  

(B-H) 1 F=- +-I(.-$ * ) $ I 2  
8n 4m 

+al$12+bj$14-@(x') l$12. ( 1 )  

Here H is the external field, m is the electron mass, and we 
have used the standard notation for the coefficients of the 
functional (see, e.g., Ref. 15) : 

where N is the electron density and 7 = 0.12~,/T, ' in the 
case of a clean superconductor. The functional (1  ) differs 
from the usual functional by the last, 6-function (on the lo 
scale) term, which estimates the enhancement of the Cooper 
pairing near the twinning plane x' = 0. The constant y is 
related to the temperature at which localized superconduc- 
tivity arises by the relation 

The characteristic scale for the reduced temperature in 
a treatment of the TPS is T, - T, ; the field scale is 

the length scale is 

and the scale for the order parameter is 

It is therefore convenient to use dimensionless variables for 
the temperature t = (T, - T)/(T, - T,), field h = H /  
H,, coordinate x = x1/((r0), and order parameter q, = $/ 
$0. 

In this notation the equations for the order parameter 
and field distribution from functional ( 1 ) have the form [for 
a field parallel to the twinning plane and for A ( x )  z A ,  ( x )  ] 

where 
X==A/A,, Ao=(zomcz/2qez)'", r .Z=(h/~)2=mzc2b/2nez,  

and x is the Ginzburg-Landau parameter. 
In the absence of magnetic field the solution of Eq. ( 2 )  

is of the form 

and the twinning-plane superconductivity exists, of course, 
only in the temperature interval T, < T <  Tc , i.e., 0 < t < 1. 

3. TWINNING-PLANE SUPERCONDUCTIVITY IN A TYPE-I 
SUPERCONDUCTOR (TIN) 

To determine the transition field and the phase diagram 
for TPS in a type-I superconductor we must solve the system 
of nonlinear equations in ( 2 )  and (3) .  In the limiting case of 
a type-I superconductor we can neglect the penetration of 
the fields into the TPS region, and then we can write the 
solution of the equation for q, in quadratures9 The field hc of 
the first-order transition is now determined by the system of 
equations5 

i 

giving the TPS phase diagram shown in Fig. 3 for x = 0. 
The accuracy of this calculation, however, is not good; 

it is of order x"', as in the treatment of the energy of the 
boundary between the superconducting and normal phases 
in a field (see, e.g., Ref. 15). It is this circumstance that 
explains the disagreement between the experimental data for 
the field h, in tin2s5 and the function in Eq. (5 ) .  

By numerically solving Eqs. (2 )  and ( 3 )  by a finite- 
element method, we have found the TPS phase diagram 
(Fig. 1 ) for the case x = 0.13, which corresponds to tin." As 
we see from Fig. 1, there is very good quantitative agreement 
with experiment. 

Twinning-plane superconductivity in tin can be ob- 

FIG. 1. TPS phase diagram for tin ( x  = 0.13) in a parallel field; h, is the 
field of the first-order transition to the TPS state, and h, = It is the field 
of the first-order transition of the bulk metal. The points are the experi- 
mental data.?,' 
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FIG. 2. Increase in the critical field for TPS with respect to the transition 
field in the bulk metal ( h ,  = t ) for various values of the parameter x .  

served only in the temperature range - (6-7) < t < 1,  i.e., 
for T, - 0.25 K < T <  T, + 0.04 K. The presence of a low- 
er bound on the TPS existence temperatures is specific to 
type-I superconductors. Interestingly, this circumstance 
permits a complete description of the TPS in these supercon- 
ductors in the framework of the Ginzburg-Landau ap- 
proach. 

As x increases, the h, ( t )  curve becomes steeper and the 
TPS existence region becomes wider, as is seen in Fig. 2, 
which shows the temperature dependence of h, - It 1 (i.e., 
the difference of the critical fields for the TPS and bulk met- 
al) for various values of the parameter x. 

However, immediately below the temperature t = 1 at 
which the TPS arises there is always a second-order transi- 
tion in a field.9 The reason for this is that the effective screen- 
ing depth A,, goes as e, - ', and Re,- rn as t-1, whereas the 
correlation length l ( r o )  -~oro-' '2 here depends only weak- 
ly on the temperature. 

The phase diagram for the TPS of a type-I superconduc- 
tor always has a tricritical point (h, ( t  *) , t  * )  at which the 
character of the transition changes; in the case x " ~ <  1 this 
point is located9 at t * =: 1-1.5x2. The phase diagrams for the 
TPS near t = 0 for various x are shown in Fig. 3, with the 
tricritical points indicated by stars. 

In pure tin the region of the second-order phase transi- 
tion is very narrow, 1 - t * 5 0.0 1, and one can scarcely hope 
to observe experimentally the change in the character of the 
transition. It would be very interesting to try to follow the 
change in the slope of the h, ( t )  curve in tin when the param- 
eter x changes; the latter could be increased, for example, by 
introducing an impurity into the sample or by irradiating it. 
Here the temperature at which the TPS arises should in- 
crease (in the "dirty" limit I<l0, where I is the electron mean 

FIG. 4. Spatial profiles of the order parameter and of the screening of a 
field parallel to the twinning plane ( x  = 0 )  in tin at a temperature 
t = - 1. The solid curve corresponds to an external field h = 1.62, the 
dashed curve to h = 1.05, and the dot-and-dash curve to h = 1.01 1. 

free path, the value of ro increases by a factor of l0/l)  ,8 and it 
might also be possible to observe the change in the character 
of the transition at the tricritical point (as we see in Fig. 3, 
the region of the second-order phase transition expands ra- 
pidly with increasing x )  . 

Impurities and irradiation can also cause defects of the 
twinning plane, which lower the critical temperature for 
TPS. Apparently the dependence of the critical temperature 
on the impurity concentration or radiation dose can be non- 
monotonic. 

The behavior of the order parameter and screening of 
the field as functions of the coordinate in tin is illustrated in 
Fig. 4. Interestingly, in the region of negative t, where bulk 
superconductivity can exist in smaller fields, a plateau ap- 
pears on the e, ( x )  curve as the field approaches h, = It 1; on 
this plateau the order parameter is practically constant and 
equal to its value in the bulk metal at the given temperature. 

Figure 5 shows the field dependence of the magnetic 
moment calculated at various temperatures (for the case 
x = 0.13 in the bulk metal) under the assumption that a 
continuous layer of superconductor arises. At the transition 
of the layer in a field from the superconducting to the normal 
state there is a jump in the magnetic moment, and heat 
should be absorbed. The quantity of heat q is related to the 
jump in the magnetic moment and the derivative dH, /dTby 
the usual relation 

and can easily be found from the M ( H )  and H, ( T )  curves 
obtained in this study (see Figs. 2 and 5) .  No calorimetric 
studies of the TPS have been done, however. 

A type-I superconductor in a perpendicular magnetic 
field should exhibit an intermediate state. The problem of 
finding the structure of the intermediate state of the TPS in a 
perpendicular field differs from the standard formulation for 
a thin superconductor film and is yet to be completely 

FIG. 3. Appearance of the TPS phase diagram for various values of x in a 
parallel field near the temperature t = 0. The dashed curves show the line FIG. 5 .  Field dependence of the magnetic moment (per unit area) of the 
of second-order transitions, and the stars denote the tricritical points, at TpS in tin at various temperatures. The moment is measured in units of 
which there is a change in the character of the transition. M, = [ r , / ( ~ r n f f b )  ] 'lZ = H , l ( ~ , ) / n .  
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solved. The perpendicular critical field for the first-order 
transition is of the same order of magnitude as the critical 
field parallel to the twinning plane. The former, however, is 
apparently somewhat smaller than the latter, since the struc- 
ture of the intermediate state which arises should have a 
nonzero demagnetizing factor. Herein lies the distinction 
between TPS and the ordinary situation for a film of a type-I 
superconductor, where the intermediate state arises at the 
same field H, at  which the transition occurs in a parallel 
field (because the superconducting layer arising in the sam- 
ple has a demagnetizing factor of zero, since the width of this 
layer in the direction perpendicular to the field is much less 
than the thickness of the film). In the case of TPS the thick- 
ness of the superconducting region localized near the twin- 
ning plane is equal in order of magnitude to g ( ro ) .  This 
means that the characteristic transverse dimension of the 
intermediate state will also be of the same order of magni- 
tude. The superconducting nuclei in this case most likely are 
in the shape of strips having a thickness of the order of{(r,). 

4. TWINNING-PLANE SUPERCONDUCTIVITY IN A TYPE-II 
SUPERCONDUCTOR (NIOBIUM) 

The results of experiments3 in which TPS was observed 
in niobium permit comparison of the features of the phenom- 
enon in type-I1 (niobium) and type-I (tin) superconduc- 
tors. In niobium, where the Ginzburg-Landau parameter x 
is equal to 1," the transition to the TPS state is always sec- 
ond order and the TPS can exist all the way to the lowest 
temperatures in fields somewhat in excess of the critical field 
H& of the bulk metal. The field of the second-order transi- 
tion to the TPS state was calculated in Ref. 8 for tempera- 
tures in the neighborhood of T, and in Ref. 11 for low tem- 
peratures. 

The simplest situation is one in which the magnetic field 
is perpendicular to the twinning plane. In this case the 
H f2 ( T )  curve in the neighborhood of T, differs from the 
usual case only in that the field H f2 (T) goes to zero at the 
point Tc rather than at T, . Thus H r,i(T) is a straight line 
passing through the point Tc and parallel to H % ( T) . As to 
the behavior of the TPS in a perpendicular field, we note that 
it is completely analogous to the behavior of a thin supercon- 
ducting slab of type-I1 superconductor, for which the effec- 
tive London penetration depth is given by the expression 

If we allow for this change, all the results of Ref. 18 will 
apply to TPS in a perpendicular field. 

We now consider the case when the field is parallel to 
the twinning plane; we obtain an expression for ~ f ]  in a 
convenient form for numerical calculation and find the tem- 
perature dependence of the critical field in the neighborhood 
of T,, i.e., in the region where the Ginzburg-Landau theory 
applies. 

The field of the second-order transition, as usual, is de- 
termined from the condition that a solution exist for the lin- 
earized equation for the order parameter: 

where 

The eigenfunctions q,, ( x )  of the above equation without the 
6 function (i.e., a linear oscillator) with the boundary condi- 
tions q,-0 at  x--t + oo are well known19: they form a com- 
plete orthonormal basis. Let us expand solution ( 6 )  in these 
eigenfunctions: 

Substituting (7)  into ( 6 )  and using the orthonormality of 
the functions p, , we find the expansion coefficients 

where E,  = 2h ( n  + 1/2) is the eigenenergy corresponding 
to eigenfunction p, . Using the "self-consistency" condition 

and the explicit form of p, ( x ) ,  we find the solution of our 
problem in the form of a convergent series: 

Numerical summation of (9)  leads to the t$ ( t )  curve shown 
in Fig. 6. 

In  the limit t-1 the ( t )  curve has a square-root char- 
acter, h ( t )  = ( 1 - t )  ' I 2 ,  and can easily be found8 by treating 
the magnetic field in (6 )  as a perturbation and using the 
explicit form (4)  of the wave function p ( x )  at  H = 0. 

In the limit It 1 %  1 the critical field differs little from the 
corresponding bulk value Lo = - t; in this case we only need 
to keep the first ( k  = 0 )  term in the sum ( 9 ) ,  since it is much 
larger than the rest. As a result we find 

i.e., h - Lo = ( 2 / 6 )  It 1 ' I 2 .  This case corresponds to taking 
the 6-function potential in (6 )  into account by perturbation 
theory. 

To treat the behavior of the TPS at  It 1 %  1 in fields that 
are somewhat smaller than h ( t ) ,  one can use the usual meth- 
od used to study the mixed state for (H,, - H)/Hc2 < 1 (see, 
e.g., Ref. 20). The mixed state here is characterized by the 
parameter 8, = ?/( g)'. In our case this parameter is 
easily found by substituting for q, the lowest-energy eigen- 

-q" ( x )  +X2x2cp (x) + t ( ~  ( x )  -26 (x) (P (x) =0, (6 )  FIG. 6. Upper critical field for the transition to the TPS state. 
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FIG. 7. Spatial profiles of the order parameter and of the screening of a 
field parallel to the twinning plane in niobium ( x  = 1)  at a temperature 
r = - 0.5. The solid curve corresponds to a field h = h /a = 4.2, the 
dashed curve to h = 1.9, and the dot-and-dash curve to h = 0.71. 

function of the linear oscillator [Eq. (6)  without the S func- 
tion]. As a result we get 

and the magnetic moment of the TPS per unit area of the 
twinning plane is 

This expression is valid for H f j  > H > H and t) 1. It is 
important to note that as the field approaches H:2, analysis 
of the equations describing the mixed state in our case shows 
that modulation of the solution along the twinning plane 
does not arise at fields below H = H s, and the ass~mpt ion '~  
that a chain of vortex filaments parallel to the field and twin- 
ning plane arises near H :2 is thus not justified. Interestingly, 
Eqs. ( 10) and ( 11 ) imply that the magnetic moment of the 
TPS in a field H = H & (i.e., when the bulk superconductiv- 
ity arises) is independent of the temperature. 

For temperatures t=;O, the behavior of the TPS in a 
field can be analyzed only on the basis of a numerical solu- 
tion of the equations for the order parameter and magnetic 
field. 

Figure 7 illustrates the results of the numerical calcula- 
tions for the case K = 1, corresponding to niobium, and for a 
temperature t = - 0.5. The field dependence of the magnet- 
ic moment for ?t = 1 (niobium) at various temperatures is 
shown in Fig. 8. Interestingly, for t > 0 this field dependence 
is bell-shaped. The initial growth in the magnetization is due 
to the growth of the magnetic field; then, at stronger fields, 
the superconductivity begins to be suppressed, which causes 
the moment to fall off as the field approaches H ,*, . 

On the whole, the theoretical scheme gives a qualita- 
tively correct description of the observed behavior3 of the 

FIG. 8. Magnetic moment (per unit area) of the TPS versus the field 
h = A  /fi in niobium ( x  = 1) at various temperatures. The moment is 
measured in the same units as in Fig. 5. 

TPS in niobium. However, the quantitative agreement here 
is somewhat poorer than in the case of tin. For example, 
according to the experimental data3 the value of d H  r2 /dT 
at T = T, exceeds d H  :2 / d T  by a factor of about 1.2, while 
the theoretical value of this ratio is about 1.5 (see Fig. 6). 
This discrepancy may be due to the fact that detection of the 
magnetic moment of the TPS at a second-order phase transi- 
tion becomes a very complicated experimental problem, and 
the measurements of Ref. 3 give only a lower bound on the 
field H z .  Another important factor is whether the field was 
strictly parallel to the twinning plane in the experiment, 
since the increase in the perpendicular critical field for TPS 
with respect to the bulk value at It l$l is substantially 
smaller than for the case of a parallel field. 

5. DIAMAGNETIC SUSCEPTIBILITY OF THE TWINNING- 
PLANE SUPERCONDUCTIVITY 

In the region t > 0, where the TPS exists all the way 
down to the smallest fields, the problem of finding the dia- 
magnetic susceptibility of the TPS [the initial slope of the 
M ( H )  curve] can in certain cases be solved analytically. Let 
us consider the screening of a weak magnetic field parallel to 
the twinning plane. In the equation for the field distribution 
here we should take for p (x )  the expression (4)  for the order 
parameter in the absence of field. The corresponding equa- 
tion for the vector potential is of the form 

Making the change of variables { = coth (xt + p ) and go- 
ing over from Eq. ( 12) to an equation for the field B, we find 
that the distribution of the magnetic induction is determined 
by the equation 

Transforming to a new function y ( { )  by means of the rela- 
tion B = ({ - 1) ' ' 2 y ( { ) ,  we obtain for this new function 
the Legendre equation 

The magnetic-field distribution is thus described by the 
Legendre functions Q :,a l '  with parameter 
v,,, = i[ - 1 f (1 + 8 / ~ ~ ) ' ' ~ ]  or, in the corresponding 
representation in terms of the hypergeometric functions, 

In the general case it is a difficult problem to find the explicit 
expression for the constants A ,  and A,  from the boundary 
conditions, and we shall therefore analyze a number of limit- 
ing cases. 

For an extreme type-I1 superconductor ( ~ $ 1 )  the 
screening of the field turns out to be weak over practically 
the entire temperature interval 0 < t < 1, i.e., 
B(x)  = H - b(x) ,  where b(x)  gH.  Equation (13) can then 
be written to first order in the parameter x-' as 
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an equation which admits an exact solution. Integrating 
(16) with the boundary conditions b-tO at 6-+O and 
b ' ( r )  = 0, we find the magnetic-field distribution 

(g2-I) (r+1) 1 
B=H{i - $ [ g l n ( E l - - l j  g-I r+i + I D -  4 (r- 1) 

(17) 

The magnetic field right at the twinning plane, 

differs little from the external field H. The total magnetic 
moment of the TPS per unit area of the twinning plane is 

rn 

For t+O, i.e., T-tT,, the specific (per unit area) mag- 
netic moment behaves as 

which implies that the diamagnetic susceptibility diverges 
approximately as t - 'I2. In a type-I1 superconductor the ap- 
plicability condition for relations ( 16)-( 19) is 
t)exp( - x2) ,  i.e., they are valid practically over the entire 
temperature interval 0 < t < 1. 

Near the critical temperature for TPS we have t-tl, 
r-tl + ( 1 - t)/2, and our previous discussion also applies 
to a type-I superconductor under the condition 1 - t(x2. 
We note that this case has been considered previously.' If the 
opposite inequality holds, the magnetic field around the 
twinning plane is found to be strongly screened, and for ?t( 1 
the field is practically zero in a layer of thicknessxg 1 around 
the twinning plane. Effective screening thus occurs at dis- 
tancesx) 1, i.e., the region ofinterest in Eq. ( 13) is 6 - 1 (1, 
where this equation can be written in the form 

The solution of (20) which falls off as it approaches the 
twinning plane is 

where K, is the modified Bessel function [in the case x( 1 the 
second solution of (20),  the function I,, must be discarded]. 

The magnetic field at the twinning plane in this case is 
exponentially small, and the magnetic moment per unit area 
is given by 

The resulting temperature dependence of the diamagnetic 
susceptibility agrees qualitatively with the available experi- 
mental but the inhomogeneous character of the 
twinning plane (see below) evidently causes substantial de- 
viations from the corresponding theoretical expressions. 

6. UPPER CRITICAL MAGNETIC FIELD FOR TWINNING- 
PLANE SUPERCONDUCTIVITY AT LOW TEMPERATURES 

In this section we consider the critical field at low tem- 
peratures, where the Ginzburg-Landau approximation does 
not apply. A calculation of the low-temperature critical 
fields in the dirty limit is given in Ref. 11. Here we shall give 
a somewhat different method of finding the critical field that 
lends itself to use in both the dirty and clean limits. 

Let us consider the most interesting case, where the 
magnetic field is parallel to the twinning plane. The general 
form of the integral equation is 

we have chosen a gauge such that the kernel depends expli- 
citly only on the coordinate x (see, e.g., Ref. 21). We note 
that the integral equation is written for the quantity 
$(r )  = A(r)/A(r),  which is proportional to the anomalous 
Gor'kov function at coincident points and is a slowly vary- 
ing function of r (on an atomic scale). This circumstance 
evidently causes our results to differ from those of Nabutovs- 
kii and Shapiro,10-12 who considered the equation for the 
discontinuous function A ( r )  . We note in this regard that it is 
difficult to interpret the result of Refs. 10-12 that the region 
of TPS existence temperatures grows as the constant 
g ( r )  a R ( r )  decreases near a certain plane. 

Assuming that the increase in R is localized near the 
twinning plane and introducing the quantity 
A = $GR(x)dx, we write Eq. (23) in the form 

~p (x) =Lo K (x; r', p') $ (x') dx' dp'+$ (0) A K ( r ;  0, p') dp'; 

(24) 
here p is the coordinate in the x = 0 plane. Since the critical 
magnetic field for TPS differs little from the corresponding 
value H L  for the bulk metal, i.e., AH?, = H : ]  
- H Z  (H:,,  the function $(x)  is close to the known eigen- 

function $,(x) (corresponding to the lowest eigenvalue) of 
the kernel for a homogeneous s u p e r c o n d ~ c t o r . ~ ~  Multiply- 
ing Eq. (24) by $,(x), integrating, and recalling2' that in 
the clean limit the kernel K depends only on the ratio H 'I2/ 

T, we find for a clean superconductor 

Since the quantity T, = 0 . 4 5 ~ ~ / / 2  i6  (Ref. 8 )  involves the 
same parameters, we can find a relation between ro and the 
increase in the critical field for TPS at T = 0: 

 AH,^" /H,,O (T=O) - 1 .7~~" ' .  (26) 
For niobium the data of Ref. 3 give T, = and so 

the theoretical value of the increase is AH!,/ 
H & ( T = 0)  ~ 0 . 1 7 ,  while the results of Ref. 3 imply that 
AH !, / H  :, = 0.1 1 at T = 3 K. In view of the fact that it is 
actually a lower bound (in terms of the field) on the TPS 

1076 Sov. Phys. JETP 62 (5), November 1985 A. I. Buzdin and N. A. Khvorikov 1076 



existence region that was determined in Ref. 3, the agree- 
ment with experiment can be regarded as satisfactory. 

For dirty superconductors, in view of the fact2' that the 
kernel K depends on the ratio H / T ,  we find 

andat  T =  0 

It is important to note the pronounced anisotropy of the 
quantity AHc2 = H :, - H 22. When the field is perpendicu- 
lar to the twinning plane, we have in order of magnitude 

i.e., AH:, is much smaller than AH?, , and the anisotropy is 
rather sharp. The increase AH should fall from AH?,  to a 
value of the order of AH:, (i.e., to a value on the order of 
that found in niobium) as the angular deviation of the field 
from an orientation parallel to the twinning plane increases 
to AB-TA'~ -0.1 rad. The angular dependence of the critical 
field for TPS was examined in detail in Refs. 11 and 12. 

7. CONCLUSION 

In conclusion, there is good qualitative agreement 
between the theoretical description of TPS and the experi- 
mental data. For tin, where the transition in a field to the 
TPS state is first-order, numerical calculations (with the 
value of the Ginzburg-Landau parameter for tin) give good 
quantitative agreement between the experimental and theo- 
retical phase diagrams. The phase diagrams (in normalized 
units) obtained for various values of x are essentially univer- 
sal. An important feature of TPS is that the field of the first- 
order transition depends on the parameter x ,  a-radical de- 
parture from the corresponding behavior of bulk type-I 
superconductors. 

At the same time, however, there are discrepancies with 
the experimental data as to the character of the temperature 
dependence of the magnetization and the value of the mag- 
netic moment. These discrepancies are apparently due to the 
inhomogeneity of the real twinning plane. If the regions of 
the twinning plane with elevated values of A have a finite 
size, then each such region will have its own value (smaller 
than rO) of the temperature at which local superconductivity 
sets in. 

The presence of small-scale inhomogeneities in the 
structure of the twinning plane can also bring about a situa- 
tion in which the different regions of the twinning plane are 
characterized by a TPS transition temperature Tc ( p )  that 
depends on the coordinate p in the twinning plane. Here the 
characteristic dimension of the regions is large compared to 
J ( rO) ,  and their transition temperature is determined by the 
concentration of the inhomogeneities. In fact, here we also 
arrive at the concept of a twinning plane having regions with 
different temperatures. 

The inhomogeneous character of the TPS does not in- 
terfere with the comparison of the theoretical and experi- 

mental curves for h, ( t ) ,  however, since the experiment'g2 
detects the maximum field, which corresponds to the most 
perfect regions of the twinning plane. It can be assumed that 
the measured field is the same as the field for an ideal twin- 
ning plane, and so a direct comparison with the theory can be 
made. In contrast, the diamagnetic moment of the TPS is 
determined to a large extent by the nature of the inhomoge- 
neity of the twinning plane, and although the theoretical 
field dependence of the moment agrees qualitatively with 
experiment, a quantitative comparison of the theory and ex- 
periment would require information on the distribution of 
the regions with different superconducting properties on the 
twinning plane. 

In the TPS of niobium3 there is some temperature Tk 
( T ,  < Tk < Tc ) below which the flow of microscopic cur- 
rents due to flux trapping is observed. In the experiments on 
TPS in tin,'-3 however, no such currents have been detected 
at an isolated twinning plane. This circumstance may be due 
to the onset of an intermediate state or to the inhomogeneous 
character of the twinning plane (different in tin and nio- 
bium). An alternative possibility is a transition of the Kos- 
terlitz-Thouless for the TPS, as was conjectured in 
Ref. 3. Such a transition can occur because of the specific 
two-dimensional character of the superconducting vortices. 
In fact, though, the superconductivity extends from the 
twinning plane a distance {(T,), which is substantially 
greater than the interatomic distance, and the condition for 
the formation of self-induced superconducting vortices is 
satisfied only in a narrow region near the temperature Tc. 
Nevertheless, there is an alternative possibility for a Koster- 
litz-Thouless transition, which can occur in a system of su- 
perconducting granules at the two-dimensional twinning 
plane. In fact, the weak Josephson interaction of the individ- 
ual superconducting regions (in which the phase of the su- 
perconducting order parameter is constant) causes an inho- 
mogeneous superconducting twinning plane to resemble a 
classical system of plane rotators, for which a Kosterlitz- 
Thouless transition has been predicted.22923 Here the tem- 
perature T, of the Kosterlitz-Thouless transition agrees in 
order of magnitude with the energy J o f  the Josephson inter- 
action of adjacent superconducting regions. In the case of 
two such regions of dimension Ro separated by a distance 
R)Ro, {(T), we have the following energy estimate: 

J-ao2 (T,21eF) N(RO3E ( a O )  l R )  exp (-RlE ( T )  1. 
The sharp exponential dependence of J on the distance 
means that in practice the transition temperature TK is de- 
termined by the condition {(T) -R. Using the value of TK 
found for niobium in Ref. 3, we obtain the estimate R - lo4 
A. We emphasize that in this interpretation it is the inhomo- 
geneity of the twinning plane that makes the topological 
transition possible. 

In closing, we take this opportunity to express our sin- 
cere gratitude to L. N. Bulaevskii and M. S. Khaikin for 
reading the manuscript and for many valuable comments 
and to I. N. Khlyustikov for providing experimental data 
prior to publication and for many helpful discussions of the 
questions addressed in this article. 

"An estimate for r,, is easily obtained from the following considerations: 
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T, = ( T, - T, ) /T ,  - (61 /A :, ) [ d  / I (  T, ) 1 ,  where M is the increase 
in the Cooper pairing constant (in comparison with its value A, in the 
bulk metal) in a layer with a thickness of the order of d near the twinning 
plane. Recalling that the correlation length at the point T, is given by 
g( T, ) -I0?; "', we find 7,- (6Ad /A ;lo)*, in agreement with the re- 
sults of a rigorous treatment.'.l0 
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