
Asymmetric diffusion in a nonlinear spatially inhomogeneous medium 
B. I. Yakobson 

Institute of Solid-State Chemistry and Mineral Raw-Materials Processing, Siberian Branch of the Academy 
of Sciences of the USSR 
(Submitted 11 June 1985) 
Zh. Eksp. Teor. Fiz. 89, 1830-1833 (November 1985) 

The nonlinear dependence of the impurity transport equations on concentration leads to different 
diffusion permeabilities in the forward and backward directions in an inhomogeneous solid layer. 
The asymmetry is calculated for using a two-layer membrane as an example. 

Impurity particles often have an appreciable mobility 
and redistribute themselves by diffusion in an immobile solid 
carrier. High mobilities have been found for atomic hydro- 
gen in metals,'-3 for certain inert gases in g l a ~ s e s , ~ . ~  and for a 
number of molecular gases in zeolite crystals,',2 whose lat- 
tices have a characteristic porous structure. A plane layer of 
such a material is permeable to impurity molecules, and a 
constant difference in the conditions at its outer boundaries 
(e.g., a pressure drop of the permeating gas) creates a diffu- 
sion flux J. 

The equations describing this process are nonlinear, 
since the diffusion coefficient D ( c )  is in general a function of 
the impurity concentration c (as in the examples24 we have 
mentioned) because of interactions between the impurity 
particles. Nonlinearity of the boundary conditions can be 
caused simply by saturation of the carrier by the permeating 
gas. Any kind of nonlinearity will cause the diffusion resis- 
tance of successive adjacent layers to become nonadditive 
and the permeability of a membrane whose structure is inho- 
mogeneous over the thickness (i.e., when there is explicit 
dependence on the depth coordinate x in the transport equa- 
tions) to become asymmetric: Transposing the external con- 
ditions changes not only the direction but also the magni- 
tude of the flux. This is easy to understand qualitatively, but 
it would be of interest to make a quantitative estimate. 

Suppose that the membrane consists of layers of differ- 
ent compositions A and B (with thicknesses a and b ) ,  in 
which the diffusion coefficients of gas Care  D, and D, , and 
that the concentration of the gas on the outer sides of the 
membrane are c, and c,. For simplicity, we assume that 
molecules Con  dissolving in the solid matrix occupy definite 
interstices, the number of which per unit volume ( N ,  and 
N, ) determines the solubility limit, and we let n be the con- 
centration measured relative to the limiting concentration 
(O(n < 1).  The flux from the gas phase into the solid is pro- 
portional to c, and to the number of vacancies near the sur- 
face ( 1 - n, ), while the backward flux from the solid into 
the gas is proportional simply to n, . The boundary condi- 
tion arises because these microscopic fluxes are equal within 
a quantity of order J, which is a small quantity proportional 
to the ratio of the length of a diffusion jump to the macro- 
scopic thickness of the layer. Making similar arguments for 
all the boundaries (CA, AB, BC) and denoting the solubility 
constants by K ,  and K,, we write the corresponding equa- 
tions') for x = - a, x = 0, and x = 6: 

The steady-state flux is the same in any x = const cross sec- 
tion of the membrane: 

Solving system ( 1 ), ( 2 ) ,  we express the quantity of interest 

J=j (NaDANBDB/ab) '"  ( 3  

in terms of the smaller root j of the quadratic equation 

where the dimensionless parameter R characterizes the ratio 
of the layer thicknesses: 

Equation (3)-(5) give the flux for any external conditions: 
at low pressures Eq. ( 1 ) can be linearized, so that the perme- 
ability is symmetric as long as the solubility obeys Henry's 
law; outside the region where Henry's law holds, for 
c,,,, K ,  2 1, the value of J depends on the pressure, as is 
seen in Fig. 1. The asymmetry of the permeability is charac- 
terized by the ratio of the maximum values of the forward 
and backward fluxes: 

J ,  [A" (K- 1) ]'"+A 
A = - - - =  

J, [A2- (1-1/K) ]"2+A1 ' 2 

It  follows that the asymmetry is most pronounced for 
A = R = 1, i.e., the layer thicknesses should be proportional 
to the corresponding diffusion coefficients, as can be seen 
from (5 ) .  Then for K )  1 the asymmetry coefficient can be 
estimated simply by direct inspection of the profile n ( x )  
shown in Fig. 2. The flux is proportional to the dropsin con- 
centration, which for II = 1 are the same across each of the 
layers and amount to An= 1 for the forward flux and 
An zn, ,  z 1 - n,, =E( 1 for the backward flux. The mid- 
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FIG. 1. Reduced current j versus the concentration drop A c z K ,  ( c ,  
- c, ) when the pressure on one side of the membrane is zero. The pairs of 

numbers ( K ;  A )  given on the curves are the equilibrium constant on the 
boundary between the layers and the ratio of the layer thicknesses. The 
curves corresponding to K  = lo3 are substantially asymmetric, and for 
Ac < 0  they run together. 

dle boundary condition ( 1 ) gives the estimate Kc2-  1, SO 

that the backward flux is smaller than the forward flux by a 
factor of K 'I2, and the coefficient A - K  ' I2  is large, in agree- 
ment with (6 ) .  

The most suitable heterogeneous systems ia which to 
observe the effect experimentally are those in which one of 
the layers is relatively inert with respect to the permeating 
gas (the heat of absorption Q is small), while the other has a 
large solubility constant. For example, large values Q k  10 
kcal/mole are typical for the absorption of a number of mo- 
lecular gases (H,O, NH,, N,, etc.) in ~ e o l ~ t e s . ' ~ *  At tem- 
peratures somewhat above room temperature this corre- 
sponds to constants K k  lo6, so that the forward and 
backward permeabilities can in principle differ by several 
orders of magnitude. In the diffusion of hydrogen through 
metallic bilayers (for example, Pd and Ni, which have a 
large sorption capacity and a low hydrogen solubility, re- 
spectively, or certain  alloy^^-^), the dissociative character of 
the dissolution will itself cause a nonlinearity of the bound- 

FIG. 2. Concentration distribution n ( x )  at the limiting values of the for- 
ward and backward fluxes in the presence of well-defined nonuniformity, 
K,1. 

ary conditions ( n  cc cl"), which can be taken into account 
straightforwardly in the calculation. 

Finally, we note the interesting possibility that an anal- 
ogous asymmetry of the heat conduction can arise because 
the thermal conductivity x ( T,x)  depends simultaneously on 
the temperature and position although there is a fundamen- 
tal difference from the diffusion case: an equilibrium jump of 
the temperature at the interfaces is impossible, unlike the 
analogous concentration jump in the problem treated. 

"The same result can be obtained by calculating the chemical potential 
~ ( c , x )  and requiring it to be continuous at the boundaries. 
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