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The effective electrical conductivity of isotropic systems with a low concentration (c< 1 ) of 
inclusions is analyzed to second order in c. General formulas convenient for specific calculations 
are derived. Their range of applicability is determined. Their relationship with the problem of the 
conductivity of slightly inhomogeneous media is determined. The conductivity of a two-dimen- 
sional system with circular inclusions is calculated explicitly. The analytic properties of the 
electrical conductivity of this system are discussed in the plane of the complex argument h, the 
ratio of the conductivities of the components. The point h = 0 is a singular point for the effective 
conductivity. The nature of the singularity is determined. The broadening of the local level in the 
corresponding LC model due to the "interaction" of inclusions is determined. 

1. INTRODUCTION 

The effective characteristics of two-component systems 
can be written as power series in the concentration of one of 
the components, c (this is a so-called group or virial expan- 
sion). The group expansion is essentially the only systematic 
method for calculating the various characteristics of inho- 
mogeneous media for arbitrary ratios of the properties of the 
components. Most of the work on the subject has been car- 
ried out to first order in the concentration (Ref. 1; see also 
Ref. 2) or through a general formal analysis of the virial 
series (Ref. 3, for example). An examination of the correc- 
tion which is linear in c reveals several important features of 
two-component systems. There is also considerable interest 
in studying the next second-order correction in the concen- 
tration, to obtain a more detailed picture of the structure of 
the group expansion and of its range of applicability. We 
wish to emphasize that going from the linear approximation 
in c to the second-order approximation (which we will also 
call the c2 approximation) does not just provide a quantita- 
tive refinement of the results. As we will see below, incorpor- 
ating the "interaction" of inclusions leads, even in the c2 
approximation, to several qualitatively new effects, which 
are not found to first order in c and which must be taken into 
account in a study of the analytic properties of the electrical 
cond~c t iv i ty .~  It is also necessary to go beyond first order in 
the concentration in studying the spectral properties of the 
so-called LC model.4 

In the present paper we derive a general expression for 
the effective electrical conductivity a, in the c2 approxima- 
tion. In this expression, the quadratic correction is expressed 
in terms of the polarizability of a pair of inclusions in an 
external electric field. We relate the problem of the group 
expansion for a, to the problem of the conductivity of a 
slightly inhomogeneous medium. For slightly inhomogen- 
eous systems, a perturbation theory in Sa-the deviation of 
the conductivity o ( r )  from its mean value-leads to an 
expression' for a, which is quite common: In the approxi- 
mation quadratic in Sa ,  and for arbitrary values of c, the 
conductivity a, depends on neither the shape nor distribu- 

tion of the inclusions. Analysis of the virial series leads to an 
explanation of the reason for this universal applicability. 

For a specific calculation of the correction quadratic in 
c, we must find the polarizability of a pair of inclusions. In 
general, this is an extremely complicated problem. As an 
example of the application of the general equations, we con- 
sider the comparatively simple case of a two-dimensional 
system with circular inclusions. The problem of determining 
the polarizability tensor of two circles (or  circular cylin- 
ders) can be solved exactly, so that we can calculate oe expli- 
citly in the c2 approximation. The expression which we de- 
rive for a, demonstrates the nature of the group expansion 
for an arbitrary ratio h of the conductivities of the compo- 
nents, in particular, for systems with insulating or ideally 
conducting inclusions. 

The explicit expression for a, makes it possible in this 
example to study a question of importance to percolation 
theory5v6: the analytic properties of the function f (the di- 
mensionless effective electrical conductivity) in the complex 
plane of the argument h (Ref. 4 ) .  In accordance with the 
general conclusions of Ref. 4, the function f is analytic over 
the entire h plane, cut along the negative real semiaxis. Of 
fundamental importance is a confirmation of the conclusion, 
reached in Ref. 4, that the point h = 0 is a singular point for f 
for disordered systems. In the model considered here, the 
function f contains a nonanalytic term of the form h 31nh in 
the limit h-0. In the corresponding LC model,4 only the 
local frequency is related to an isolated inclusion ("defect"). 
A pair of defects has a set of impurity levels, which fill the 
entire energy interval as the inclusions move progressively 
closer together. Consequently, the gap in the spectrum of the 
LC model which was discussed in Ref. 4 is not present in this 
case, and the imaginary part off is nonzero for all h < 0. The 
explicit expression for o, can be used to study the behavior 
of Imf on the cut and to study the concentration broadening 
of the impurity level (corresponding to an  isolated defect) 
which results from the interaction of inclusions. These re- 
sults make it possible to draw conclusions about the form of 
the imaginary part of the function f for some other binary 
systems also. 
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2. SECOND-ORDER APPROXIMATION 

The general formal scheme for constructing a group ex- 
pansion for the effective characteristics of binary media is 
described by F i~~ke l ' be rg ,~  for example, for the problem of 
the dielectric constant of a mixture. The approach which we 
will take below is analogous to that suggested in Ref. 2. This 
method is fundamentally the same as that in Ref. 3 but more 
convenient for specific calculations. 

We consider a three-dimensional medium consisting of 
an isotropic matrix of conductivity a,  and of identical inclu- 
sions of conductivity a,. We denote by E, the macroscopic 
electric field in the medium in the absence of inclusions. We 
place one inclusion at the origin. At large distances (r-tco ) 
the asymptotic expression for the potential e, then has its 
usual form ': 

Here v is the volume of an inclusion, p is its dipole moment, 
and & is the polarizability tensor, which depends on the 
shape of the inclusion and the conductivity ratio h = a2/a,. 

To determine the conductivity of this medium at a low 
inclusion concentration (c( 1 ), we average the vector 
j - o l E  over the volume of the entire system V as in Ref. 1. 
Here j = j ( r )  and E = E ( r )  are the current density and elec- 
tric field in the medium. Since we have ( j )  = a, (E) by de- 
finition ( (...) means an average over the entire volume of the 
sample), where a, is the effective conductivity of the system, 
we find 

1 
(oe-of) (E>= - (j-olE) dV. ( 3 )  

a a a  

Expression ( 3 )  reflects the fact that the integrand in non- 
zero only inside inclusions. The summation in ( 3 )  runs over 
all the inclusions (particles), while the integration is over 
the volume of the a th  particle, va . As was shown in Ref. 2, 
the integral on the right side of ( 3  ) can be transformed into a 
surface integral, which can be calculated through the use of 
the asymptotic expression ( 1 ). As a result we find 

wherep, is the dipole moment of the a th  particle. From ( 4 )  
we find a general expression for a, to first order in the con- 
centration of inclusions (see Ref. 2 and the discussion below 
in the present paper). 

To calculate the effective conductivity a, with terms 
-c2, we partition the entire set of inclusions into pairs, and 
we treat the two nearest inclusions as constituting a single 
"particle." In this case the quantity pa in (4 )  is the dipole 
moment of a pair of inclusions, P:~', while the sum in ( 4 )  
contains N / 2  terms, where JV is the total number of inclu- 
sions in the sample. Using (2 ) ,  we find 

The second equality follows from the law of large numbers: 
As V--+ CG and M-+ CG we have 

whereMo =^M/2 is the total number of particles. The dou- 
ble bar over A ( 2)  means an axerage over the ensemble o f̂ 
particles; the superscript 2 in A"' me? is that the tensor A 
refers to a pair o~inclusions. 

The tensor A'2' must be averaged over both the orienta- 
tions of the individual inclusions (over the "internal" co- 
ordinates) and the coordinates characterizing the particle as 
a whole (the pair of inclusions). For simplicity we restrict 
the analysis to spherical inclusions, in which case there is no 
averaging over the internal coordinates. We first average 
over the orientations of a pair for a fixed distance between 
inclusions: 

The single superior bar here means the remaining part of the 
average, over the distance between inclusions, 

where w( p) = o (  1 p i )  is the probability that the distance 
between the centers of two inclusions is p. Here 

J w(p)dp= l .  (8)  

I f p  increases without bound we have 

s p  Y1'2' (p) -2 s p  ;I('', (9 )  
h 

where 2"' is the tensor A corresponding to an isolated inclu- 
sion. The expression for ~ ~ 2 " '  can be written in the follow- 
ing form, where we are using ( 7  )-(9) : 

In the "normal" situation (as specified below) the second 
term on the right side of ( 10) is dominated byp - R, where R 
is the scale length of an inclusion. For a random distribution 
of inclusions, the probability for two particles to come this 
close together is proportional to the particle concentration. 
We can thus use (5)-(10) to rewrite (4 )  

(0,-0,) (E> 

where N = N / V  is the number density of the inclusions. In 
accordance with the comment above, we note that the sec- 
ond term on the right side of ( 1 1 ) is quadratic in N. 

To calculate ( E )  it is sufficient to work only to first 
order in the concentration. Taking an average of E ( r )  - E, 
over the entire volume V, we find 

a va 

where the summation runs over the individual inclusions. 
The integration on the right side of ( 12) is extended to the 
volume Va of a sphere surrounding the a th  inclusion. To  first 
order in N, the radius of this sphere can be assumed arbitrar- 
ily large. The integral on the right side of ( 12) transforms 
into a surface integral, which we can evaluate with the help 
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of expression ( 1 ) . As a result we find 

where p:" is the dipole moment of an individual inclusion. 
Substituting ( 13) into ( 12), using ( 2 ) ,  and taking an aver- 
age over the angles, we find an expression for (E) in the 
approximation linear in N. 

Substitution of ( 14) into ( 1 1 ) gives us our final expres- 
sion for the effective conductivity u, to second order in the 
concentration: 

h h 

Introducing the polarizabilities A"' = vii"' and A'2' = 2uii'*', 
we can rewrite ( 15) as 

where c = vN is the dimensionless concentration of inclu- 
sions (the fraction of the volume which they occupy). To 
first order in the concentration, expressions ( 15) and ( 16) 
are the same as the corresponding expressions of Ref. 2. 

To calculate the second-order correction explicitly, we 
must specify the distribution function w ( p)  [see ( 7 )  1. Let 
us assume that the centers of the inclusions are distributed at 
random ( a  Poisson distribution). In this case we have7 

w (p)  =.Y csp  {-NV (p)  ), V(p) =4/3np3. (17) 

For "rigid" inclusions, which cannot overlap, the function 
w(p)  is generally different from a Poisson distribution). On 
the other hand, if c = n V< 1, the deviation is only slight7 and 
should be considered in approximations of higher order in c. 
Wecan therefore useexpression ( 17) as w(p)  in (7 )  in thec2 
approximation. The integral in (7 )  is evaluated under the 
condition p>p,  where p, is the minimum distance to which 
two inclusions can approach each other (for example, we 
would have p, = 2R for spherical inclusions of radius R ) .  
We also note that in the ngrmal siiuation (again, as specified 
below) the quantity Sp[A',' - 2A"'] falls off quite rapidly 
with increasingp, so that, to the accuracy of this treatment, 
the exponential function in ( 17) can be replaced by unity. 
We can then write 

The condition for the applicability of the c2 approxima- 
tion is that the values ofp which are important in the integral 
in ( 18) be small in comparison with the average distance 
between inclusions, - N - "'. In this case, we can ignore the 
effects of other inclusions on the pair under consideration. 

We describe as the "normal situation" that in which the inte- 
gral in ( 18) converges for p -R, so that the inequality 
p (N - ' I 3  holds for c( 1. Thus in the normal situation, the 
condition for the applicability of the quadratic approxima- 
tion (or the linear approximation) is that the concentration 
be low: c( 1. As we will see in Section 4, there can also be an 
"anomalous situation," in which distances p)R are impor- 
tant in integral ( 18). In this case the condition for the appli- 
cability of a group expansion is slightly different [see (43) ,  
for example]. 

At small values of the difference a, - a,, expressions 
( 15) and ( 16) are the same as the expression for the conduc- 
tivity of a slightly inhomogeneous medium,' to an accuracy 
suitable for the present purposes. According to the results of 
Appendix 1, including terms quadratic in u, - a, for an ob- 
ject of arbitrary shape (and of conductivity a, and v )  we can 
write 

Expression ( 19) also applies to a multiply connected "ob- 
ject," i.e., to an arbitrary number of inclusions. In this ~ p -  
proximation in the difference a, - a,, the quantity 
does not depend onJhe d i s tpce  between inclusions, so that 
we can write Sp[A"' - 2A"']=0. For the same reason, 
there are no corrections to ( 15 ) and ( 16) in the higher-order 
approximations in the concentration ( -c3, etc.), so that in 
the approximation quadratic in a, - a, expressions ( 15) 
and (16) are applicable at arbitrary values of c. Substitution 
of ( 19) into ( 15 ) leads to an  expression for a, which holds 
to within terms - ( a ,  - a,)' 

I t  is not difficult to see that expression (20) is an expanded 
form of the standard expression for the conductivity of a 
slightly inhomogeneous medium': 

where D is the dimensionality of the space. For a binary 
system we would have 

(p = 1 - c is the concentration of the first component), so 
that we find (20) from (21 ) for the case D = 3. The reason 
for the universal applicability of (20) an$ (21),  which we 
mentioned in the Introduction, is that SPA'"' does not de- 
pend on the relative positions of the inclusions to second 
order in a, - a,. 

For the two-dimensional case, an expansion in the con- 
centration can be constructed in an analogous way. We write 
the asymptotic expression for the potential in the form 

where the relationship between p and the field E, is given by 
(2 ) .  To  second order in the inclusion concentration, the 
expression for the effective conductivity u, in the two-di- 
mensional case is 
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FIG. 1. 

For rigid (nonoverlapping) inclusions, in evaluating the 
average in (23) we should use expression (18),  where the 
integration in the two-dimensional case is carried out over 
the area. The condition for the applicability of (23) is that 
the corresponding integral forp(N - ' I 2  must converge; i.e., 
the condition c < l  must hold in the normal situation, while 
an inequality such as (43) below must hold in the anomalous 
situation. For slightly inhomogeneous media, expression 
(23) with (A1.9) is the same as (21 ) with D = 2. 

3. CONDUCTIVITY OF A TWO-DIMENSIONAL MODEL 

Let us consider a two-dimensional system with a low 
concentration of circular inclusions (of radius R ) . Accord- 
ing to the results of the preceding section, we must find the 
polarizability of a pair of circles (o r  circular cylinders) in 
order to calculate the effective electrical conductivity of 
such a medium in the c2 approximation. This problem can be 
solved exactly in bipolar  coordinate^.^ 

We choose the coordinate system x ,  y shown in Fig. 1. 
The bipolar coordinates 0, 6 are introduced by means of the 
relationss 

z = '  
a s h g  a sin 0 

ch Efcos 0 ' = ch E+cos 0 ' 
(24) 

The curve6 = const is a circle of radius a/shg centered at the 
point x = acthl ,  y = 0. The boundaries of the inclusions 
thus correspond to { = 6, (for the circle on the right) and 
6 = - 6, (for the circle on the left), where 

Solving the problem of finding the potential in the case 
in which a uniform field E, is specified at infinity (see Ap- 
~ e n d i x  2 ) ,  we determine the principal values of the tensor 
~ ( 2 ) :  

m 

where 6, and a are given by expressions (25) .  In the limit 
p-t cc we have 6,-+In ( p/R ) , a-tp/2, so that 

c' (m) =nu:) (m) =2A(l)=-2R26 o 7 (27) 

where A"'/rR is the polarizability of an isolated (individ- 
ual) inclusion. Using the equality 

z n e r p  (-2ng,) = (R/ la ) ' ,  

which is easily verified, we find 

We average (28) in accordance with ( 18). Here we 
have d p  = 2rpdp, p, = 2R. Replacingp by the variable 

x=exp{-2Z, ( p ) }  ={ [p- (pq--4R2) ' " ] I lR)2 ,  
we find from (18) and (28) 

Using (29) and also expression (27) for 2'" 
(SPA'" = - 2R 'So), we finally find from (23) 

Here c = N r R  ' is the dimensionless concentration, and the 
function F(6,) is defined in (30).  Expression (31 ) is the 
expression which we have been seeking for the effective elec- 
trical conductivity of a two-dimensional system with circu- 
lar rigid inclusions to second order in the concentration. 

We write the effective conductivity of an isotropic bina- 
ry medium as 

oe=oe(p; a,, 0,) =ai! ( p ,  h ) ;  h=a,/o,. (32) 

where p is the concentration of the first component 
(p = 1 - c) .  In  the two-.dimensional case, the function f 
obeys the so-called reciprocity relation (Ref. 9, for example) 

I t  is not difficult to see that to second order in c = 1 - p the 
function f defined by ( 3  1 ), (32) satisfies relation (33 ). 

For real, positive values of CT, and CT,, the parameter h 
lies in the interval O<h< C C ,  which corresponds to 
- 1 <So< 1, i.e., 6; < 1. Under these conditions, the function 

F(6,)  given by (30) is well-defined [expression (30) con- 
verges] and is of even parity: F( - 6,) = F(S,). As So is 
varied from zero to 1, the function F(6,) increases monoton- 
ically, and we have F ( 0 )  = V 3 ~ 0 . 3 3  and F ( 1 )  ~ 0 . 3 7 .  In 
accordance with the results of Section 2, the condition for 
the applicability of expression ( 3 1 ) for real positive conduc- 
tivities of the components is that the concentration be low, 
c < l .  

For insulating or dielectric ( d )  inclusions (0, = 0 ) ,  we 
find from ( 3  1 ) 

1039 Sov. Phys. JETP 62 (5), November 1985 8. Ya Balagurov 1039 



I Irn f '+Ifp, h) 

FIG. 2. 

In the case of insulating inclusions, the second-order correc- 
tion in the concentration is positive (in contrast with the 
linear correction). For ideally conducting (s) inclusions 
(a2-CC), we find from (31) 

Expressions (34) and (35) hold for c(1. 
Expression (34) is the zeroth term in an expansion of 

the function f(p, h )  in powers of h at h = 0. By evaluating the 
derivatives ofF(6,) with respect to 6, at So = 1 (h = 0) ,  we 
can also find the terms - h and -h of this expansion. The 
third derivative of F with respect to So diverges in the limit 
6,-1 (h-0), however, because of the presence in Fof a term 

where g (3 )  = 1.202 ... is the Riemann 5 function. Conse- 
quently, and in agreement with Ref. 4, the function f given by 
(31) cannot be expanded in a converging series near the 
point h = 0. 

Taking a similar approach, we can determine the effec- 
tive conductivity tensor of this two-dimensional system in a 
transverse magnetic field. We will not reproduce the rather 
lengthy results here, but we do note that these results can be 
derived from the general expressions for the effective galva- 
nomagnetic characteristics of two-dimensional binary me- 
dia (isomorphism relations) lo through the use of the func- 
tion f in ( 3  1 ) . 

4. ANALYTIC PROPERTIES OF THE CONDUCTIVITY 

Let us examine the analytic properties of the function 
f(p, h ) ,  defined in accordance with ( 3  1 ) and (32),  in the 
plane of the complex argument h (we use z to denote com- 
plex h ) .  To first order in c we can write 

and the only singularity off is a pole a t z  = - 1 (its meaning 
will be discussed below). In the c2 approximation the analyt- 
ic properties of f(p, z )  are determined by the properties of 
the function F. It follows from (30) that the function F is 
defined for all z except real negative values ( I m  = 0, 
Rez&O, corresponding to 6; > 1 ), for which expression (30) 
becomes meaningless. In the limit z-0 there is, according to 
(36),  a nonanalytic term in the expansion off, 

so that z = 0 is a logarithmic branch point for the function 
f(p, z ) .  In the limit z-cc we have f =f, + ... withf, from 
(35); the terms which we have not written explicitly are of 
order z- '  or higher. Furthermore, the expansion off in the 
limit z--+ cc contains a nonanalytic term which is found from 
(38) by changing the sign and making the substitution 
z-z-! An infinitely remote point is therefore also a loga- 
rithmic branch point for f(p, z) .  In accordance with Ref. 4, 
the function f(p, z )  in ( 3  1 ) is therefore analytic in the entire 
z plane, cut along the negative real semiaxis. The point z = 0 
(likez = ) is singular for f (p, z ) ,  and the singularity in f at 
z = 0 is "weak." 

As was shown in Ref. 4, the function f(p, z )  can be 
defined at any point in the z plane by means of a dispersion 
relation if the imaginary part off on the cut is known. It is 
thus natural to focus on an analysis of Imf. T o  first order in c, 
wi thz=  -t+i6(t>O,S-+O),wefindfrom (37) 

Im f=4nc6 ( t -  L ) .  (39) 

Switching to the c2 approximation causes "blurring" of the 
6-function in (39) because of the interaction of inclusions. 
Making the replacement h-z in (30) and (31 ), and setting 
z =  - t  + i s ,  we find ( t  # I )  I 

l-t &" I  XI. 
The superscript plus sign on f means that the imaginary part 
off is taken on the upper edge of the cut. It follows from (40) 
that Imf'+' is nonzero for all 0 < t < co, i.e., on the entire 
negative real semiaxis in the z plane. 

In the limit t-0 we have E =: 1 - 2t- 1, so that 1 - E"" 
z 2 t  /n. As a result, for t( 1 we find from (40) 

I I ~  j(+' ( p ,  - t )  = 16nc (3)  c2t3, t K  I. (41 

Expression (41) also follows from (38) if we note that we 
have z = texp(i.rr) in this case. Similarly, for t) 1 we find an 
expression for Imf '+' which differs from (41 ) by the replace- 
ment t+l/t. 

According to (40),  the imaginary part off increases 
sharply in the limit t-1 (E-0) : 

Irn f'+' ( p ,  - t )  =nc'/e2, c < e < I ,  (42) 

where E is the same as in (40).  The origin of the inequality 
E)C in (42) is as follows: The case E-0 (t-1) is anomalous 
(Section 2)  in the sense that large distances, p)R, are im- 
portant in the integral in ( 18). As follows from (26),  this is 
because the asymptotic behavior in ( 9 )  or (27) is reached 
(for n = 1 ) atp)R /E'". This inequality does not contradict 
the restrictionpgN - ' I2  (the c2 approximation is valid under 
this restriction) if E>C, and the latter is the condition for the 
applicability of ( 3  1 ) and thus of (40) and (42). The point 
t = 1 ( Z  = - 1) is therefore the only "dangerous" point in 
this model. Consequently, for this system, with complex z, 
the c2 approximation is valid if 
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This inequality is also the applicability condition for the lin- 
ear approximation (37) in the concentration. 

At the boundary of the range of applicability of (42) 
(E-c), the quantity Imf '+' becomes on the order of unity. 
This is apparently its maximum value; at any rate, it can be 
asserted that at t = 1 the imaginary part off '+' is less than 
unity the reciprocity relation (33),  which also holds at com- 
plex h, takes the following form on the cut ( h  = - t + is) : 

f(+'(p, - t )  f'-' ( p ,  - l i t )  = I .  
(The superscript minus sign means that the function f is 
taken on the lower edge of the cut.) Accordingly, using4 

at t = 1, we have 
[Re j(+'(p, -1) I2+[Im I(+) ( p ,  - 1 )  ] ?= I ,  

and thus 
Im / ( + I  ( p ,  -1) < I .  

An analogous inequality holds for the quantity IReF'+'(p, 
- 111. 

To analyze the form of Imf '+ 'for& < c ( It-1 < c )  would 
be to go beyond the scope of the c2 approximation. Putting 
aside this narrow interval oft ,  we see that at t -  1 the imagi- 
nary part off '+' has a sharp peak of height - 1 and width 
-c. Figure 2 is a schematic plot of Imf '+' as a function of h 
f o r c g l .  

For a physical interpretation of these results, we consid- 
er the corresponding L C  model,4 whose properties are di- 
rectly related to the behavior of the function f(p,  z )  on the 
cut. In a discrete problem, the L C  model is a two-component 
lattice made up of inductive reactances (with an impedance 
Z, = - iwL /c2) and capacitive reactances (Z, = i/wC); 
here w is the frequency of the (quasisteady') alternating 
electric field, c is the velocity of light, L is the inductance, 
and Ci s  the capacitance. To study the L C  model in a contin- 
uous problem, we assign the first component a conductivity 
a, = Z, ' and the second a conductivity a2 = Z ; ', where 
Z, and Z, are the same as above. In this case we have 

z=h ( o )  = - 0 2 / Q Z ,  Q = c / ( L C ) '  . 
Here f l  is the Thomson frequency (the resonant frequency 
of the LCcircuit), and w is to be understood as the quantity 
w + is ,  S+ + 0. From (32) we find the effective impedance 
(Z, = a; ' )  of the L C  model (Ref. 4) :  

Using (44),  we find from (45) 
cZ 

ReZ.-'(a) = - Im f(+) ( p ,  - $ ), o>O. 
o L  

(46) 

According to Ref. 1, the real part of the impedance, which is 
responsible for the energy dissipation, is nonnegative, so that 
it follows from (46) that 

Im f(+' (p, - t )  20.  
Expression (40) obviously satisfies this condition. 

As was pointed out in Refs. 4 and 11, the reason for the 
nonvanishing real part of Z, (i.e., for the real energy absorp- 
tion) is the existence of impurity levels (local oscillations) in 

the LCmodel; the resonant excitation of these levels leads to 
the energy dissipation. According to a suggestion in Ref. 4, 
the cut in the z plane corresponds to an impurity band in the 
LCmodel. This suggestion turns out to be correct in the two- 
dimensional system under consideration here. 

The spectrum of local oscillations associated with a pair 
of circular inclusions (the conductivity of the host is 
a, = Z, I, and that of the inclusions is a, = Z ,  I )  can also 
be obtained in bipolar coordinates (Appendix 2 ) .  As a result 
it is found that there are two sets of discrete frequencies 
which correspond to a pair of circular inclusions": 

where f, is the same as in (25) .  For a fixed distance between 
inclusions, the frequencies in (47) form a "band" of finite 
size which consists of discrete levels with an accumulation 
point w = S1. Averaging over different pairs, i.e., over the 
distance between inclusions, causes both the individual dis- 
crete levels and the boundaries of this band to blur. In parti- 
cular, if the inclusions move closer together without bound 
(p+2R), we have [,+0, and the frequencies in (47) form a 
quasicontinuum which stretches from zero to infinity. Ac- 
cordingly, for this model the impurity band includes the en- 
tire frequency range even in the c2 approximation, so that 
this band corresponds to the entire real negative semiaxis in 
the z plane. 

Using (47),  we find that expressions (26) with 
h =  - wZ/fl2 take the form of spectral decompositions: 

w 

i.e., the frequencies in (47) coincide with the poles of the 
corresponding polarizability tensor. This agreement is not 
fortuitous, since the local oscillations associated with a pair 
of circular inclusions can also be determined in a polarizabil- 
ity problem if we let the amplitude E, of the external field 
tend toward zero. Analogously, the frequencies of uniform 
local oscillations (excited by a uniform external electric 
field) which are coupled with an arbitrary (possibly multi- 
ple connected) inclusion can be found as the poles of its 
polarizability. 

In the limit p + ~  we have 4,- CC, and the frequencies 
in (47) approach a limit w,, where 

is the frequency of a local oscillation associated with an iso- 
lated circular inclusion. The pole in expression (37) thus 
corresponds to an impurity level with a frequency (49) .  The 
width of this level is zero, and its contribution to Imf is a S- 
function in the linear approximation [see (39) 1. When the 
interaction of two inclusions is taken into account, the level 
(49) splits, forming a set of frequencies (47);  the result in 
the c2 approximation is a concentration broadening of the 
original local level [see (40) 1. This broadening may also be 
thought of as a "spreading" of local level (49) into an impu- 
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rity band. There is an obvious similarity between this prob- 
lem and that of the spectrum of a particle in a random poten- 
tial.'' The methods of Ref. 12 can also be used to study the 
spectral properties of the LC model. 

The two-dimensional system under consideration here 
is interesting since it is an exactly solvable (in the c2 approxi- 
mation) model. A study of its properties constitutes a test of 
the basic conclusions of Ref. 4 and yields a general picture of 
the imaginary part of the function f(p, z )  on the cut in the 
case c< 1. Let us briefly examine the changes which we can 
expect in the results when we take up other models. 

The concentration broadening of an impurity level in 
the region C<E< 1 [see (42) ]  is determined by distances 
which are large in comparison with the typical sizes of the 
inclusions, so that an expression like (42) apparently holds 
for all two-dimensional models, including lattice models. On 
the other hand, the positions of the impurity levels corre- 
sponding to isolated defects and also the number of these 
levels depend on the shape of the inclusions. If, for example, 
the inclusion is elliptical with semiaxes a and b, then two 
local frequencies, w , = R (a/b ) ' I 2  and w, = S1 (b  /a)  ' I 2 ,  will 
be associated with it. In this case, at c < l ,  there will be two 
peaks in the imaginary part off. 

The conclusion that Im f(p, - t )  #O, holds for all 
0 < t < cc, in the c2 approximation appears to be valid for all 
disordered continuous models. The particular form of the 
singularity in the function f(p, z )  near z = 0, however, de- 
pends on the shape of the inclusions in the "contact" region; 
i.e., this singularity is not universal. Behavior of the type 
(38 ) (at  c< 1 ) should be expected for disordered two-dimen- 
sional systems with convex smooth inclusions. To  determine 
the nature of the singular part of the function f(p,  z )  at  con- 
centrations which are not low (in particular, near the perco- 
lation threshold5) we need to determine the typical form of 
the contact in this case. 

For lattice models, the spectrum of a pair of defects has 
both upper and lower limits. In the approximations of higher 
order in c the interval of "allowed" impurity frequencies 
broadens. Very low frequencies appear in the spectrum in, 

the higher-order approximations in the concentration (the 
lowest frequencies are those of "dislocations," defect bonds 
arranged in a straight line4), so that at c(1 and in the limit 
w-0 the quantity Imf is apparently exponentially small (cf. 
Ref. 12). 

I t  is possible that the basic features of two-dimensional 
models will be retained in a qualitative way in three-dimen- 
sional systems. 

APPENDIX 1 

We assume an inclusion of conductivity a,, of arbitrary 
shape, in an isotropic host of conductivity a , .  We wish to 
find the polarizability of this inclusion under the condition 
/al - c r ,  (a, with an accuracy to terms - ( a ,  - a , )2  inclu- 
sively. We begin with an equation for the potential: 

The inhomogeneity due to the presence of the inclusion is on 
the right side of ( A l .  1 ) .  Using the well-known identity 

we can write Eq. ( A l .  1 ) in integral form: 

1 dr' d 
lp (r) =-Eor - - 5--- dlp(r') 

{ s o  ( r f )  - }. 
4x0, lr-r'l axa' dx,' 

The first term on the right here is the potential of a uniform 
external field E,; the second describes the distortion of the 
potential by the inclusion. Integrating by parts, we can put 
(A1.3) in the form 

dcp(r') d 1 
(r) =:-Eor + - I I dr'60(r1) - -  . (A1.4) 

4 x 0 ~  ax,' dx,' 1 r-r' 1 
We solve Eq. (A1.4) by an iterative procedure, expand- 

ing in powers of the quantity 60: 

Substituting (A1.5) into (A1.4), we find 

lp '2 )  (?I = - EO' J j a r '  dr" (80 (rr) 60  
a z  1 ii I --) -----. 

( 4 ~ 1 0 ~ )  axs f  ax,' I rl-r" 1 axa' I r-r' I 

Finding an asymptotic expression for the potential in 1 1 
(A1.5), (A1.6) by means of the equality (r -co)  ~ ~ 4 ( = - - { 3 ~ b o ( r ) d r + - j [ S o ( r ) ] ~ d r ) .  4no, (51 (A1.8) 

i/lr-r'l=i/r+rr'/r3+ . . . , For an inclusion of conductivity a, we find expression ( 19) 
and comparing the result with ( 1)  and ( 2 ) ,  we can find the from (A1.8). 
tensor A to second order in Sa:  In an analogous way, we find the following result in the 

two-dimensional case: SaP2 A,~=- j d r t ~ u ( r f )  A I 
SPA--- 1 

2n01 { 2 J S o ( r ) d r + - J  [60(r)12dr}.  (A1.9) 1 d L  1 0 1  

+ - 1 5 drr dr" So (r') So (r") ---. . 
(4nol) '  dxa'axB1 I rl-rN I APPENDIX 2 

(A1.7) 
It is convenient to introduce the bipolar coordinatest, 6 

Using identity (P.1.2), we thus find by means of the relation8 
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E+iO=ln[ (a-kz) / (a-z) 1, z=x+iy, (A2.1) 

from which we find expressions (24) for x and y. The param- 
eter a is given in ( 2 5 )  for the case in Fig. 1. The half-plane 
x > 0 corresponds to (> 0, while x < 0 corresponds to 6 < 0. 
For x and y we will therefore use some expansions8 which 
follow from (A2.1) : 

, m 

We assume that a uniform electric field E, with a poten- 
tial 

cpo=-Ear=-Eo (x cos a + y  s i n  a )  (A2.3) 

is given far from the inclusions (in the host of conductivity 
a,) .  Using (A2.2), we find that the potential p, becomes 

m 

-Eo [a cos a+?a (-1) ne-n' cos ( n ~ + a ) ]  , g>O, 
,,=I 

c p o  = c.z 

We seek the potential outside the inclusions [ 16 I (lo, where 
lo is defined in ( 2 5  ) 1 in the form 

P . = ~ o  + x ( a ,  c h  ng s in  nO+b, sh ng cos no), 1 : \ < g o  

with p, from (A2.3), (A2.4).  Inside the inclusion on the 
right (6  k 6,) we have 

CC 

p:" =a:"+ (o,,("e-ng sin nO+b:) e-.' cos no), z>Eo. 

Inside the i~iclusion on the left (&( - 6,) we have 
OD 

( 2 )  ( 2 )  
B; = a. + (a,?' eni sin no+ b:" eng cos no), EG-E.. 

The boundary conditions on the inclusion at the right are 
standard: continuity of the potential and of the normal com- 
ponent of the current density, 

where u2 is the conductivity of the inclusion. Similar bound- 
ary conditions must hold at the inclusion at the left 
( l= -60).  

Imposing the boundary conditions at 6 = + lo, we find 
the expansion coefficients in (A2.5)-(A2.7): 

(A2.9) 
0 1 - 0 2  

Eo.=Eo cos a,  Eo,=Eo s i n  a,  60 = -. 
01+02 

Finding the asymptotic expression for p, from (A2.5) 
(6- 2ax/rz and 8-.rr - 2ayr-2 in the limit r-co ), and 
comparing th5result with (22) ,  we find the principal values 
of the tensor A'*' [see (26) 1. 

In discussing the spectrum of local oscillations in the 
LC model, we seek the potential in the form in (A2.5)- 
(A2.7) withp, = 0, ah" = ah2' = 0. Imposing the boundary 
conditions at 6 = lo, we find a homogeneous system of 
equations for the expansion coefficients in (A2.5)-(A2.7). 
From the condition that the system be soluble, we find a 
relation which leads to expressions (47) with a,/u, 
= - 02/R2.  
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